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ABSTRACT

Objective: Testing individuals for the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2), the pathogen causing the coronavirus disease 2019 (COVID-19), is crucial for curtailing transmission chains.

Moreover, rapidly testing many potentially infected individuals is often a limiting factor in controlling COVID-19

outbreaks. Hence, pooling strategies, wherein individuals are grouped and tested simultaneously, are

employed. Here, we present a novel pooling strategy that builds on the Bayesian D-optimal experimental design

criterion.

Materials and Methods: Our strategy, called DOPE (D-Optimal Pooling Experimental design), is built on a novel

Bayesian formulation of pooling. DOPE defines optimal pooled tests as those maximizing the mutual informa-

tion between data and infection states. We estimate said mutual information via Monte-Carlo sampling and em-

ploy a discrete optimization heuristic to maximize it.

Results: We compare DOPE to other, commonly used pooling strategies, as well as to individual testing. DOPE

dominates the other strategies as it yields lower error rates while utilizing fewer tests. We show that DOPE

maintains this dominance for a variety of infection prevalence values.

Discussion: DOPE has several additional advantages over common pooling strategies: it provides posterior dis-

tributions of the probability of infection rather than only binary classification outcomes; it naturally incorporates

prior information of infection probabilities and test error rates; and finally, it can be easily extended to include

other, newly discovered information regarding COVID-19.

Conclusion: DOPE can substantially improve accuracy and throughput over current pooling strategies. Hence,

DOPE can facilitate rapid testing and aid the efforts of combating COVID-19 and other future pandemics.
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INTRODUCTION

During the current COVID-19 pandemic, large-scale testing efforts

for detecting the presence of the SARS-CoV-2 virus, the causative

agent of the disease, are crucial. Testing allows isolating infected

individuals, thus breaking transmission chains. Testing for SARS-

CoV-2 is typically done using RT-PCR (reverse transcription

polymerase chain reaction.1,2 Testing via RT-PCR kits can be a lim-

iting factor, creating a bottleneck in screening and isolation

efforts.3,4 The most common way to increase efficiency and

throughput of RT-PCR tests is pooling. Pooling is the act of using

samples from several different individuals in a single RT-PCR test,

hereby referred to as a pool. Several pooling strategies have been

VC The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association.

All rights reserved. For permissions, please email: journals.permissions@oup.com

2562

Journal of the American Medical Informatics Association, 28(12), 2021, 2562–2570

doi: 10.1093/jamia/ocab169

Advance Access Publication Date: 11 October 2021

Research and Applications

https://orcid.org/0000-0001-7594-9745
https://academic.oup.com/
https://academic.oup.com/


previously suggested,5,6 analyzed,5,6 and applied.7–10 The modus

operandi of pooling is as follows: a result is observed for 1 or several

pools, and then further action is taken. Usually, a negative result for

a pool means all members of said pool are declared negative without

any further testing. A positive result, on the other hand, may render

some individuals positive or require further testing.

Pooling Strategies
Pooling originated in the seminal work of Dorfman5 in 1943. Since

then, pooling has evolved into what is known today as group test-

ing.13 There are several common pooling strategies, and they are

outlined below. Implementation details can be found in Supplemen-

tary Material A.

Dorfman pooling5 starts by testing a predetermined number of

individuals in a pool. If the pooled test result is negative, all pool

members are declared negative. Otherwise, each 1 is tested sepa-

rately. A large-scale testing effort9 has shown that Dorfman pooling

can save 76% of RT-PCR tests.

In recursive pooling,7 if the first pooled test is positive, the pool

is split into 2 and the process repeats. Otherwise, all pool members

are declared negative. Thus, an individual is only declared positive if

they are eventually tested separately and the test result is positive.

One study showed that a recursive pooling can potentially result in a

7-fold increase in throughput.12

Matrix pooling14 arranges a population of size N ¼ mn in an

m� n matrix. Each row and column are then pooled and individuals

in the intersection of positive rows and columns are tested sepa-

rately. We were not able to find data of a real-world implementation

of matrix pooling.

Objective
We developed DOPE (D-Optimal Pooling Experimental design), a

novel Bayesian pooling strategy. DOPE identifies which choice of

pools maximizes the mutual information between population infec-

tion state and pooled test data. This choice of mutual information as

an optimization objective categorizes DOPE as a D-optimal experi-

mental design technique15 and results in superior performance of

DOPE compared to common strategies.

