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Abstract: The proton exchange membrane (PEM) represents a pivotal material and a key challenge in
developing fuel cell science and hydrogen technology. Nafion is the most promising polymer which
will lead to its commercialisation. Hybrid membranes of nanosized tungsten oxide (WO3) and Nafion
were fabricated, characterised, and tested in a single cell. The incorporation of 10 wt% WO3 resulted
in 21% higher water uptake, 11.7% lower swelling ratio, almost doubling the hydration degree, and
13% higher mechanical stability of the hybrid membrane compared to the Nafion XL. Compared
to commercial Nafion XL, the rNF–WO-10 hybrid membrane showed an 8.8% and 20% increase in
current density of the cell at 0.4 V operating at 80 and 95 ◦C with 1.89 and 2.29 A/cm2, respectively.
The maximum power density has increased by 9% (0.76 W/cm2) and 19.9% (0.922 W/cm2) when
operating at the same temperatures compared to the commercial Nafion XL membrane. Generally,
considering the particular structure of Nafion XL, our Nafion-based membrane with 10 wt% WO3

(rNF–WO-10) is a suitable PEM with a comparable performance at different operating conditions.

Keywords: proton exchange membranes; hybrid inorganic–organic membranes; Nafion; low humidity
fuel cells; tungsten oxide; hydration degree; mechanical stability

1. Introduction

Since ancient times, humans have been using the closest and most easily available
energy sources in massive quantities. Those sources are nonrenewable and nonenviron-
mentally friendly and are usually associated with several environmental–civilisational
problems. Nowadays, our generation’s challenge is finding and developing new clean,
renewable, and environmental-friendly energy sources, which could help stop the con-
sumption of the existing sources while reducing the prevalent environmental problems,
such as sustainable energy [1–3].

Hydrogen energy technologies and fuel cells may play a substantial role as sustainable
energy techniques relying on renewable energy. Hydrogen is the main raw material for
the PEMFC, and it is possible to obtain hydrogen by splitting water using renewable
energy, even if this process is inherently intermittent. The vast majority of renewable
energy sources are intermittent, which creates gaps in both space and time between the
availability of the energy and the end-users’ ability to consume it. It is important to develop
acceptable energy storage and generating systems for the electrical grid in order to handle
these difficulties [4].
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Using a fuel cell enables the conversion of the chemical energy stored in the fuel into
electrical energy directly with only water and heat as by-products. That makes fuel cells
act as a favourable source of renewable clean energy [5–7].

Based on the material and fuel type, several fuel cells have been reported, such as pro-
ton exchange membrane (polymer electrolyte) fuel cells (PEMFCs) [8–11], direct methanol
fuel cell (DMFCs) [12–14], alkaline fuel cells (AFCs) [15–17], and solid oxide fuel cells
(SOFCs) [18,19]. Among the fuel cells, PEMFC technologies have received worldwide
intense attention due to their high efficiencies, low emissions, and high power density.
PEMFCs are also in the spotlight due to their fast start-up because of the low tempera-
ture, which gives them the advantage of being portable and mobile power generation
apparatus. Membrane electrode assemblies (MEAs) have two key components: a) PEM
(polymer electrolyte membrane), which acts as an electrolyte and is responsible for trans-
ferring the protons from the anode to the cathode and preventing the electrons, and b) the
electrocatalyst for the reaction, usually a Pt-based material [3,6,20,21].

To date, several polymers have been used for PEM fuel cell membrane fabrication: per-
fluorinated polymers such as Nafion [22], nonfluorinated ones such as sulfonated poly(ether
ether ketone) [14,23,24], and poly(benzimidazole) [25,26], and even other types of poly-
mers, such as poly (vinyl alcohol) [27–29], polyvinylidene difluoride [30,31], and modified
cellulose [32]. Nafion is popular due to its acceptable chemical and mechanical stability,
and, most importantly, high proton conductivity at low and intermediate temperatures.

The high conductivity of Nafion is attributed to the presence of SO3H groups which
help the proton conduction across the hydrated membrane. In addition, the existence
of the hydrophobic backbone based on perfluorinated polytetrafluoroethylene (PTFE)
facilitates the proton transport. Eventually, the PTFE backbone is not only responsible
for the morphological and mechanical stability, but also plays a crucial role in providing
Nafion with broad channels due to the phase separation from the hydrophilic phase [33].
Nevertheless, not only protons but also hydrogen molecules permeate easily through the
clusters containing water.

Hydrogen permeability through hydrated Nafion is known to be significantly higher
as compared to its dry state. This is because of the plasticisation effect of water in the Nafion
chain decreasing the glass transition temperature of the Nafion polymer. This phenomenon,
known as hydrogen crossover, leads to the build-up of mixed potentials, which negatively
affects the fuel cell efficiency by lowering the current density and facilitating the formation
of H2O2 [34,35]. This emphasises the importance of membrane hydration, which should be
maintained to an optimum level so not to lose the proton conductivity of the polymeric
membrane. Although inserting humidified gases externally could help overcome this
problem, it results in increasing the cell size, which is a barrier to commercialisation [36–39].

