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Abstract:
Gene expression studies revealed a large degree of variability in gene expression patterns particularly in tis-
sues even in genetically identical individuals. It helps to reveal the components majorly fluctuating during the
disease condition. With the advent of gene expression studies many microarray studies have been conducted
in prostate cancer, but the results have varied across different studies. To better understand the genetic and
biological regulatory mechanisms of prostate cancer, we conducted a meta-analysis of three major pathways
i.e. androgen receptor (AR), mechanistic target of rapamycin (mTOR) and Mitogen-Activated Protein Kinase
(MAPK) on prostate cancer. Meta-analysis has been performed for the gene expression data for the human
species that are exposed to prostate cancer. Twelve datasets comprising AR, mTOR, and MAPK pathways were
taken for analysis, out of which thirteen potential biomarkers were identified through meta-analysis. These
findings were compiled based upon the quantitative data analysis by using different tools. Also, various inter-
connections were found amongst the pathways in study. Our study suggests that the microarray analysis of the
gene expression data and their pathway level connections allows detection of the potential predictors that can
prove to be putative therapeutic targets with biological and functional significance in progression of prostate
cancer.
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1 Introduction

1.1 The Prostate Cancer

Prostate Cancer (PC) is the second most widespread disease among men in the world and most often identified
cancer in developing countries [1]. An exocrine gland, prostate discharges its secretions outside the male repro-
ductive system. The liquidity of semen in prostate gland is maintained by the epithelial cells which produce a
protein named PSA (prostate-specific antigen), which when high i.e. above 4 ng/ml is an indication of prostate
cancer [2]. In most cases, the cancer starts in the gland cells that make the prostate fluid; such types of cancer are
called adenocarcinoma. In fact, nearly 60% of all prostate cancers are diagnosed in men over the age of 65. As
indicated by the rates of diagnosis, age is the biggest but not the only risk factor for prostate cancer. The major
risk factors include age, family history, genetic factors, race, lifestyle, and dietary habits. The slow advancement
of PC is witnessed through the changes in shape and size of the gland cells named as prostatic intraepithelial
neoplasia (PIN). The possible complications include metastasis, incontinence and impact of changes of certain
metabolic factors. Hormone therapy, that maintains low testosterone level in the body is the procedure to slow
down the growth of already, spread PC, but it is often less effective. When the cancer grows with this therapy
it is termed as castrate-resistant prostate cancer (CRPC).

1.2 Key Pathways in PC

The high variability in the disease progression and the paucity of the biomarker research provides incomplete
understanding for the treatment of this disease. The challenge is to target prostate cancer biomarkers to ad-
Tiratha Raj Singh is the corresponding author.
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dress the unmet clinical needs in prostate cancer management [3]. There is urgent need to translate biologically
relevant information and generate concordant results from different methods and procedures. For the iden-
tification of biomarkers, many studies have been performed, but to achieve clinical utility, these biomarkers
should have a prognostic significance [4], [5]. Experiments using microarray technology have identified the ex-
pression of the genes associated with the different stages of PC in semen, tissues and glands [6]. Prostate cancer
cells, like normal prostate cells, necessitate androgens to grow and survive. To develop successful future ther-
apies, it is necessary to understand the critical events and complexities of AR signaling in the progression to
CRPC. Significant evidence supports the fact that the occurrence and development of CRPC is casually related
to continued transactivation of AR [7]. Many attempts have been made to search for gland-specific molecules
those might help as potent biomarkers or as therapeutic agents due to the limitations in the standard treatment
procedures of PC. Although, AR is an essential player that controls different elements in all phases of prostate
carcinogenesis, but many other signaling pathways along with their interactions with AR signaling, are also
critically implicated especially in advanced stages of prostate cancer. We have studied the expression profiles
of the PC patients regarding their role in AR signaling pathways.