Significance
DOPE is a Bayesian strategy and, as such, enjoys the common

advantages of Bayesian methods. Assumptions on the population

and RT-PCR test error rates are easily incorporated into a prior and

a likelihood model, respectively. Furthermore, DOPE allows the

probabilities of infection to be naturally quantified via the posterior.

These probabilities convey more information and allow greater flex-

ibility compared to a binary test result .

Precise quantification of the aforementioned probabilities of in-

fection allows DOPE to perform trade-offs between error rates and

number of tests as required. Most common pooling strategies do not

allow for such an adaptive property and hence do not have control

over the number of tests or error rates.

Another advantage of DOPE is evident when considering edge

cases in common strategies. Consider Dorfman pooling: how should

one act if the first pooled test is positive, yet all subsequent tests are

negative? Similar events arise for recursive and matrix pooling as

well (see implementation details in Supplementary Material A).

Such events all have non-negligible probabilities under the empiri-

cally estimated test error rates and are likely to result in implementa-

tion problems. In contrast, there are no ambiguous events when

DOPE is the strategy of choice. All test results are used for updating

one’s beliefs via Bayes’ theorem.

Lastly, DOPE is useful across both high and low infection preva-

lence scenarios. Some common strategies lose efficiency at high in-

fection prevalence;5,7,8,10 others may suffer from increased false-

negative rates due to unmet assumptions of sparsity.8 DOPE, in con-

trast, is inherently adaptable and suitable for a wide range of infec-

tion prevalence levels.

MATERIALS AND METHODS

DOPE consists of several components. Briefly, a Bayesian model for

pooling is formulated, and a design is defined as a combination of

pools. An optimal design is defined as maximizing mutual informa-

tion between population infection state and pooled test data. Calcu-

lating said mutual information proceeds via Monte-Carlo

simulations. Then an optimal design is found via discrete optimiza-

tion, data are collected, and the process repeats.

Prior
The prior encodes the probability of every possible infection state of

the tested population. We assume the following structure: The popu-

lation is divided into disjoint clusters (eg, families, work places,

classrooms), each contains a (potential) initial source of primary in-

fection, which occurs with probability Pp. A secondary infection of

other members of the cluster occurs with probability Ps for each. If

no primary infection occurs, the probability that nonprimary mem-

bers of the cluster are infected is the infection prevalence in the gen-

eral population Pb. Our assumptions are given below, with their

corresponding notation:

• Population members are denoted f1; . . . ;Ng.
• The population state is captured in h 2 f0; 1gN : Individual h 2
f1; . . . ;Ng is either infected or not; with hh ¼ 1 or hh ¼ 0,

respectively.
• The population is partitioned into M disjoint clusters

C1; . . . ;CM. A single cluster represents, for example, a household.
• A cluster C is a tuple : C ¼ h0; h1; . . . ;hnð Þ: We assume here;

for the sake of notation only; that all clusters contain the

same number of members nþ 1.
• For cluster C denote hðCÞ :¼ ðhh0

; . . . ; hhn
Þ.

• A primary infection of h0 occurs with probability Pp.
• A secondary infection of any of h1; . . . ;hn by h0 occurs

independently with probability Ps.
• If no primary infection occurs, h1; . . . ; hn are infected with the

basal prevalence of infection in the general population Pb.

Since clusters are disjoint, their prior probabilities are indepen-

dent:

P hð Þ ¼
Y

C2C1 ;...;CM
P h Cð Þ
� �

: (1)

Turning our attention to cluster C:

PðhðCÞÞ ¼ Pðhh0
Þ
Yn

j¼1
Pðhhj

jhh0
Þ (2)

¼ ½Pp

Yn

j¼1
P

hhj
s ð1� PsÞ1�hhj �hh0 ½

�
1� Pp

�Yn

j¼1
P

hhj ð1� PbÞ1�hhj �1�hh0 :

An explicit expression for PðhÞ is easily found from equations (1)

and (2). Our model easily accommodates a common source of infec-
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tion for 2 clusters by taking the union of said clusters. We note

that the above-mentioned prior does not allow simultaneous initial

infection between nonprimary household members (eg, h2 and h3).

However, the difference in probabilities when including such a sce-

nario is negligible (Supplementary Material A).

Beta Binomial Prior
We also consider a different prior model, which we refer to as the

“beta binomial prior.”16 Contrary to the model presented above (the

Prior section), the beta binomial prior does not assume any infection

mechanism but merely enforces an infection prevalence p and a given

correlation q between infection states of cluster members. For given p

and q, we set a : ¼ pðq�1 � 1Þ and b : ¼ ð1� pÞðq�1 � 1Þ, and

draw q � Betaða; bÞ and hi � BerðqÞ iid. This procedure ensures E½hi�
¼ p for i ¼ 1; . . . ;N and Corrðhi; hjÞ ¼ q for i 6¼ j (more details can

be found in16 Section 3).