To overcome the above issues, modifying the microstructure of the hydrophilic sulfonic
group and the hydrophobic fluoric groups in the Nafion backbone by inserting different
organic or inorganic fillers/components, and hence fabricating the so-called composite
or hybrid membrane, became one of the most promising approaches [40–42]. Significant
effort has been made to fabricate composite membranes based on Nafion polymers in order
to control the membrane hydration at a low relative humidity. Namely, PVA and PTFE
have been widely used as polymers to be blended with Nafion to enhance its strength
and mechanical stability. On the other hand, a wide variety of inorganic fillers have been
used, especially fillers with hygroscopic properties, including metal oxides such as silicon
oxide [43,44], titanium oxide [22,45], and zirconium oxide [46,47], nanostructured clay such
as laponite [48] and montmorillonite [49], and carbon-based material such as graphene
oxide [50,51] and carbon nanotubes [13]. Additionally, cerium oxide has been used to
interact with the generated hydrogen peroxide and other reactive hydroxyl and superoxide
radicals, which were generated at low temperatures to improve the Nafion’s durability
against these radicals and prevent Nafion degradation, and thus the power loss of the fuel
cells [52]. Among the metal oxides, Tungsten oxide (WO3) is stable in sulphuric acid media,
and its effect on the performance of Nafion has been scarcely investigated.
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Additionally, WO3 can provide (a) a higher hydration level in the membrane during the
fuel cell process and (b) greater ionic conductivity for the Nafion when operating at lower
humidity or higher temperatures. The number of studies reporting the incorporation of the
WO3 nanofiller in the Nafion matrix for the PEM fuel cell application is very limited [53,54].

In this work, we aimed to study the effect of incorporating hydrothermally synthesised
WO3 in different concentrations into the Nafion membrane on water uptake, swelling
degree, contact angle, thermal stability, conductivity, degree of hydration, and ion exchange
capacity. Additionally, the performance of the single H2/O2 cell was studied at temperature
ranges from 25 to 95 ◦C and the fixed low relative humidity of 50% and 30% for H2 and O2,
respectively. The performance of the produced hybrid membranes is compared with the
commercial Nafion XL membrane, which contains SiO2 nanoparticles and has a structure
as shown in Figure 1.
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Figure 1. STEM image of the baseline Nafion XL membrane showing the reinforcement layer and
additives (Reprinted/adapted with permission from [55] 2022, Asmaa Selim).

2. Experimental Methodology
2.1. Materials

DuPont Nafion solution (D520-1000 EW) containing 5 wt% copolymer resin was pur-
chased from the fuel cell store. A commercial Nafion XL membrane with a thickness of
ca. 27.5 µm was purchased from Ion Power GmbH. Sodium tungstate (Na2WO4·2H2O)
and sodium chloride (NaCl) were obtained from CARLO ERBA reagent, Emmendin-
genGermany. The 2-propanol 99.99% was purchased from Molar Chemicals Kft, Budapest,
Hungary. Hydrochloric acid (HCl) 37% and dimethyl acetamide (DMAc) were obtained
from VWR Chemicals, Budapest, Hungary. Carbon paper type H23C6 for the Gas Diffusion
Electrode (GDE) preparation was obtained from Freudenberg FCCTSE&CO, Germany.
Catalyst Powder C-40-PT containing 40% Pt loading was purchased from QuinTech, Göp-
pingen, Germany. Deionized (DI) water (Millipore), used for all membrane preparation,
was obtained in-house.

2.2. Synthesis of WO3 Nanoparticles

The tungsten oxide was synthesised by a hydrothermal method. Briefly, an equal
mass ratio of Na2WO4·2H2O (as tungsten precursor) and NaCl (as directing agent) were
dissolved in 50 mL of DI water using magnetic stirring. Then, the pH of the solution was
adjusted to 2 by the dropwise addition of 6 M HCl. The solution was stirred vigorously
for approximately 10 min and then was transferred to a 60 mL Teflon-lined stainless-steel
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autoclave. Subsequently, the autoclave was sealed and maintained at 180 ◦C for 24 h,
followed by natural cooling to room temperature. After that, the product was washed
3 times with DI water, dried at 60 ◦C for 12 h, and finally annealed in air at 700 ◦C for 3 h.

2.3. Preparation of Nafion Nanocomposite Membranes

Solution casting method was used for all hybrid membranes. A certain amount of
5 wt% Nafion solution was totally dried at 80 ◦C in order to evaporate the low-boiling-point
solvents and to form a resin. A suitable amount of the resin was then dissolved in DMAc
and mixed under a magnetic stirrer until a clear, transparent solution was formed. To this
solution, different amounts of the synthesised tungsten oxide were added. The suspension
was then treated in an ultrasonic bath for 2 h followed by mixing under vigorous stirring
overnight to obtain a uniform dispersion. The casting solution was obtained from 5%
Nafion–DMAc with different contents of WO3 (0, 5, 10, and 15 wt% WO3 with respect to
the dry polymer weight). Then, solutions were cast onto glass Petri dishes, and the solvent
was evaporated at 80 ◦C for 24 h. Consequently, the membranes were annealed for 4 h in
an oven at 120 ◦C. The recast Nafion solution membrane and the hybrid membranes were
finally obtained by immersing in DI water for a couple of minutes at room temperature.
The final membranes were named rNF for the recast Nafion and rNF–WO-x for the hybrid
membranes, where x is the weight percent of the added tungsten oxide.

2.4. Membrane Characterisation

Morphology and surface characterisation of tungsten oxide nanopowder, recast Nafion,
and tungsten hybrid Nafion-based membranes were carried out using a Zeiss EVO 40 XVP
scanning electron microscope (SEM) with accelerating voltage of 20 kV, W filament, and a
working distance of ~8 mm.

The X-ray diffraction of the synthesised tungsten oxide powder, as well as recast
Nafion and hybrid membranes, were recorded using a Philips model PW 3710-based PW
1050 Bragg–Brentano parafocusing goniometer using Cu Kα radiation (λ = 0.15418 nm),
with 2θ in the range of 4◦–75◦. Lattice parameters were determined using a full profile
fit (Pawley-fit).

The thermal stability of the pure Nafion membrane and the rNF–WO-x membranes
were investigated using a TGA-DTA apparatus (model Q500-TA Instrument, Champaign,
IL, USA). The temperature was changed between 23 ◦C–600 ◦C under a nitrogen atmosphere
and a heating rate of 10 ◦C/min.