The already recounted increase in AR levels in 65% of CRPC cases was not alone overly significant; but, when
combined with stabilization through c-Jun and phosphorylation from the MAPK cascade, the small increase
becomes highly significant with increased activity [8]. This explains the correlation that exists between MAPK
levels in the nucleus and levels of AR found in tumours.

1.3 Related Works

Studies probing MAPK activity in PC material suggested MAPK activity relates to development of a progres-
sively complex and hormone independent PC. Preclinical studies have suggested a direct connection between
the AKT which is a target for many anti-cancer agents [9] and AR signaling cascade, showing a dynamic in-
terplay between these pathways during the development of ADT resistance and the development of androgen
insensitivity. AKT signaling pathway has revealed a very important node that directs ADT resistance and stim-
ulates tumour growth by adjusting the castrate levels of testosterone [10]. In addition, this pathway is altered
at the genomic as well as the transcriptional level in almost all advanced PCs. Recently, a mathematical model
has been developed to examine the steady-state and dynamic characteristics of the major feedback loops that
synchronize the cross-talk between insulin-AKT and MAPK/ERK signaling pathways [11].

Co-targeting strategies strive to improve cancer outcomes by combining therapies that inhibit driver genes
in AR, MAPK, and mTOR pathways and are of great interest, since they are among the most frequently altered
[10]. In our work we studied the interactions between three pathways AR, MAPK and mTOR (Figure 1) to
conduct a cross-pathway examination for meta-analysis of PC related microarray data. Figure 1 depicts the
cross regulatory effect of three pathways that shows cell proliferation (in terms of cancer progression) either in
ERK or non-ERK dependent manner. These pathways represent close association thus showing interdependent
pathway regulation as PI3K, AKT has regulatory effect on mTOR and likewise AKT, AR, and PI3K shows cross
regulating effect. We approached the problem of computational data analysis using tools to integrate gene-
specific expression changes in PC related samples and obtained several genes which can be targeted for detailed
analysis and experimental procedures as therapeutic agents.
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Figure 1: The interplay between AR, mTOR and MAPK signaling pathways.

2 Materials and Methods

2.1 Data Collection

The gene expression data have been retrieved from the National Centre for Biotechnology Information (NCBI);
Gene Expression Omnibus (GEO) [12] and ArrayExpress [13]. Summarized methodology for the analysis is
shown in Figure 2.

Figure 2: Flowchart of the meta-analysis performed implementing three pathways (AR, mTOR and MAPK).
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The information regarding the data sets that we incorporated in our microarray data analysis for all the three
pathways is shown in Supplementary Table 1. We collected the gene expression data using the GEO series ID’s
obtained from PubMed using the keyword search “Prostate Cancer” AND “AR Pathway” AND “Homo Sapiens”
which resulted in 27 entries. The number of series datasets selected for AR pathway studies in prostate cancer
is five, respectively (Supplementary Table 1).

2.2 Data Preprocessing

The processed gene expression data corresponding to these ID’s was downloaded from ArrayExpress to iden-
tify the differentially expressed genes within DNA repair pathways.

2.3 Comparative Analysis

Additionally, the same data was downloaded from GEO database in CEL format for further analysis. The Ar-
rayExpress data was processed using WebMeV (Multiple Experiment Viewer) which is a free and open-source
cloud service platform that supports analysis, visualization, and stratification of large genomic data, particu-
larly for RNASeq and microarray data [14]. GeneSD (standard deviation) was done in the range 0–0.998 show-
ing different colours in the heat map for top 20 probes/genes. The genes are classified based on the standard
deviation of their expression values for all samples.