Likelihood
The likelihood encodes our assumptions on pooled SARS-CoV-2

RT-PCR tests and how they can err. A detailed exposition of RT-

PCR can be found in.1,2

Failed detection of SARS-CoV-2 RNA in pooled RT-PCR testing

is referred to below as a false-negative. Previous studies of group

testing strategies assumed that the false-negative probability does

not depend on the number of infected samples but merely on the ex-

istence of at least 1 such sample in a pool.9,11 Current studies of

pooling in the context of SARS-CoV-2 also employ similar assump-

tions.19,20 Specifically, these studies assume the same probability of

a negative result for a pool with either a single or multiple samples

originating from infected individuals. However, in a previous study,

we have shown that this assumption does not align with experimen-

tal data.21 Thus, we assume that viral RNA from each positive indi-

vidual in a pool undergoes the RT-PCR amplification process

independently. Consequently, the probability of (failed) amplifica-

tion and/or detection for every sample whose source was an infected

individual is considered separately.

Erroneous detection of SARS-CoV-2 RNA (a false-positive) in

pooled RT-PCR testing can also occur. A common assump-

tion7,8,17,18 is that the false-positive probability does not depend

on the number of negative samples in a pool. We incorporate this

assumption in our likelihood model with a small modification.

We assume that an erroneous amplification can occur in any pool.

Specifically, it is possible that correct amplifications fail and an er-

roneous one occurs simultaneously. This assumption is relatively

specific for the current application of screening for SARS-CoV-2

via RT-PCR. For example, cross-reactivity with other coronavi-

ruses would have violated this assumption, but it was ruled out

in.20

To summarize, we assume that for a single pool, a positive test

result is generated in 1 of 2 paths: either SARS-CoV-2 RNA from an

infected individual is correctly amplified and detected independently

for each positive sample in a pool; or, some erroneous amplification

occurs (at most once per pool). Our model is illustrated in Figure 1.

We proceed to formulate the likelihood, so we require some defini-

tions and notations:

• A pool is a collection of individuals fh1; . . . ; hmg � f1; . . . ;Ng.
• A design T is a collection of pools: The kth pool is denoted Tk.
• Data are denoted d 2 f0; 1gT : We let dk ¼ 1 if upon testing

Tk a positive result was observed; and let dk ¼ 0 otherwise.
• The probability that the detection process fails for 1 sample

taken from an infected individual is Pfn.

Figure 1. Illustration of the likelihood model of a pooled test result. A pool contains individuals f1,2,3,4g with state h ¼ ð1; 0; 0; 1Þ (ie, individuals 1 and 4 are

infected). A negative pooled test implies that 3 detection paths failed. A false-negative occurred for 1 and 4, each with probability Pfn . Additionally, no erroneous

detection of SARS-CoV-2 occurred, with probability 1-Pfp . Individuals 2 and 3 are not infected and do not contribute to the probability of the pooled test result. A

positive pooled test arises if any one of the above-mentioned paths results in a detection.
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• The probability of an erroneous amplification and detection in a

pooled test is Pfp.

The probability of a negative pooled test result is presented in

(3a), along with its complement (3b) and explained below.

Pðdk ¼ 0jTk; hÞ ¼ ð1� PfpÞ
Y

h2Tk
Phh

fn ; (3a)

Pðdk ¼ 1jTk; hÞ ¼ 1� ð1� PfpÞ
Y

h2Tk
Phh

fn : (3b)

A negative pooled test result occurs when all detection paths

(both correct and erroneous) fail. The probability of no false-

detection accounts for the 1� Pfp term. The probability of no cor-

rect detection is Pfn per infected individual. The probability that all

such paths fail is the product of the above-mentioned terms, dis-

played in (3a). The probability of a positive result, presented in (3b),

is simply the complement. Combining (3a) and (3b), and recalling

that dk 2 f0;1g yields:

PðdkjTk;hÞ¼ ð1�PfpÞ
Y

h2Tk
Phh

fn

h i1�dk

1�ð1�PfpÞ
Y

h2Tk
Phh

fn

h idk

: (4)

Since different tests are assumed independent, the full likelihood

is the product:

PðdjT; hÞ ¼
YjTj

k¼1
PðdkjTk; hÞ: (5)

