
ORIGINAL RESEARCH
published: 09 August 2021

doi: 10.3389/fnhum.2021.685173

Frontiers in Human Neuroscience | www.frontiersin.org 1 August 2021 | Volume 15 | Article 685173

Edited by:

Yangsong Zhang,

Southwest University of Science and

Technology, China

Reviewed by:

Jing Jin,

East China University of Science and

Technology, China

Peiyang Li,

Chongqing University of Posts and

Telecommunications, China

*Correspondence:

Bin Yan

ybspace@hotmail.com

Specialty section:

This article was submitted to

Brain-Computer Interfaces,

a section of the journal

Frontiers in Human Neuroscience

Received: 24 March 2021

Accepted: 07 July 2021

Published: 09 August 2021

Citation:

Song X, Zeng Y, Tong L, Shu J, Bao G

and Yan B (2021) P3-MSDA:

Multi-Source Domain Adaptation

Network for Dynamic Visual Target

Detection.

Front. Hum. Neurosci. 15:685173.

doi: 10.3389/fnhum.2021.685173

P3-MSDA: Multi-Source Domain
Adaptation Network for Dynamic
Visual Target Detection

Xiyu Song 1, Ying Zeng 1,2, Li Tong 1, Jun Shu 1, Guangcheng Bao 1 and Bin Yan 1*

1Henan Key Laboratory of Imaging and Intelligent Processing, Chinese People’s Liberation Army (PLA) Strategic Support

Force Information Engineering University, Zhengzhou, China, 2 Key Laboratory for NeuroInformation of Ministry of Education,

School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China

Single-trial electroencephalogram detection has been widely applied in brain-computer

interface (BCI) systems. Moreover, an individual generalized model is significant for

applying the dynamic visual target detection BCI system in real life because of the time

jitter of the detection latency, the dynamics and complexity of visual background. Hence,

we developed an unsupervised multi-source domain adaptation network (P3-MSDA)

for dynamic visual target detection. In this network, a P3 map-clustering method

was proposed for source domain selection. The adversarial domain adaptation was

conducted for domain alignment to eliminate individual differences, and prediction

probabilities were ranked and returned to guide the input of target samples for

imbalanced data classification. The results showed that individuals with a strong P3 map

selected by the proposed P3map-clusteringmethod perform best on the source domain.

Compared with existing schemes, the proposed P3-MSDA network achieved the highest

classification accuracy and F1 score using five labeled individuals with a strong P3map as

the source domain. These findings can have a significant meaning in building an individual

generalized model for dynamic visual target detection.

Keywords: brain-computer interface, P3 detection, individual transfer, domain adaptation, EEG

INTRODUCTION

Brain-computer interface has developed a new way for human beings to communicate and control
the outside world, and has a great application value and development potential in the fields
of medical rehabilitation (Pan et al., 2018), recreation (Polina et al., 2018), and public safety
(Ward and Obeid, 2018). Electroencephalogram (EEG) has become one of the most popular
neuroimaging technologies for brain-computer interface (BCI) application because of its high
temporal resolution, low cost, and portability. Influenced by external environment changes and
the state of the human body, EEG signals are usually non-stationary, which increases the difficulty
of single-trial EEG analysis. Besides, data distributions vary across individuals, restricting the
generalization of computing models (Kaur et al., 2019; Lorena et al., 2019). It can be further
aggravated for single-trial EEG detection in dynamic video target detection because of the absence
of an explicit target onset time, time jitter of the detection latency, dynamics of visual background,
and uncertainty of visual distracters (Song et al., 2020). In addition, more ERP components induced
by dynamic visual targets contain P1, P2, P3, and a strong negative wave at around 500ms. All of
these could further influence detection performance and enlarge individual difference for dynamic
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visual target detection. Thus, it is essential to investigate the
individual transfer problem, to build an individual generalized
model, which will make the video target detection BCI system
more applicable in real life.