A universal testing apparatus (Zwick Z005 GmbH & Co. KG, Ulm, Germany) was used
to obtain the mechanical properties of all membranes with a dimension of 75 mm × 10 mm
and speed of 20 mm/min, and an initial grip distance of 35 mm.

Fourier transform infrared spectroscopy (FTIR, Tensor II instrument, Bruker, Germany)
over the range of 400–4000 cm−1 in the attenuated total reflectance (ATR) mode was used
to examine the interaction between the tungsten oxide and Nafion polymer chains. FTIR
spectra analyses of each membrane were acquired with an average of sixteen scans.

To measure the water uptake and swelling ratio of the membranes, square samples
of the membranes with an area of 2.25 cm2 were immersed in DI water for 24 h. Then,
the surface water was removed with tissue paper. Subsequently, the wet mass and the
wet dimensions of the membranes were measured. After that, the samples were dried
in a vacuum oven at 50 ◦C overnight, and the dry weight and size of all samples were
measured. Water uptake and swelling ratio were calculated from Equations (1) and (2),
respectively [56]:

WU =
Ww − Wd

Wd
× 100% (1)

where Ww and Wd are the weights of wet and dry membrane samples, respectively.

SR =
Dw − Dd

Dd
× 100% (2)
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where Dw and Dd are the size of the wet and dry membrane samples, respectively;

D = 2
√
(l × w) (3)

where l and w are the length and width of membranes (cm), respectively.
For contact angle (CA) measurements, the samples were mounted on microscope

slides with double-sided adhesive tape stripes and placed on the stage of a home-built
contact angle goniometer [57]. Ultrapure water (MilliQ, ρ = 18.2 MΩ cm) was used as
a measuring liquid. To place the water droplets, a 25 µL microsyringe equipped with a
PTFE-coated 26 s gauge 3T point style (perpendicular cut) removable needle RN (Hamilton)
was used. The microsyringe was operated by a syringe pump (Legato 111, KD Scientific,
Holliston, MA, USA). For measuring the advancing CAs, the water was disposed in 1 µL
steps up to a volume of 8 µL. To measure receding CAs, the droplet volume was decreased
from 8 µL in 1 µL steps. Still images were captured after each 1 µL step. The CAs were
determined using the spherical cap approximation for the droplet shape, from the ratio of
the droplet image height h and base width w, according to the formula:

θ = 2arctan
(

2h
w

)
(4)

Each sample was measured at three different locations on its surface. The mean of the
same volume droplet CAs were plotted with standard error (SE) for each sample.

To determine ion exchange capacity (IEC) and degree of hydration degree (λ), mem-
branes were fully dried in an oven at 80 ◦C overnight, and their weight was recorded.
Subsequently, the samples were cut into small pieces and soaked in a small beaker with
50 mL 1 M NaCl solutions for 24 h under continuous magnetic agitation. Then, the sample
solutions were titrated with 0.01 M NaOH solution using methyl orange as an indicator.
The IECs were calculated by the following Equation [58]:

IEC =
CNaOH × VNaOH

Md
× 100 (5)

where cNaOH = 0.01 M, VNaOH is the volume of the NaOH solution used for titration, and
Md is the initial dry weight of the membrane.

The hydration degree (λ), the number of water molecules available per SO3H group,
was determined from Equation (6) [1].

λ =
10 × WU

IEC × Mwt
(6)

where Mwt is the water molecular weight.
Membrane proton conductivity was obtained by applying potentiostatic electrochemi-

cal impedance spectroscopy (PEIS) with a frequency from 100 kHz to 10 mHz and a 10 mV
amplitude of the oscillating voltage at room temperature. Gas flow was 200 mL N2 on the
cathode side and 200 mL H2 on the anode side. In situ impedance spectra were recorded by
connecting the fuel cell with VMP-300 multichannel potentiostat (BioLogic) by contacting
the fuel cell cathode to the working electrode and the anode to the reference and the counter
electrodes [54]. EC-lab program of BioLogic was applied to carry out and evaluate the
PEIS measurements. The membrane resistance was calculated from the low intersect of the
Nyquist plot with the z-axis. Subsequently, the conductivity of the membranes (S cm−1)
can be obtained from the following Equation:

σ =
L

R × A
(7)
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where L and A are the thickness and area of the membrane in cm and cm2, respectively,
while R is the membrane resistance in Ω.

2.5. MEA Fabrication and Fuel Cell Tests
2.5.1. Catalyst Preparation

QuinTech C-40-PT with 40 m/m% Pt content was used as a reference catalyst, mixed
with Nafion solution (5 m/m%) and 2-propanol. The obtained catalyst ink was painted
onto the surface of the GDE (4 cm2) by a spray coating method using AB200 type air-
brush (Conrad Electronic SE). In this work, cathode and anode had the same Pt content
(0.15 mg/cm2). Afterwards, the GDE was heat-treated in air for 30 min at 80 ◦C, followed
by additional 30 min at 120 ◦C.

2.5.2. Fuel Cell Tests

In order to obtain the final MEA, the membranes were cut into 16 cm2 samples and
hot-pressed between the cathode and anode side GDE under 59.4 kg cm−2 pressure for
3 min at 120 ◦C. The resulting MEAs were activated under 400 mV at 80 ◦C for 4 h before
the tests. First, electrochemical impedance spectroscopy measurements were done (for
the PEIS conditions, see Section 2.4), and CVs were recorded using the anode side as the
reference electrode

The U–I polarisation plots were recorded at an operating temperature of 25, 60, 80, and 95 ◦C,
under a relative humidity of 50% and 30%, and back pressures of 250 kPa and 230 kPa at
the anode and cathode, respectively. The flow rate was equally 200 mL/min for both gases.
The polarisation measurements were based on the voltage pulse method reported in our
previous work [59]. For comparison, the Nafion XL membrane was tested under the same
operating conditions.