D-Optimal Design
In Bayesian experimental design, a design is called D-optimal if it

maximizes any 1 of several equivalent information theoretic design

criteria.15,21–23 For convenience, we consider the mutual informa-

tion between parameters and data as the optimization criterion. For

a given design T, the mutual information between data d and popu-

lation infection state h is denoted WðTÞ:

W Tð Þ : ¼ I h; djTð Þ ¼
X

h;d
P h;djTð Þlog

Pðh;djTÞ
PðhÞPðdjTÞ : (6)

It is known that maximizing mutual information is equivalent to

minimizing the expected posterior entropy and maximizing the

expected Kullback-Leibler divergence (henceforth KL divergence)24

between posterior and prior Ed½KLðPðhjd;TÞ k PðhÞÞ�:15,21,23,25

Some details of the D-optimal approach are discussed in the Discus-

sion.

There is no closed form expression for W, and we estimate it via

Monte-Carlo sampling. We start with a straightforward calculation:

W Tð Þ ¼
X

h;d
P h;djTð Þlog

Pðh;djTÞ
PðhÞPðdjTÞ

¼
X

h;d
P h;djTð Þlog

Pðdjh;TÞPðhÞ
PðhÞPðdjTÞ (7)

¼
X

h;d
P h;djTð Þ logP djh;Tð Þ � logP djTð Þð Þ:

Estimating the last sum requires 3 steps:21,23

1. Sample Pðh;djTÞ.
2. Evaluate logPðdjh;TÞ and estimate logPðdjTÞ for each sample.

3. Average.

We carry out the first step by sampling the prior L times:

gk � PðhÞ; k ¼ 1; . . . ;L. Once we obtain the prior samples gk, the

likelihood is sampled Yk � Pðdjgk;TÞ;k ¼ 1; . . . ;L. This procedure

results in L pairs of samples from the joint distribution of states and

data: ðgk;YkÞ � Pðh;djTÞ.
Calculating the left summand logPðYkjgk;TÞ is straightforward

and only requires evaluating the likelihood. The right summand in

the last line of (7) satisfies:

PðYkjTÞ ¼ Eh½PðYkjh;TÞ� ¼
X

h
PðhÞPðYkjh;TÞ; (8)

and we estimate it via Monte-Carlo, taking advantage of existing

samples:

dPðYkjTÞ : ¼ 1

L

XL

r¼1
PðYkjgr;TÞ: (9)

The third step is realized by first utilizing the samples gk;Yk and

(9) to define:

bW Tð Þ : ¼ 1

L

XL

k¼1

�
logPðYkjgk;TÞ � log dPðYkjTÞ

�
(10)

¼ 1

L

XL

k¼1
ðlogPðYkjgk;TÞ � log

1

L

XL

r¼1
PðYkjgr;TÞÞ:

Calculating bW via equation (10) constitutes 1 of the main computa-

tional difficulties in finding an optimal design. The rationale is that the

number of likelihood evaluations is L2, so calculating bW is of complex-

ity OðL2Þ. The estimator bW is biased and its bias is OðL�1Þ. See21,23

for a full discussion of convergence and bias of bW. See Supplementary

Material A for a discussion of the choice of number of samples L.

Posterior
Once data d0 for design T 0 have been observed, we would like to de-

fine W for a new design T. The definition is a natural extension of

(6), with the posterior PðhjT 0;d0Þ taking the place of the prior PðhÞ:

W T;T 0;d0ð Þ : ¼ I h;djT 0;d0ð Þ

¼
X

h;d
P h;djT 0;d0;Tð Þlog

Pðh;djT 0;d0;TÞ
PðdjT 0;d0;TÞPðhjT 0;d0Þ ; (11)

where d is the data for T. Before data are observed and design gener-

ated, we write T 0 ¼ø and d0 ¼ø. Therefore, PðhÞ¼Pðhjø;øÞ and in-

deed WðTÞ¼WðT;ø;øÞ.
The calculation of bWðT; T 0;d0Þ proceeds verbatim as in the D-

Optimal Design section. The only difference is that instead of sam-

pling gk � PðhÞ; k ¼ 1; . . . ;L, we sample from the posterior

gk � Pðhjd0;T 0Þ; k ¼ 1; . . . ;L.

Sampling the posterior is achieved by Gibbs sampling. Denote all

hj’s except the ith by h�i ¼ fh1; . . . ; hi�1; hiþ1; . . . ; hNg. Gibbs sam-

pling requires repeatedly sampling from PðhijT 0;d0; h�iÞ, which are

calculated as follows:

P hijT 0;d0; h�ið Þ ¼ Pðhi; h�ijT 0;d0Þ
Pðh�ijT0;d0Þ

¼ Pðhi; h�ijT 0;d0ÞP
x2f0;1gP hi ¼ x; h�ijT 0

;d
0

� � ;
(12)

and the normalization constant cancels out, making the calculation

possible.