Traditional machine learning often requires sufficient
labeled training samples satisfying independent and identically
distributed conditions with test samples to ensure classifier
reliability, which increases the preparation time for a specific
test individual, causing time consumption, and results in
other individual labeled data going to waste. However, transfer
learning can provide an effective way to overcome these problems
(Pan and Qiang, 2010). In transfer learning, the labeled and
unlabeled samples are regarded as source and target domains,
respectively. By mapping the source and target domains to
the same distribution space, transfer learning can reduce the
domain shift between the source and target domains and use the
knowledge learned from the source domain to solve different
but related target domain classification problems, indicating a
way to solve individual differences in EEG signals (Chen et al.,
2020; Gao et al., 2020; D et al., 2021). Studies on individual
difference in EEG signals based on transfer learning can be
described as the problem of EEG-based individual transfer.
The transfer problem with consistent feature and category
spaces but inconsistent distribution space can be solved by
domain adaptation in transfer learning. The core idea of domain
adaptation is to eliminate cross-domain distribution differences.
Domain adaptation relaxes the condition that training samples
and test samples are independent and identically distributed in
traditional machine learning. Knowledge is transferred from the
labeled source domain to the unlabeled target domain to reduce
the annotation cost, a typical unsupervised domain adaptation
problem. The unsupervised domain adaptation method has a
rich research foundation in the field of computer vision (Pan
et al., 2011; Gong et al., 2015; Csurka, 2017). Early unsupervised
domain adaptation criteria assume that all source domain data
arise from the same source with the same distribution. It is
easier to collect labeled data from multiple source domains with
different distributions. The data from multiple source domains
can transfer more information to the target domain, which will
be more beneficial in practical applications (Jhuo et al., 2013;
Ackaouy et al., 2020). Thus, this study adopts multi-source
domain adaptation (MSDA) to solve the individual transfer on
the task of dynamic visual target detection.

With the rapid development of convolutional neural network
(CNN), MSDA has been widely investigated because of its
practice feasibility and performance superiority. The ability of
category recognition and domain transformation should be
considered in MSDA networks, which bring challenges to the
design. Based on the existing domain adaptation network (Ganin
et al., 2017), scholars proposed a series of MSDA criteria,
which shared feature extractors for different source domains.
Zhao et al. proposed multi-source domain adversarial networks
where each source domain feature from the common feature
extractor was aligned with the target domain feature, and a
category classifier was trained using the features of all source
domains (Zhao et al., 2018). Xu et al. proposed a deep cocktail
network, which included multi-source domain discriminators

to narrow the gap between each source and target domain
and multi-source category classifiers to predict categories from
different source domains. The confusion score was calculated
based on the loss of each discriminator to calculate the weight
of each classifier (Xu et al., 2018). Peng et al. proposed
moment matching for MSDA (M3SDA), which introduced a
moment matching principle between source domains to better
eliminate the domain differences between multi-source domain
and target domain, and used the classification accuracy of
each source domain to calculate the classifier weight for target
domain prediction (Peng et al., 2019). Li et al. integrated the
existing multi-source domain adaptive network strategy and
proposed mutual learning network for multi-source domain
adaptation (ML-MSDA) network, including multiple branch
networks and a guidance network, where the single source and
target domains, and combined source and target domains were
aligned by conditional adversarial adaptation. The unsupervised
classification loss of the target domain was introduced. Thus,
cross-domain information adaptability and network robustness
were enhanced to achieve the target domain classification with
the guidance network as the center (Li et al., 2020b). These studies
provide valuable guidance for designing transfer networks in
BCI systems.