3. Results and Discussion
3.1. Morphology and Properties

The scanning electron micrograph for the synthesised tungsten oxide nanopowder
is shown in Figure 2. WO3 nanoparticles were found to vary in size and shape and were
slightly aggregated. Nevertheless, the surface of the tungsten-oxide-filled recast Nafion
(rNF) membrane was smooth and dense, while the Nafion XL membrane exposed silica
nanoparticles (Figure 3).

Similarly, the hybrid membranes containing different WO3 concentrations in the
casting solution showed dense, compact structures with no voids or cracks. Increasing
the concentration from 5 to 10% resulted in protrusions and lumps on the surface of the
membranes, only partially present at 15%. However, the surface of the hybrid Nafion–WO3
membranes with different WO3 concentrations was denser and rougher compared to the
recast Nafion membrane (rNF).
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The XRD patterns in Figure 4a,b show the degree of crystallinity of the tungsten oxide
powder, recast Nafion membrane, and hybrid Nafion–WO3 membranes. The formation
of tungsten oxide was confirmed, taking into account the monoclinic WO3 with lattice
parameters a = 7.306 Å, b = 7.54 Å, and c = 7.692 Å align space group P21/c (14) (JCPDS
no.72-0677). The obtained WO3 pattern correspond to the reported values of the monoclinic
WO3, with the peaks from other crystallographic phases being absent. For the recast
Nafion (rNF) membrane, diffraction peaks around 2θ = 17.6◦ and 44.2◦ could be observed,
representing the typical crystalline phase of Nafion [47,60]. The successful incorporation of
the nanofiller in the membranes was evidenced by the detection of the characteristic WO3
peaks. Additionally, the sharpening of the peak at 2θ = 17.6◦ after the incorporation of
5 and 10% WO3 in the membrane indicates an enhancement of the crystallinity of Nafion.
As reported by Shao et al., [53], an increased crystallinity results in improvements in the
mechanical stability.

However, the membrane diffraction peaks totally changed after incorporating a higher
amount of WO3 (15 wt%). A new peak at around 2θ = 10.6◦ can be observed, which could
be attributed to the hydrated phase of WO3, possibly formed due to the water-containing
channel of the Nafion membrane [61]. The pattern of the rNF–WO-15 shows all the
characteristic peaks for the synthesised WO3, suggesting that the membrane accommodates
larger size WO3 crystallites well-dispersed in the Nafion matrix. Additionally, the peak
at 2θ = 17.6◦ is slightly diminished, indicating that the polyfluorocarbon chains in the
Nafion membranes, which overlapped the X-ray scattering from the amorphous region of
the membrane at lower Bragg angles, have been corrupted upon the addition of a higher
amount of WO3, which would probably affect the membrane’s general performance [62].

The thermal stability of the recast Nafion and hybrid Nafion–WO3 membranes with
different concentrations was investigated and studied using thermogravimetric analysis
under N2 atmosphere (Figure 5). First, all membranes showed a small weight loss between
ca. 50 and 250 ◦C, which is related to the removal of water (Figure 5b). A more pronounced
weight loss indicating the degradation of Nafion can be seen between 300 and 400 ◦C.
The degradation temperatures shifted to a lower temperature for the hybrid membranes
compared to the pure Nafion membrane. The unfilled recast membrane started to de-
compose at around ~320 ◦C, whereas the hybrid membranes decomposed at ~290 ◦C; the
decomposition peak maxima being around 360 and 330 ◦C, respectively. This indicates that
the incorporation of WO3 in the Nafion accelerates the decomposition of the membrane,
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probably through the deterioration of thermal stability of the SO3H groups. As reported,
this mass loss is attributed to the decomposition of the acid SO3H groups of Nafion, which
starts at ~280–300 ◦C and lasts up to 370–400 ◦C [53,63]. The further weight loss observed
above 400 ◦C corresponds to the decomposition of the polytetrafluoroethylene backbone
chains in the Nafion polymer. In this case, the decomposition temperature of the hybrid
membrane appears to be higher than that of the recast membrane, which indicates a sta-
bilising effect of the WO3 nanofiller. For all the hybrid membranes, the weight residue is
higher compared to the recast Nafion membrane.
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Figure 5. Thermal gravimetric behaviour of recast Nafion and hybrid membranes. Recast Nafion
membrane (black) and Nafion membrane with 5, 10, and 15 wt% tungsten oxide (green, blue, and
purple, respectively), (a) TGA and DTG (b).