Naively utilizing samples from the Gibbs sampler for calculating

bWðT; T 0;d0Þ is wasteful. Recall, from the discussion in the D-

Optimal Design section, that said calculation is OðL2Þ, where L is
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the number of Monte-Carlo samples utilized. Since Gibbs sampler

does not generate independent samples, naively taking L samples

from the Gibbs sampler would require huge L to cover all state

space for h, thus rendering the calculation of bW prohibitively expen-

sive. A remedy is found in Sokal26: “The number of ‘effectively

independent samples’ in a run of length n is roughly n
2sint;f

;” where

sint;f is the integrated autocorrelation time for function f . Thus, we

first estimate sint;fi
for the coordinate projections fiðhÞ ¼ hi and take

s : ¼ maxisint;fi
. The calculation of sint;fi

is carried out using

emcee’s27 method autocorr during the chain’s burn-in time. We

then run the Gibbs sampler for sL steps and discard all but every sth

sample, thus keeping computational costs and variance for bW low.

Pseudocode for our Gibbs sampler can be found in Supplementary

Material A.

Optimization
Given a routine that calculates bWðT; T 0; d0Þ for any design T, we

need to find a way to maximize bW over all valid designs. Designs are

restricted to have a fixed number of pools, denoted K. Optimizing

over all valid designs results in a difficult discrete-optimization prob-

lem, which we solve via a heuristic hill-climbing approach. Although

hill-climbing is a heuristic, we have found it to work sufficiently

well. See Supplementary Material A for details.

DOPE
We now present DOPE: D-Optimal Pooling Experimental-design,

summarized in Algorithm 1. DOPE requires 2 parameters: first, the

number of pooled tests per step K, and second, a decision interval

I � ½0; 1�. The decision interval defines the required certainty

levels to serve as a stopping criterion for DOPE. The meaning of

Pðhi ¼ 1jT; dÞ 2 I is that the state of individual i is still uncertain, so

further testing is required. DOPE stops when there is no uncertainty

regarding the state of any individual (read: 8i; Pðhi ¼ 1jT; dÞ=2I).

DOPE typically proceeds to find K optimal pools, perform the cor-

responding RT-PCR tests, and repeat the process if any individual’s

posterior infection probability is in I. However, DOPE can also be ex-

ecuted in a nonsequential manner, where no retesting is allowed. Such

a nonsequential implementation can be achieved in Algorithm 1 by

letting K be the total number of allotted tests and I ¼1.

Algorithm 1 DOPE: D-Optimal Pooling Experimental

design

RESULTS

We compare DOPE to 3 prominent pooling strategies: Dorfman, re-

cursive, and matrix pooling. We present extensive simulation results

and consider a large number of parameter choices for DOPE.

We choose K ¼ 1, so DOPE always finds a single optimal pool in

each step. Decision intervals’ lower and upper bounds are chosen

from f0:01; 0:02; . . . ; 0:15g and f0:3; 0:35; . . . ; 0:95g, respectively.

We take a percentage nomenclature (eg, DOPE a;b utilizes the deci-

sion interval I ¼ ½a=100; b=100�Þ.
There are 3 performance metrics with which one can evaluate

pooling strategies: false-negative rate, false-positive rate, and num-

ber of tests. We plot false-negative rates against an average number

of tests and delegate plots of false-positive rates to Supplementary

Material A (the reason is explained in the Discussion). In addition,

we present the average KL divergence for each strategy. Although

the posterior entropy is not a performance metric, per se, we choose

to present it in plots. The reason is that presenting posterior entropy

shows that indeed DOPE succeeds in maximizing this well-defined

statistical criterion.

We say a pooling strategy A dominates another strategy B for

false-negative rates if A achieves lower false-positive rates than B,

while utilizing a smaller (or equal) number of tests. Similarly, we say

that A dominates B for posterior entropy if similar conditions apply

for posterior entropy. In the results below, we show that for both

false-negative rates, as well as for posterior entropy, there are deci-

sion intervals for which DOPE dominates Dorfman, recursive, and

matrix pooling.