Because of remarkable achievements of the domain adaptation
method in computer vision, researchers have started paying
attention to its application in the field of BCI (Wang et al.,
2015; Wu, 2017; Wu et al., 2020; Cao et al., 2021). For EEG-
based domain adaption, current studies focus on emotion
recognition, cognitive load recognition, movement recognition,
and motor imagery decoding. Li et al. and Bao et al. investigated
multi-source transfer learning and two-level domain adaptation
neural networks, respectively, for cross-subject EEG emotion
recognition (Li et al., 2019; Bao et al., 2021). Jimenez-Guarneros
et al. proposed custom domain adaptation for cross-subject
cognitive load recognition (Jimenez-Guarneros and Gomez-Gil,
2020). McKendrick et al. focused exclusively on labeling cognitive
load data for supervised three-state classification (McKendrick
et al., 2019). Li et al. proposed a principal component
analysis (PCA)-based MSDA (PMDA) algorithm for cross-time
movement classification (Li et al., 2020a). Tang et al. proposed a
novel conditional domain adaptation neural network framework
for motor imagery EEG signal decoding. A densely connected
CNN is used to obtain high-level discriminative features from
raw EEG time series (Tang and Zhang, 2020). However, there is
little research on the task of EEG-based target detection, which
might be caused by the difficulty of training on an imbalanced
dataset of EEG-based target detection. The existing domain
adaptation networks mainly consider the classification problem
of balanced samples; however, the samples of EEG-based target
detection are inherently imbalanced, where the target is a low-
probability event. Besides, data from different individuals as
source domains may influence classification performance. In
the existing studies, there is lack of reasonable criteria for
individual selection of source domain. Thus, it is necessary to
design an individual generalized MSDA network with a certain
criterion for source domain selection to achieve dynamic visual
target detection.

Frontiers in Human Neuroscience | www.frontiersin.org 2 August 2021 | Volume 15 | Article 685173

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Song et al. P3-MSDA for Dynamic Target Detection

In this study, we proposed an unsupervised multi-source
domain adaptation network (P3-MSDA) to develop an individual
generalized model for dynamic visual target detection. We
designed a P3 map-clustering method to select individuals with
a strong P3 map as the source domain. Domain shift was
eliminated using the condition domain confrontation networks.
The multi-source domain classifiers were weighted to predict
target domain categories. Furthermore, the ensemble prediction
probabilities were ranked and returned to guide the input of
input of target samples to solve the problem of imbalanced
data classification.

EXPERIMENT AND RECORDINGS

Experimental Paradigm of UAV
Video-Vehicle Detection
Thirty-four healthy college participants were recruited for
this experiment with an average age of 25 years. All the
participants signed the informed consent before the experiment.
The experiment was approved by the ethics committee of Henan
Provincial People’s Hospital.

EEG data were induced by unmanned aerial vehicle (UAV)
video in the task of video-vehicle detection. The paradigm of
UAV video-vehicle detection is shown in Figure 1 and described
in previous studies (Song et al., 2020). The UAV flew along a
wide street and recorded. The experiment consists of 200 video
clips where 100 video clips contain one vehicle as the deviant
videos, and the remaining 100 clips without a vehicle are regarded
as standard videos. Besides, 200 video clips were uniformly
arranged into 10 blocks where deviant and standard video clips
were randomly presented. The duration of each video was 4–
10 s. In the experiment, the participants were required to quickly
find vehicles regardless of other distractors, and report vehicle
numbers for each clip. In future study, we will share the dataset
with peers.

Data Preprocessing
An EEG recording system (g.HIamp, g.tec medical engineering
Gmb H, Schiedlberg, Austria) was used to record EEG data using
64 Ag/AgCl electrodes according to the extended 10–20 system
with 61 valid channels. The online sample rate was 600Hz with
a band-pass filter of 0.01–100Hz and a notching filter of 50Hz.
Signals were filtered to 0.1−30Hz and resampled to 100Hz after
ICA-based artifact removal. The average reference was used.
EEG signals for false reported videos were removed. To ensure
the reliability of sample labels, we intercepted deviant samples
from deviant video-induced EEG signals and standard samples
from standard video-induced EEG signals. Deviant samples were
intercepted for 1,500ms, starting from the target onset time.
Since there was only one vehicle in each deviant video, one
deviant sample could be obtained from one deviant video.
Standard samples were intercepted from standard video-induced
signals without overlapping. In this way, several standard samples
can be obtained from one standard video.With an ERP alignment
method proposed in the previous studies (Song et al., 2020), these
samples were aligned and intercepted to 1,000ms single-trial
signals whose amplitudes over± 100 µV were discarded. After

these, there were around 300–500 valid trials for each participant.
The ratio of the deviant trials to standard trials is 1: 4.1–4.5.