Mechanical strength is one of the important properties of a membrane. As reported,
the formation of hybrid membranes containing nanosized inorganic fillers is a powerful
and easy way to enhance polymer strength [64]. To investigate the effect of tungsten oxide
as a nanofiller on the mechanical properties of the Nafion membrane, a tensile test was
accomplished. The results are summarised in Figure 6. The recast Nafion had the lowest
stress force of a maximum stress of 19.9 MPa. In comparison, the presence of the WO3
nanofiller up to 10 wt% resulted in an increase in the membrane strength (25.1 and 27.3 MPa
for rNF–WO-5 and rNF–WO-10, respectively). However, incorporating more WO3 (15 wt%)
led to a dramatic decrease in both the membrane strength and elongation at break at a
maximum stress of 17.7 MPa. This might be attributed to the too large crystallite size
of the nanoparticles between the Nafion polymer chains [65], as evidenced by XRD. The
tensile strength of the rNF–WO-5 and rNF–WO-10 hybrid membranes was higher than
that of the Nafion XL membrane. However, the Nafion XL showed a higher elongation at
break compared to all prepared membranes. This can be attributed to the structure and
composition of the Nafion XL, such as the reinforcement layer and the silica nanoparticles
as additives [55].
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Figure 6. Tensile properties of the membranes; Nafion XL commercial membrane (red), recast Nafion
membrane (black), and Nafion membranes with 5, 10, and 15 wt% tungsten oxide (blue, green, and
purple, respectively).
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Figure 7 represents the FTIR spectra of the recast Nafion membrane, synthesised
tungsten oxide, and 15 wt% tungsten oxide–Nafion hybrid membrane. The spectra of rNF
showed the typical characteristic bands of recast Nafion. The bands at 1466 and 1410 cm−1,
corresponding to undissociated –SO3H groups; ~1200 and 1142 cm−1 are attributed to C-F
asymmetric and symmetric stretching. Whereas the band at approximately ~ 1050 cm−1 is
assigned to the C–F stretching in the –CF2–CF(R)–CF3 group; ~974 cm−1, C–O–C stretching;
additionally, the bands at 625, 517 cm−1 are believed to be attributed to the stretching of
the C-S group and symmetric O-S–O bending [2,51,66]). On the other hand, the spectrum
of monoclinic WO3 showed a broad band in the range of 400–1000 cm−1 attributed to
the vibration modes of the W–O bond, which confirms the formation of tungsten oxide
(600 cm−1, O–W–O stretching; 755 cm−1, W–O–W bending; 945 cm−1, W=O stretching;
997 cm−1, W–O stretching [67–69]). After the incorporation of the WO3, the bands at
1466 and 1410 cm−1, related to the undissociated –SO3H groups, diminished. Additionally,
the bands at ~1200 and 1142 cm−1 slightly shifted to a higher wavenumber, which could be
attributed to the change in the chemical surroundings. Moreover, the bands representing
the stretching of the C–S group and the symmetric bending of the O–S–O merged in the
broad band of the monoclinic WO3.
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3.2. Contact Angle, Water Uptake, Swelling Ratio, Ion Exchange Capacity, and Hydration Degree

Generally, the performance of the polymer electrolyte membranes relies on the hy-
dration and hydrophilicity of the membrane. Therefore, the surface hydrophilicity was
determined by water contact angle measurements. As argued before, differences in the
wetting properties of surfaces are best revealed by measuring both the advancing and
receding contact angles [57,70,71]. Representative images of water droplets in advancing,
respectively receding stages with corresponding CAs, one per each sample type, are pre-
sented in the Supplementary Materials, Figure S1. Figure 8a summarises all CA data as the
same volume means with standard errors. For all samples, advancing CAs are practically
independent of the droplet volume, while receding angles decrease steeply with decreasing
volume. The wetting properties of the recast Nafion and hybrid membranes were found to
be slightly different from that of the commercial Nafion XL. Figure 8b shows the maximum
mean advancing (θmax) and minimum mean receding (θmin) CAs with standard errors of
three parallel measurements, and the CA hysteresis (∆θ = θmax − θmin). Except for the non-
WO3-loaded sample (rNF), all hybrid–WO3 membranes exhibited 6–12◦ higher maximum



Polymers 2022, 14, 2492 11 of 21

CAs than the commercially available Nafion XL membrane. Similarly, all recast membranes,
even the non-WO3-loaded one, exhibited 7–34◦ higher minimum CAs. Consequently, the
CA hysteresis of the recast hybrid membranes was 10–24◦ lower than that of the Nafion XL.
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Figure 8. (a) Mean advancing and receding CAs with standard errors of three parallel measurements
as a function of droplet volume, Nafion XL commercial membrane (black), recast Nafion membrane
(red), Nafion membrane with 5, 10, and 15 wt% tungsten oxide (blue, green, and purple, respectively);
(b) Maximum mean advancing (θmax—red) and minimum mean receding (θmin—blue) CAs with
standard errors of three parallel measurements, and the CA hysteresis (∆θ = θmax − θmin—black).

Thus, apparently, the addition of WO3 resulted in a hydrophobicity increase of the
membranes. The hydrophobicity clearly increased with the added WO3 content up to 10%,
where it broke down, but even the hydrophobicity of the 15% sample was found to be higher
than that of the unloaded sample rNF. These results may appear somewhat surprising and
counterintuitive, since the intrinsically hydrophilic WO3 filler (with literature reported
water CAs, depending on the preparation parameters, ranging from 4 to 104◦, typical values
being around 30◦; Supplementary Materials, Table S1) was expected to decrease the overall
hydrophobicity of the membranes, and thus contribute to an improved wetting. This
contradiction can be resolved, however, by assuming that the WO3 filler is incorporated
in the bulk of the membrane, but not at its surface, while it still changes the orientation
and/or density of the polymer chains at the surface. This explanation is supported by the
fact that, although the surface hydrophobicity was found to increase with WO3 content,
implying a decreasing surface wettability, application-relevant bulk membrane properties
such as water uptake (Figure 9) and hydration degree (Figure 10) all increased with the
increasing WO3 content (up to 10%, where showed the same sudden drop as CAs). CAs
are related to the wettability of the surface but tell nothing about the processes undergoing
in the bulk.

Again, the results point out the importance of measuring not only the advancing, but
also the receding CAs: by ignoring the receding CAs, all of which are much smaller than 90◦,
and considering only the advancing CAs, all of which are all larger than 90◦, all samples
could be misjudged as hydrophobic, and their water uptake and retention properties could
not be explained. Instead, advancing and receding CAs together suggest that the membrane
surfaces can be regarded as multicomponent systems in terms of wetting, consisting of
at least one hydrophobic and at least one hydrophilic component, which manifest in the
advancing, respectively receding water CAs.
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Figure 9. Hydration properties of the commercial, recast, and hybrid Nafion membranes.
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Figure 10. Ion exchange capacity and hydration degree analysis of the commercial, rNF, and rNF–
WO3 hybrid membranes.