In all simulations presented in this section, we used the com-

monly observed test error rates Pfn ¼ 0:2;Pfp ¼ 0:01:28–30 Infection

prevalence in the tested population was realized by the varying pop-

ulation connectivity parameter Pp and Ps, which took values in

½0:05; 0:4�—see Supplementary Material A for a summary of esti-

mates of connectivity parameters and Supplementary Material B for

a table of simulation parameters. The basal prevalence in the popu-

lation was always set to Pb ¼ 0:01.

Small and Distinct Clusters
We compare DOPE to Dorfman, recursive, and matrix pooling.

Results are shown in Figure 2. We consider a population of size

N ¼ 32, which is the maximal pool size that can be employed with-

out interfering with the RT-PCR process by sample dilution.31 Fig-

ure 2 shows that a decision interval can be found for which DOPE

dominates common strategies for both false-negative rate as well as

for posterior entropy. For presentation purposes, choices of decision

intervals are grouped according to their lower bound, with colors

corresponding to the color bar on the right of Figure 2 (eg, DOPE

60,10, DOPE 70,10 and DOPE 90,10 share the same color). Results

are shown for Pfn ¼ 0:2;Pfp ¼ 0:01;Pp ¼ 0:2;Ps ¼ 0:2;Pb ¼ 0:01,

which results in average disease prevalence �7:7%. Number of sam-

ples in the Monte-Carlo estimation is 20 000. Each point presented

is the average of 123 simulations.

Large Clusters
Scenarios where hundreds of individuals need to be simultaneously

tested may also arise during an outbreak. If such populations can be

naturally divided into smaller groups (eg, households, classrooms),

then we can easily apply DOPE as described in the previous section.

Alternatively, if all infections are independently and identically dis-

tributed, any subdivision into smaller groups retains the same infor-

mation regarding infected individuals. This corresponds to applying

1: procedure DOPE(K, I)

2: T; d 1; 1
3: repeat

4: T
0  OptimalDesign K;T; dð Þ

5: d
0
 PCR T

0
� �

" Perform RT-PCR

tests for T0

6: T T1; . . . ;TT; T
0

1; . . . ; T
0

T
0

� �
" Concatenate

7: d d1; . . . ; dT; d
0

1; . . . ; d
0

T0

� �
" Concatenate

8: until 8i P hi ¼ 1jT; dð Þ 62 I

9: return

Pðh1 ¼ 1jT; dÞ > 0:5

..

.

PðhN ¼ 1jT; dÞ > 0:5

2
6664

3
7775 " Classification via

posterior marginals
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DOPE to a completely disconnected population in which it also

dominates (Supplementary Material A).

Finally, a larger population of potentially infected individuals

with no a priori structure but potential dependencies between the

infected (eg, a hospital ward, military unit, or a cruise ship) might

present itself. Thus, we also present results for a large population

with a single large cluster that behaves according to the beta bino-

mial prior model (the Beta Binomial Prior section and16) Disease

prevalence in the population was set to 7% whereas the correlation

of infection state between cluster members was set to q ¼ 0:2. Test

error rates were set as Pfn ¼ 0:2;Pfp ¼ 0:01. We consider a popula-

tion of size 256 and apply the competing strategies as follows: Dorf-

man pooling is utilized with an optimal pool size chosen following.8

Recursive pooling was utilized with a pool size of 32, following.31

Matrix pooling was implemented with a 16 � 16 square matrix.

DOPE was implemented by partitioning the population into subpo-

pulations of size N ¼ 32. Since the optimization DOPE utilizes is

now restricted to each separate pool, such a partitioning can only

degrade the performance of DOPE. However, as we observe in Fig-

ure 3, the results are qualitatively similar to those presented in the

Small and Distinct Clusters section, and DOPE still dominates. Cal-

culating the expected posterior entropy simultaneously (in contrast

to the computation performed by DOPE for each subpopulation sep-

arately) for such large clusters is computationally very demanding.

Hence, we do not present it here, as we did in Figures 2 and 3.

Varying Prevalence
We examine the performance of DOPE under a wide range of dis-

ease prevalence values. Performance is demonstrated for a popula-

tion of size N ¼ 10 with infection prevalences in ½0:02; 0:18�.
Connectivity parameters generating these prevalences can be

found in Supplementary Material B. Test error rates of

Pfn ¼ 0:2;Pfp ¼ 0:01 were used, with L ¼ 12000 samples for the

Monte-Carlo estimation.