Similarly, GeneMAD (median of the absolute deviation) was performed; it is better at removing random
clusters of multiple outliers of the expression values in the range 0–0.994, depicted by different colours in the
heatmap. Principal component analysis (PCA) which is used for clustering large number of genes in complex
biological networks was carried out on the same data in which each dot represents a PC sample plotted against
its expression levels for the probes/genes. Different clustering method like k-means clustering was implicated
using Euclidean distance measure methods. GEO2R was used for the expression analysis to compare two or
more groups of samples, to distinguish genes that are expressed differentially throughout experimental states.
Based on literature information, the samples are grouped into test and control for diseased and non-diseased
samples, respectively. Both GEO2R and ArrayExpress uses same method i.e. Benjamini–Hochberg method.
The method is selected by default because it is the most commonly used adjustment for microarray data and
provides a good balance between discovery of statistically significant genes and limitation of false positives.

The BH threshold is defined for pre-specified 0 < α < 1 as:

TBH = max {𝑃(𝑖) ∶ 𝑃(𝑖) ≤ 𝛼 𝑖
𝑚, 0 ≤ 𝑖 ≤ 𝑚}

The GEO2R results provide information regarding probe ID, its t-value which is a measure of the difference in
means taking into consideration of data spread and sample sizes, and smaller p-value than a predefined signifi-
cance level (0.01), defines the gene as differentially expressed. A p-value (or probability value) is very helpful in
determining the confidence in the result decision that is taken under the null hypothesis. If the p-value is small;
it indicates that it is very unlikely that the data was generated according to the null hypothesis. The p-value
can be calculated either by the t-test or normal distribution parametrically or by a permutation method. Since
the gene expression data are generally not normally distributed, the permutation test method is recommended
to compute the p-values. The p-value of a permutation test is the cumulative sum of the probability of the ob-
served outcome and the probability of all more extreme outcomes. Where the test statistic is denoted by Si and
the observed score for gene i by 𝑠𝑖∗, the p-value corresponding to the observed score 𝑠∗

𝑖 is.

𝑝𝑖 = ∑
𝑠𝑖>𝑠𝑖∗

𝑃(𝑆𝑖 = 𝑠𝑖|𝐻0)

For each gene, a test statistic and its corresponding p-value are calculated to determine the extent of differential
expression. The B value i.e. the log-odd function for each gene which is differentially expressed between the two
groups. After, then the fold change on a logarithmic scale (logFC) value is shown along with the gene symbol
and its title. The F-statistic calculates overall test of significance for that gene by combining the t-statistics for all
pairwise comparisons. Generally F-statistic is given by comparison of the two variances, s1 and s2, and dividing
them. It tests the equality of the class means for a fixed gene as:

𝐹 = (𝑛 − 𝑘) ∑ 𝑛𝑖(𝑌𝑖. − 𝑌𝑖..)2

(𝑘 − 1) ∑(𝑛𝑖 − 1)𝑠2𝑖
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2.4 The Significant Genes

From the results top 20 and bottom 20 genes i.e. the over-expressed and under-expressed genes, respectively
were identified by sorting the p-value column in descending order and discarding the value except <0.01 and
<0.05 (as defined earlier as the significance level of 99% and 95%, respectively). Comparative analysis was
performed for the pre-processing of data followed by statistical analysis and mapping of over expressed and
under expressed genes for the involved pathways using WB-DEGS (Within and Between Group Comparisons
for Differentially Expressed Gene Selection), a R based platform which performs pre-processing, visualization,
and genes selection with an accuracy to minimize the false positive rates using some classical methods of gene
selection [15].

2.5 Gene Mapping and Interactions

The corresponding gene mapping were performed using these probe ID’s, first in NetAffx™ [16] which enu-
merates the probe sequences and the consensus sequence interrupted by the probe Ids also DAVID (based
on another agglomeration approach, heuristic fuzzy multiple-linkage partitioning) [17] and GeneAnnot [18]
(which links between Affymetrix arrays and the rich human gene annotations) were utilized for the purpose.
Then, input was provided in STRING database for each pathway and the network was constructed [19]. The
same analysis was obtained from GeneMANIA [20] which helps to generate genetic interactions and predict
the function of the genes.