Water uptake and swelling ratio are usually used to describe the hydration behaviour
of membranes. From an application point of view, both good water uptake and a low
swelling ratio are desirable. The influence of different tungsten oxide nanofiller contents on
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the water uptake and swelling ratios of the membranes in DI water at room temperature
is presented in Figure 9. The recast membrane exhibited good water uptake; however, it
also showed a high swelling ratio, which may lead to a higher hydrogen crossover rate.
The water uptake increased with the increasing the WO3 nanofiller content up to 10 wt. %,
then it slightly decreased. Contrarily to the increase of water uptake, the swelling ratio
decreased with the increasing WO3 content, and dropped significantly below the level of
XL already at 10% nanofiller content, while the water uptake was still high. As compared
to the unfilled Nafion membranes, the hybrid membrane with 10 wt% tungsten oxide is a
more ideal material in terms of both water uptake and swelling ratio. Nevertheless, at too
high a WO3 content (15 wt%), the water uptake drops as well. This phenomenon can be
attributed to a masking effect of the SO3H groups upon the addition of a higher nanofiller
amount, inhibiting the water uptake of the polymer chains. In addition, there is also a
possibility for the aggregation and formation of a thick nanofiller layer on the outer surface
of the membrane [3,41]. Such an explanation is consistent with the fact that rNF–WO-15
showed slightly lower advancing and receding contact angles than both rNF–WO-5 and
rNF–WO-10. Nevertheless, it has to be emphasised again that, compared to the commercial
Nafion XL membrane, rNF–WO-10 shows better performance, as it presents a higher water
uptake while controlling the swelling ratio of the membranes, which restricts the hydrogen
crossover of the membrane as well [55].

Generally, ion exchange capacity describes the number of the exchangeable groups in
the membranes, and therefore plays an essential role in the membrane proton conductivity.
The IEC and degree of hydration of the membranes are shown in Figure 10. The IEC of
the recast Nafion membranes and the Nafion–WO3 membranes is approximately the same
up to 10 wt% nanofiller content. However, the incorporation of higher WO3 content to
the membranes led to a decrease in the IEC. This might be due to the presence of the
smaller nano-WO3 particles inside the Nafion conducting channels, which prevent the
SO3H groups from acting as conductive groups. Another explanation is that, upon the
addition of a higher nanofiller content, the ratio of sulfonic acid groups in the hybrid
membrane decreases because of the diluting effect of the nanofiller, therefore the number
of the SO3H groups decreases, and consequently so does the IEC. On the other hand, it
is recognised that the degree of hydration increased up to 10 wt% nanofiller content, and
then it decreased, probably due to the excess nanofiller inhibiting the water uptake in the
polymer chain. A similar trend has already been reported [41,64].

3.3. Membrane Conductivity and In Situ Single Cell Testing

The proton conductivity values of the nano-hybrid membranes and the recast Nafion
membrane at 25 ◦C were calculated from the impedance spectra and the Nyquist plot,
where the total resistance of the MEA can be calculated from Equation (8):

RMEA = Rmembrane + 2 × Relectrode (8)

The same amount of catalyst at both the anode and cathode sides was used, there-
fore the resistance of both is equally Relectrode= 0.0228 Ω. Table 1 presents the calculated
conductivity values for the recast Nafion and nano-hybrid membranes. In accordance
with the literature, the proton conductivity of the hybrid membranes up to 10 wt% is
higher than that of the recast Nafion membrane. The proton conductivity initially increased
up to 10 wt% tungsten oxide content and then decreased with the increasing nanofiller
content. This trend is in good agreement with the contact angle, water uptake, IEC, and
hydration degree changes with increasing WO3 content. Obviously, there is a trade-off in
the nanofiller content. Initially, at a low WO3 content, it serves as a water and probably
a proton reservoir as well. At a higher WO3 content, however, it masks the sulfonic acid
groups and interrupts the proton conduction channels in the Nafion matrix or leads to the
formation of proton conduction pathways with high tortuosity [22,45].
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Table 1. Membrane thickness (t), resistance (R), and proton conductivity (σ) values of recast Nafion
and hybrid membranes at 25 ◦C and 100% RH.

t (µm) RMEA (Ω) Rmembrane (Ω) σ (mS cm−1)

rNF ~27.8 0.081 0.035 4.89
rNF–WO-5

43
0.080 0.035 7.72

rNF–WO-10 0.058 0.012 22.16
rNF–WO-15 0.088 0.042 6.34

In order to evaluate the performance of the different used membranes, including
the recast Nafion membranes, the hybrid–WO3-containing membranes with the different
concentrations, and comparing their performance as PEMs with the commercially available
Nafion XL membrane, the voltage–current density polarization curves were measured. The
power density and current density over different membranes were calculated at 0.4 V, as
roughly at this voltage maximum in power density was obtained. The other approach
generally accepted in the related art applied for comparison of performances is to fix the
voltage at 0.65 V, which corresponds to 50% electrical efficiency [72]. In terms of the relative
order of performance between membranes, the two approaches generally do not lead to a
difference [73,74].

Figure 11 shows the performance of the single fuel cell for the recast and hybrid
membranes compared to that of the commercial Nafion XL membrane at the conventional
operating temperature (80 ◦C) and relative humidity of 50% and 30% for the H2 and O2
stream, respectively. The membrane with 10 wt% WO3 presented superior performance
even when compared to the commercial membrane. Additionally, both the rNF–WO-5 and
rNF–WO-10 hybrid membranes exhibited higher performance than the rNF membrane,
which can be attributed to the water-retaining ability of WO3. Moreover, unsurprisingly,
the 15 wt% membrane showed the lowest performance; this can be explained by the
above-discussed possibility of the sulfonic acid groups being blocked by the tungsten
oxide nanofiller, causing a decrease in the ion conductivity and, therefore, the lower
membrane performance.
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Figure 11. Polarisation and power density curves of the membranes at 80 ◦C and relative humidity
of 50% and 30% for H2 and O2, respectively. Nafion XL commercial membrane (black), recast Nafion
membrane (red), and Nafion membrane with 5, 10, and 15 wt% tungsten oxide (blue, green, and
purple, respectively).