In Figure 4, we show the performance of DOPE for 4 decision

intervals. Each decision interval was chosen so that DOPE’s

expected number of tests was closest to 1 of the common pooling

strategies (Dorfman, recursive, and matrix). We also show such a

comparison for separate testing. For each choice of decision interval,

DOPE outperformed other strategies in terms of false-negative rates,

mostly using substantially fewer tests. The only exceptions occurred

when we were not able to find decision intervals that closely match

the behavior of matrix pooling and separate testing. We could not

find such decision intervals since the number of tests used in matrix

pooling and separate testing are constant and near-constant, respec-

tively, in the range of disease prevalence rates we consider. DOPE is

more adaptive than these strategies, hence the number of tests it uti-

lizes increases with the disease prevalence rate. Consequently, it was

difficult to find a decision interval for which DOPE utilizes a num-

ber of tests close enough to the number of tests utilized by either sep-

arate testing or matrix pooling throughout the prevalence range

considered. Our choice of decision intervals resulted in DOPE utiliz-

ing fewer tests compared to matrix pooling and individual testing.

Thus, we can expect even lower error rates when utilizing the same

number of tests as matrix pooling or separate testing.

DISCUSSION

In this manuscript we have presented DOPE, a novel pooling strat-

egy that has the potential to substantially improve the performance

of RT-PCR pooling in terms of number of tests and error rates. We

have demonstrated DOPE’s superiority over competing pooling

strategies under different scenarios—including varying prevalence

rates, test error rates, population infection models, and population

sizes.

DOPE was developed with the aim of maximizing the informa-

tion gained from pooled tests, precisely defined in the D-Optimal

Design section. DOPE is a Bayesian method and, as such, enjoys

many of the advantages Bayesian analysis has to offer. For example,

DOPE offers seamless integration of probabilistic assumptions on

population connectivity and test errors into its underlying probabil-

istic model. Thus, we can apply DOPE to tests with different error

models/rates (eg, COVID-19 antigen test32,33). Moreover, DOPE

can make the trade-off between the number of tests and test error

rates explicit. Lastly, DOPE’s error rates are lower compared to

common pooling methods, while utilizing the same amount of, or

Figure 2. Comparison of DOPE against other pooling strategies. We plot the KL divergence from posterior to prior (left) and false-negative rates (right) achieved

by different pooling strategies against the number of tests used (x-axis). The results for DOPE (•) are shown for various decision intervals (colors represent the

lower bound of the decision interval). Dorfman ($), recursive (W), and matrix (�) pooling are shown for their only configuration, in black. There are always deci-

sion intervals for which DOPE dominates common strategies.
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fewer, tests. Last but not least, DOPE can return posterior infection

probabilities, giving a very refined tool for decision-making under

uncertainty.

DOPE is based on an information theoretic experimental de-

sign criterion, maximizing mutual information between population

infection state h and pooled tests results d. There are multiple

motivations for this definition. If we view the testing procedure as

a communication channel,24 where we wish to transmit h, then a

D-optimal design maximizes the channel capacity. The channel ca-

pacity is the upper bound for the amount of information that can

be transmitted through the channel with vanishing error probabil-

ity, so maximizing it is sensible. Alternatively, a quick calcula-

tion15 verifies that WðTÞ ¼ HðhÞ � EdjT Hðhjd;TÞ½ �, where Hð	Þ is

the Shannon entropy. Hence, D-optimal designs minimize the

expected posterior entropy. Since entropy is a common measure

for uncertainty, minimizing it is reasonable. Yet another calcula-

tion21 shows that WðTÞ is the expected KL divergence from pos-

terior to prior. KL divergence is a common measure of

“distance” between probability distributions. Maximizing it

roughly means we have learned as much as possible going from

prior to posterior. Our results show that DOPE’s performance is

considerably superior to common strategies which are based on

heuristics.

The Bayesian framework of DOPE also allows us to easily incor-

porate test error rates into our considerations. Error rates are usu-

ally not taken into account in the development of most pooling

strategies, and hence such strategies are not adaptive to varying er-

ror rates.7,8,17–19 The Bayesian formulation also allows DOPE to

readily incorporate any prior knowledge obtained with regards to

infection probabilities of different sub-populations. Although we

have only considered connectivity of sub-populations in this manu-

script, other covariates can potentially also be incorporated (eg,

prior data of the likelihood of infection based on symptoms, age

groups, etc).

Figure 3. Comparison of DOPE against other pooling strategies, assuming the infections follow the beta binomial model of (Basso et al 2020) for a population size

of 256. We plot the false-negative rates achieved by different pooling strategies against the number of tests utilized (x-axis). The results for DOPE (•) are shown

for various decision intervals (colors represent the lower bound of the decision interval). Dorfman ($), recursive (W), and matrix (�) pooling are shown in black.

There are always decision intervals for which DOPE dominates common strategies.