2.6 Gene Annotations

Finally the gene annotations are performed using Panther tool that follows statistical enrichment using Mann-
Whitney test to determine whether any ontology class or pathway has numeric values that are nonrandomly
distributed with respect to the entire list of values and is given as:

𝑈𝑖 = 𝑅𝑖 −
𝑛𝑖(𝑛𝑖 + 1)

2

It checks that the probability of the functional category distribution was drawn randomly from the reference
distribution.

3 Results and Discussion

3.1 The Datasets

Analysis was performed for all series mentioned in Supplementary Table 1, as discussed above similar type of
analysis has been performed for all the data; however here we are representing the detailed study for series
GSE2443. The GEO2R analysis for GSE2443 gave a great number of genes but after applying the filters such
as p-value cut-off we were left with only a few significant entities. The overlapping genes found may have
some significance towards PC after analysing them through three different methods (i.e. GeneMAD, GeneSD,
GEO2R). Through the analysis only two genes were identified to be the most common entities in all methods
i.e. CEP57 (HGNC: 30794) and PDLIM5 (HGNC: 17468) (Figure 3).
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Figure 3: Common Genes in series GSE2443.

GeneMAD and GeneSD revealed the expression of probeIDs from 20 samples of series GSE2443 (Figure 4
and Figure 5 ). The range is between 0 and 0.998 for the expression values for each sample in the data set.

Figure 4: GeneMAD analysis for GSE2443 (20 samples), representative heatmap with red color showing under expressed
probes and the blue ones being overexpressed.
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Figure 5: GeneSD analysis for GSE2443 (20 samples), representative heatmap with red color showing under expressed
probes and the blue ones being overexpressed.

3.2 Identification of Set of Common Genes

The genes which were found common between the microarray data analysis using GEO2R, WB-DEGS and TM4
(WebMeV) were tabulated and grouped differently. Then, input was provided in STRING database for each
pathway and the network was constructed [19]. The interaction value between the two genes was considered
greater than or equal to 0.9 which is considered significant and others are discarded. Then, using conditional
formatting in excel, the genes were categorized into AR, MAPK and mTOR. The mapping of probeIDs to their
respective genes was done using the supplementary file, containing the unabridged list of genes. The SAM
analysis results at the delta value 1.5 gave 15 probes out of which 14 were mapped to the genes in NetAffx™
(Figure 6).

Figure 6: Between group comparisons in SAM analysis (GSE2443).

The Simple Statistical Test (paired t-test) gave 11 probes out of which 10 were successfully mapped to their
respective genes (Figure 7). There was no significance in within group comparisons.
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Figure 7: Simple Statistical Test (GSE2443) showing some significant range of the probes (11 probes) in between group
comparison and none was found significant in within group comparison.

The twilight statistical analysis at FC 1.5 gave 29 probes out of which 28 probes were mapped to genes
(Figure 8). There was no significance in within group comparisons.

Figure 8: Twilight at logFC cutoff value of 1.5 for GSE2443.

The linear model analysis gave a significant number of genes only in comparison between groups (Figure
9) but, the expressed genes showed the p-values greater than 0.01, which were not significant and thus were
discarded.
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Figure 9: Linear models for GSE2443.

Through similar procedures 8 genes were identified in series GSE8702 as RPL23 (HGNC: 10316), RPS9
(HGNC:10442), DDC (HGNC:2719), KLK3 (HGNC:6364), PLA2G2A (HGNC:9031), KLK2 (HGNC:6363), CCL20
(HGNC:10619), FAM198B (HGNC:25312) (Supplementary Figures 1 and 2). Twenty seven were found in
GSE21887 (Supplementary Figures 3 and 4). Again, in GSE33316, 13 genes were found based on the results
(Supplementary Figures 5–8). In GSE67537 there were no common genes at any level. So, our analysis for An-
drogen receptor pathway (AR) ended up with 50 genes in total and only one gene in common across all the five
series datasets. Now, for mitogen activated protein kinases pathway (MAPK), all four series datasets have given
some common significant genes. In GSE20906 we found 11 genomic entities based on following results (Supple-
mentary Figures 9–11). In GSE23038 we found 53 genes based on the following results (Supplementary Figures
12 and 13). In GSE29438 we found 4 significant genes based on the following results (Supplementary Figures 14
and 15). In GSE39735 156 significant genes were found based on the following results (Supplementary Figures
16–20).