Figure 12 shows the single cell performance of the rNf–WO-10 hybrid membrane
compared to that of the commercial and recast Nafion membranes at different temperatures.
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At 25 and 60 ◦C, the Nafion XL membrane showed better performance than the hybrid one.
At these low temperatures, the water content of the membranes is probably high enough to
boost the conductivity, thus the performance is not controlled by the humidification. At
higher temperatures (80 and 95 ◦C), however, the rNF–WO-10 membrane showed better
performance than both rNF and Nafion XL, as the unfilled membranes can lose water more
easily, leading to increased membrane resistance and shrinkage of the membrane. The rNF
and Nafion XL have higher resistance at a higher temperature compared to the rNF–WO-10
hybrid membrane. This highlights the effect of WO3 on improving the cell performance
and its ability to retain more water, therefore ensuring that the proton conductivity will not
be deteriorated.

Polymers 2022, 14, x FOR PEER REVIEW 16 of 22 
 

 

Figure 11. Polarisation and power density curves of the membranes at 80 °C and relative humidity 

of 50% and 30% for H2 and O2, respectively. Nafion XL commercial membrane (black), recast Nafion 

membrane (red), and Nafion membrane with 5, 10, and 15 wt% tungsten oxide (blue, green, and 

purple, respectively). 

Figure 12 shows the single cell performance of the rNf–WO-10 hybrid membrane 

compared to that of the commercial and recast Nafion membranes at different tempera-

tures. At 25 and 60 °C, the Nafion XL membrane showed better performance than the 

hybrid one. At these low temperatures, the water content of the membranes is probably 

high enough to boost the conductivity, thus the performance is not controlled by the hu-

midification. At higher temperatures (80 and 95 °C), however, the rNF–WO-10 membrane 

showed better performance than both rNF and Nafion XL, as the unfilled membranes can 

lose water more easily, leading to increased membrane resistance and shrinkage of the 

membrane. The rNF and Nafion XL have higher resistance at a higher temperature com-

pared to the rNF–WO-10 hybrid membrane. This highlights the effect of WO3 on improv-

ing the cell performance and its ability to retain more water, therefore ensuring that the 

proton conductivity will not be deteriorated. 

 

0 500 1000 1500 2000

0.0

0.2

0.4

0.6

0.8

1.0
(a) 25°C

V
o

lt
a

g
e

 (
V

)

Current density (mA/cm2)

0

100

200

300

400

P
o

w
e

r 
d

e
n

s
it
y
 (

m
W

/c
m

2
)

Polymers 2022, 14, x FOR PEER REVIEW 17 of 22 
 

 

 

 

 

0 500 1000 1500 2000 2500

0.0

0.2

0.4

0.6

0.8

1.0
(b) 60°C

V
o

lt
a

g
e

 (
V

)

Current density (mA/cm2)

0

150

300

450

600
P

o
w

e
r 

d
e
n

s
it
y
 (

m
W

/c
m

2
)

0 1000 2000 3000 4000

0.0

0.2

0.4

0.6

0.8

1.0

(c) 95°C

V
o

lt
a

g
e

 (
V

)

Current density (mA/cm2)

0

200

400

600

800

1000

P
o

w
e

r 
d

e
n

s
it
y
 (

m
W

/c
m

2
)

25 60 80 95

0

200

400

600

800

1000

M
a
x
. 

p
o

w
e

r 
d

e
n

s
it
y
 (

m
W

/c
m

2
)

Temperature (°C)

(d)

Figure 12. Cont.



Polymers 2022, 14, 2492 16 of 21

Polymers 2022, 14, x FOR PEER REVIEW 17 of 22 
 

 

 

 

 

0 500 1000 1500 2000 2500

0.0

0.2

0.4

0.6

0.8

1.0
(b) 60°C

V
o

lt
a

g
e

 (
V

)

Current density (mA/cm2)

0

150

300

450

600

P
o

w
e

r 
d

e
n

s
it
y
 (

m
W

/c
m

2
)

0 1000 2000 3000 4000

0.0

0.2

0.4

0.6

0.8

1.0

(c) 95°C

V
o

lt
a

g
e

 (
V

)

Current density (mA/cm2)

0

200

400

600

800

1000

P
o

w
e

r 
d

e
n

s
it
y
 (

m
W

/c
m

2
)

25 60 80 95

0

200

400

600

800

1000

M
a
x
. 

p
o

w
e

r 
d

e
n

s
it
y
 (

m
W

/c
m

2
)

Temperature (°C)

(d)

Polymers 2022, 14, x FOR PEER REVIEW 18 of 22 
 

 

 

Figure 12. Influence of temperature on the single cell performance. Polarisation and power density 

curves at (a) 25, (b) 60, and (c) 95 °C, respectively, (d) maximum power density and (e) maximum 

current density at 0.4 V. Recast Nafion membrane (red), Nafion XL commercial membrane (black), 

and Nafion membrane with 10 wt.% tungsten oxide (green). 

Figure 12d,e show the maximum power densities and maximum current densities 

obtained at 0.4 V based on the New European Driving Cycle protocol [71]. All three mem-

branes showed improving performance with increasing temperature. At lower tempera-

tures, the Nafion XL membrane showed slightly higher performance than the rNF–WO-

10. However, at the higher temperatures, the rNF–WO-10 showed the highest maximum 

power density, reaching 0.76 and 0.922 W/cm2 at 80 and 95 °C, respectively. The maximum 

current of rNF–WO-10 is the highest among the three membranes when operating at 80 

°C and 95 °C, with values of 1.89 and 2.29 A/cm2, respectively. 