Figure 4. Comparison of DOPE to other strategies under varying disease prevalence values. DOPE decision intervals were chosen so that the number of tests

taken was as close as possible to the common strategies. Rows, top, and bottom: number of tests and false-negative rate, respectively, plotted against disease

prevalence. Columns show performance for each pair of strategies (see legend in the top row).
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Another important advantage of DOPE is its potential to inform

quarantine decisions in a fine-grained manner. This can be achieved

by examining DOPE’s posterior infection probabilities PðhjT;dÞ in-

stead of its binary classification. Utilizing this additional informa-

tion, various quarantine policies can be implemented with respect to

the policy makers’ utility functions. For example, individuals with

higher posterior infection probability can be subject to a strict and

prolonged quarantine and vice versa.

By selecting appropriate decision intervals, DOPE can gauge the

number of tests it utilizes, giving rise to varying error rates, poten-

tially even lower than a single test’s a priori error rate. We find

the required decision interval for given Pfn;Pfn;Pp;Ps;Pb and

cluster sizes by first simulating DOPE for many decision intervals

(eg, I ¼ ½a;b� for a and b in f0:01; 0:02; . . . ; 0:99gÞ. We then choose

I that utilizes the minimal number of tests among all decision inter-

vals that achieved error rates lower than the desired error rate.

False-positive rates are omitted from the plots in the main text

(but are found in Supplementary Material A) since these are not the

main concern in an epidemiological context. A false-negative result

has far worse implications than a false-positive result for the spread

of an infectious disease in a susceptible population. A false-negative

implies an infected individual is not identified as such and conse-

quently can continue to spread the disease. In contrast, a false-

positive only implies that a noninfected individual is unnecessarily

quarantined or retested. False-positive rates are not entirely mean-

ingless, of course, as superfluous isolation can have economic and

social costs. However, the false-positive rates achieved by all strate-

gies are still very low (
 1:5%). This is partially because RT-PCR

false-positive rates are very low to begin with.30 Thus, we believe

this parameter adds very little to the comparison of common strate-

gies, given the vast discrepancies in the average number of tests and

false-negative rates.

DOPE, as any other strategy, has some limitations. First, epide-

miological data of population connectivity is not always available.

In this case, one can assume the population is disconnected and use

this assumption as a prior. Results for such a population are pre-

sented in Supplementary Material A. Our simulations show that,

even in this case, DOPE dominates common strategies.

It is possible that the iterative steps required by DOPE (find

optimal pool, retest, repeat) would be difficult to implement in a

real testing scenario. In this case, a nonsequential pooling strat-

egy, where pools are chosen a priori, and no retesting is con-

ducted, can be implemented. We can take K, the number of tests

per step, to equal the number of allotted tests. Then, taking the

decision interval I ¼1 makes DOPE nonsequential. This is a po-

tential future research direction which was not in the scope of the

current study.

Furthermore, DOPE requires substantial computational efforts,

contrary to simple implementation of the Dorfman, recursive, and

matrix pooling strategies. We have mitigated most computational

obstacles, and currently a full DOPE run, with 10 initial starting

points, a population size of N ¼ 32, and L ¼ 20 000 samples takes

less than 5 hours to run on 7 Intel(R) Xeon(R) Gold 6252 2.1GHz

CPUs. For a population size of N ¼ 10, utilizing L ¼ 12 000 sam-

ples, a full DOPE run takes less than half an hour. These times can

be considerably reduced if more CPUs are available, as paralleliza-

tion of DOPE is straightforward. Further improvements to the run

time of DOPE can be introduced. For example, it is possible that

other approximations for W (eg25) could further reduce DOPE’s

run time. Alternatively, accelerating the optimization is potentially

possible via, for example, solving a continuous surrogate optimiza-

tion problem instead of the current discrete optimization problem.

To this end, we employed the ‘0-sparsification method of.34 Al-

though this approach did not yield significant improvements in run

time, we believe pursuing continuous optimization techniques

should be further explored. Regardless, utilizing DOPE currently

requires familiarity with programming. We plan to create a graphi-

cal interface for easy use in facilities where frequent testing is per-

formed, so that large-scale use of DOPE is possible for

nonprogrammers.

CONCLUSIONS

To summarize, we have shown that Bayesian experimental design

holds a great potential for improving RT-PCR pooling. DOPE’s

ability to drastically increase test throughput, while decreasing test-

ing error rates under various conditions, highlights this potential.

We believe further research efforts in this direction can be conducive

to mitigating the current pandemic, as well as future ones.
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