So, our analysis for mitogen activated protein kinases pathway (MAPK) ended up with 224 genes in total
with 9 genes in common across all the four series datasets. Now, for mechanistic target of rapamycin (m-TOR),
all three series datasets have given a few more common significant genes. In GSE26332, 52 genes were found
based on the following results (Supplementary Figures 21–23). In GSE49232 7 genes were found based on the
following results (Supplementary Figures 24–26). In GSE32875 there were no genes in common between all the
methods. So, our analysis for mechanistic target of rapamycin (m-TOR) ended up with 59 genes in total with 3
genes in common across all the three series datasets. Now, the genes obtained through all these three analysis
were identified and were processed for functional annotation so that we can obtain few relevant genes. A total
of 349 genes were identified in all pathways with 229 genes in MAPK, 63 genes in mTOR and 51 genes in AR
pathway. After then the genes were categorized into the three pathways to visualize the interactions between
them (Supplementary Table 2). The input of STRING was provided as these genes and the networks created for
each pathway and multiple- pathway (in the pair of two). This determined the interactions between the genes
belonging to same or different pathway.

3.3 The Gene Interactions and Annotations

From the network results obtained from STRING database, only, significant interactions having combined
score greater than or equal to 0.9 was taken into consideration. The intra-pathway interactions include: AR-
AR, mTOR-mTOR, MAPK-MAPK (Supplementary Table 2) and inter-pathway interactions include: AR-mTOR,
mTOR-MAPK, AR-MAPK (Supplementary Table 3). The same analysis was obtained from GeneMANIA [20]
which helps to generate genetic interactions and predict the function of the genes. Same type of input was pro-
vided with genes belonging to different pathways and the results were generated in the same format but with
the weight value between the two genes. The weight represented the strength of interactions between them and
this was processed by discarding the weights greater than 0.1 which is a significant interaction. The common
genes inter-connections obtained from STRING and GeneMANIA are the putative genes which are suspected
to play a major role in mediating the progression of the prostate cancer between the AR, mTOR and MAPK
pathways (Table 1 and Table 2).

Table 1: Common intra-pathway connections between STRING and GeneMANIA for all three pathways.

AR-AR mTOR-mTOR MAPK-MAPK
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RPS20 RPS6 SEC11A SPCS1 VAMP8 STX2
RPS8 RPS6 BNIP3 HIF1A IL6 IL6R
RPL29 RPL23 SMN1 SMN2

Table 2: Common inter-pathway connections between STRING and GeneMANIA for all three pathways.

AR-mTOR mTOR-MAPK

IGFBP3 KLK3 IGFBP3 ADAM12
RPL29 EIF5 EDNRA EDN1

The final genes that were found interconnected in three pathways are: EDN1(mTOR), EIF5(MAPK),
RPL23(AR), RPL29(AR), RPS6 (AR), RPS8(AR), RPS20(AR), PRKACB(mTOR), SERBP1(mTOR), ND-
UFA12(mTOR), CDK1(mTOR), EIF5B(MAPK), and UCHL5(MAPK). Thus, the analysis finally leads to
the 13 common genes. These genes are then further analysed based on their functional annotation to retrieve
their importance in the regulation of prostate cancer in the AR, mTOR and MAPK pathway. Also, hubs were
identified in the networks which are the genes which are connected to multiple genes; thereby influence the
functions of each other (Table 3 and Table 4).

Table 3: List of Hub genes with their respective nodes across AR, MAPK and mTOR pathway.