4. Conclusions 

Nanosized monoclinic tungsten oxide (WO3) was produced using a hydrothermal 

process at an annealing temperature of 700 °C. WO3 was used as a nanofiller in Nafion-

based membranes to allow higher hydration levels in the membrane during the fuel cell 

process at elevated temperatures and to maintain the ionic conductivity at low humidity 

conditions. 

Recast Nafion and Nafion–tungsten oxide hybrid membranes with three different 

nanofiller concentrations were fabricated using the solution casting method. The XRD 

analysis showed that incorporation of a small amount of WO3 (up to 10 wt%) enhanced 

the crystallinity of the membranes, while increasing the nanofiller content led to a de-

crease of the main characteristic peak of Nafion at 2𝜃 = 17.6°, indicating a possible cor-

ruption of the polyfluorocarbon chain. TGA revealed that the incorporation of the nano-

filler increased the decomposition temperature and the weight residue of the membranes. 

Compared to both the recast Nafion and the commercially available Nafion XL mem-

brane, the hybrid membranes exhibit higher mechanical stability, improved water uptake 

and swelling properties, as well as higher hydration degree up to 10 wt% filler content. 

The slightly higher contact angles indicating slightly decreased hydrophilicity did not de-

teriorate these properties. The surface wettability might affect the rate of water uptake 

only, but not the amount of water stored in the bulk phase of the membranes. Addition-

ally, all the hybrid membranes showed a lower swelling ratio than the recast membrane, 

with a minimum value at 15 wt% WO3 composition. The ion exchange capacity of the new 

hybrid membranes was smaller than that of Nafion XL, being practically equivalent to 

that of the recast Nafion. 

25 60 80 95

0

500

1000

1500

2000

2500

3000

3500

M
a
x
. 

c
u
rr

e
n
t 

d
e

n
s
it
y
 (

m
A

/c
m

2
)

Temperature (°C)

(e)

Figure 12. Influence of temperature on the single cell performance. Polarisation and power density
curves at (a) 25, (b) 60, and (c) 95 ◦C, respectively, (d) maximum power density and (e) maximum
current density at 0.4 V. Recast Nafion membrane (red), Nafion XL commercial membrane (black),
and Nafion membrane with 10 wt% tungsten oxide (green).
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Figure 12d,e show the maximum power densities and maximum current densities
obtained at 0.4 V based on the New European Driving Cycle protocol [71]. All three mem-
branes showed improving performance with increasing temperature. At lower tempera-
tures, the Nafion XL membrane showed slightly higher performance than the rNF–WO-10.
However, at the higher temperatures, the rNF–WO-10 showed the highest maximum power
density, reaching 0.76 and 0.922 W/cm2 at 80 and 95 ◦C, respectively. The maximum current
of rNF–WO-10 is the highest among the three membranes when operating at 80 ◦C and
95 ◦C, with values of 1.89 and 2.29 A/cm2, respectively.

4. Conclusions

Nanosized monoclinic tungsten oxide (WO3) was produced using a hydrothermal pro-
cess at an annealing temperature of 700 ◦C. WO3 was used as a nanofiller in Nafion-based
membranes to allow higher hydration levels in the membrane during the fuel cell process at
elevated temperatures and to maintain the ionic conductivity at low humidity conditions.

Recast Nafion and Nafion–tungsten oxide hybrid membranes with three different
nanofiller concentrations were fabricated using the solution casting method. The XRD
analysis showed that incorporation of a small amount of WO3 (up to 10 wt%) enhanced the
crystallinity of the membranes, while increasing the nanofiller content led to a decrease of
the main characteristic peak of Nafion at 2θ = 17.6◦, indicating a possible corruption of the
polyfluorocarbon chain. TGA revealed that the incorporation of the nanofiller increased
the decomposition temperature and the weight residue of the membranes.

Compared to both the recast Nafion and the commercially available Nafion XL mem-
brane, the hybrid membranes exhibit higher mechanical stability, improved water uptake
and swelling properties, as well as higher hydration degree up to 10 wt% filler content.
The slightly higher contact angles indicating slightly decreased hydrophilicity did not
deteriorate these properties. The surface wettability might affect the rate of water uptake
only, but not the amount of water stored in the bulk phase of the membranes. Additionally,
all the hybrid membranes showed a lower swelling ratio than the recast membrane, with a
minimum value at 15 wt% WO3 composition. The ion exchange capacity of the new hybrid
membranes was smaller than that of Nafion XL, being practically equivalent to that of the
recast Nafion.

In situ single cell performance of the hybrid membrane with 10 wt% WO3 was the high-
est compared to both rNF and XL membranes at the conventional temperature (80 ◦C) and
relatively low humidity of 50% H2 and 30% O2 stream. The performance of the rNF–WO-10
membrane was further improved at a higher temperature (95 ◦C). The maximum power
and current density of 0.4 V were achieved by rNF–WO-10, 0.76 W/cm2 and 1.89 A/cm2

when operating at 80 ◦C, and 0.922 W/cm2 and 2.29 A/cm2 at 95 ◦C, respectively. A strong
correlation between the water-retaining properties of WO3 and single cell performance
has been observed. There is an optimum concentration of tungsten oxide in the hybrid
membrane: at too high a nanofiller content, the favourable water-retaining properties of
WO3 are compromised due to its negative effect on the sulfonic acid groups.

In conclusion, the hybrid membrane with 10 wt% WO3 offers an enhanced perfor-
mance while allowing operating temperatures as high as 95 ◦C and maintaining the me-
chanical and dimensional stability at a low humidity.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym14122492/s1, Figure S1: Representative advancing (θa) and
receding (θr) water contact angles of the membranes; Table S1: Reported (static) water contact angles
of different WO3 layers. References [75–87] are cited in the supplementary materials.
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