Hub gene Nodes

PRKACB CALD1, CDK1, CDK6, CEP57, DHFR, EDN1
SERBP1 EEF2, EIF5, FAU, GNB4, KIAA0368, MNAT1
CDK1 NCOR1, NDUFB5, PRKACB, RAB11A, RPL23, RPL29,

RPL31, RPL35A
EIF5B RPL5, RPS10, RPS20, RPS29, RPS6, RPS8

Table 4: Gene description of the common genes found in all three pathways.

Gene symbol Gene name HGNC symbol Panther family/-
subfamily

Panther protein
class

UniProtKB

CDK1 Cyclin
dependent
kinase 1

1722 Cyclin-
dependent
kinase 1
(PTHR24056)

Non-receptor
serine/threonine
protein
kinase(PC00167);
non-receptor
tyrosine protein
kinase(PC00168)

P06493

EDN1 Endothelin 1 3176 Endothelin-1
(PTHR13874)

P05305

EIF5 Eukaryotic
translation
initiation factor 5

3299 Eukaryotic
translation
initiation factor 5
(PTHR23001)

G-protein
modulator
(PC00022);
translation
initiation
factor(PC00224)

P55010

EIF5B Eukaryotic
translation
initiation factor
5B

30793 Eukaryotic
translation
initiation factor
5B (PTHR43381)

G-
protein(PC00020);
hydro-
lase(PC0012);
translation
elongation fac-
tor(PC00222);translation
initiation
factor(PC00224)

O60841
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NDUFA12 NADH:ubiquinone
oxidoreductase
subunit A12

23987 NADH
dehydrogenase
[ubiquinone] 1
alpha
subcomplex
subunit 12
(PTHR12910)

Q9UI09

PRKACB Protein kinase
cAMP-activated
catalytic subunit
beta

9381 Camp-
dependent
protein kinase
catalytic subunit
beta
(PTHR24353)

P22694

RPL23 Ribosomal
protein L23

10316 60S Ribosomal
protein L23
(PTHR11761)

Ribosomal pro-
tein(PC00202)

P62829

RPL29 Ribosomal
protein L29

10331 60S Ribosomal
protein L29
(PTHR12884)

Ribosomal pro-
tein(PC00202)

P47914

RPS20 Ribosomal
protein S20

10405 40S Ribosomal
protein S20
(PTHR11700)

Ribosomal pro-
tein(PC00202)

P60866

RPS6 Ribosomal
protein S6

10429 40S Ribosomal
protein S6
(PTHR11502)

P62753

RPS8 Ribosomal
protein S8

10441 40S Ribosomal
protein S8
(PTHR10394

P62241

SERBP1 Serpine1 mRNA
binding protein 1

17860 Plasminogen
activator
inhibitor 1
RNA-binding
protein
(PTHR12299)

RNA binding
pro-
tein(PC00031)

Q8NC51

UCHL5 Ubiquitin
C-terminal
hydrolase L5

19678 Ubiquitin
carboxyl-
terminal
hydrolase
isozyme L5
(PTHR10589)

Cysteine pro-
tease(PC00081)

Q9Y5K5

4 Conclusion

We identified in total 13 candidate genes through the comparative analysis of the results obtained from the
three microarray data analysis tools (MeV, GEO2R and WB-DEGS) for three different pathways. The results
that we presented substantiates our approach of meta-analysis of expression data and pathway analysis of the
genes obtained to find the putative targets which have biological and functional significance in the progression
of prostate cancer. We also performed the comparative analysis of the various tools that we used to find the
overlapping genes in all the three targeted DNA repair pathways. We proposed few entities based on quanti-
tative data compilation, after investigating their association with the disease as well their overall association
with the three pathways by connecting and visualizing them at pathway level. Final set of 13 genes could work
as an accompaniment for the basis of experimental validations. Identification of the connections of genes, gene
hubs and their functions can be novel therapeutic targets after experimental verification. They are therefore,
proposed as potent biomarkers for the prostate cancer and their involvement in AR, MAPK and mTOR DNA
repair pathways.
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