P3-MSDA NETWORK

This study predicts the category of samples in the target
domain using the data distribution and labels of the source
domain and the data distribution of the target domain. Aiming
at an individual generalized model for dynamic visual target
detection, the historical data from existing individuals with the
labeled dataset are used to construct source domains. Besides,
the new individual with an unlabeled dataset is regarded as
the target domain. With a domain adaption network, we can
directly predict the labels of the new individual using historical
data to reduce the calibration time. In this study, we propose
a P3-MSDA network, where a P3 map-clustering method is
presented to select individuals as the source domain. Adversarial
domain adaptation is conducted for domain alignment to
eliminate individual differences. The prediction probability is
ranked and returned to guide the input of target samples for
the imbalanced data classification. The framework consists of
five parts: source domain selector, feature extractor, domain
discriminator, category classifier, and target sample selector, as
shown in Figure 2.

There are N source domains and one target domain where
the target domain covers most part of the testing data. For the
j-th source domain, the data distribution submits to psj

(

Xsj ,Ysj

)

.

The labeled samples are
(

Xsj ,Ysj

)

=
{(

x
sj
k
, y

sj
k

)}nsj

k=1
where Xsjand

Ysj denote the sample set and the corresponding label vector,

respectively. x
sj
k
denotes the single-trial EEG matrix. nsj is the

sample number for the j-th source domain. y
sj
k

denotes the
category label of two categories for the k-th sample. The
samples and labels of the target domain are (Xt ,Yt) with
data distributionpt (Xt ,Yt). The data distribution between the
source and target domain is similar but also different. The
similarity ensures that they can share the feature extraction
for classification, and the difference is usually expressed as
domain shift (Adams, 2010), which will be eliminated by domain
adaption network.

Source Domain Selector
The source domain selector selects individuals as source domains
for robust network training. The brain map at the P3 peak time
can reflect the brain activities of decision-making, since the P3
component is regarded as the key feature for EEG-based target
detection. Thus, a P3 map-clustering method is proposed for
source domain selection.

Since we dealt with EEG signals induced by video clips with
random vehicles, P3 latency may vary a lot among different
trials. Therefore, an ERP alignmentmethod was used to eliminate
latency jitter before individual clustering because of the severe
latency jitter of video-induced P3 signals (Song et al., 2020).

The individual ERP was calculated by averaging aligned
deviant trials. Then, the brain map at the P3 peak time was
extracted as a feature vector with the same size as the channel
number. Based on a distance-clustering method, all individuals
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FIGURE 1 | Paradigm of unmanned aerial vehicle (UAV) video-vehicle detection. Two hundred video clips were divided into 10 blocks, including 10 deviant videos and

10 standard videos per block. After each clip, participants reported vehicle numbers by the keypress. “1” denotes one vehicle, and “0” denotes no vehicle.

FIGURE 2 | P3-MSDA network architecture. The framework selects individuals to construct the multi-source domains based on the P3 map-clustering method and

adapts the target domain to these multi-source domains to achieve individual transfer for dynamic visual target detection. For simplicity, we consider the i-th and j-th

sources. The feature extractor maps target and source samples into a common feature space. After a gradient reversal processing, the i-th domain discriminator

offers the i-th adversary between the i-th source and target features. Similarly, the j-th domain discriminator offers the j-th adversary between the j-th source and

target features. The i-th category classifier produces the category results for the i-th sources and target domain. The target classification operator integrates all

weighted classification results and predicts the target category where the weight is calculated based on the domain shift. The prediction probability can further guide

the input of target samples for the next iteration.

can be clustered into three groups: strong, medium, and weak P3
map groups. Here, individuals with a strong P3mapwere selected
to construct the source domain.

Feature Extractor
The feature extractor maps all samples from the target domain
and N source domains into a common feature space to obtain
the best mapping between all source domains and target domain,
thus, successfully learning the domain invariant features. The
network structure is shown in Figure 3. The input samples x

si
k
,

x
sj
k
, and x

t
k
are a matrix with a size of c × T. c is the channel

number, and T is the number of time points with fs sample rate.
The feature is extracted with three convolution operations. The
first convolution kernel size is 1×

(

fs/2 + 1
)

for band-pass filters
with around 2Hz frequency resolution. The size of the second
convolution kernel is c × 1 for reducing the spatial dimension
from multiple channel signals to time-series. After the average
pooling layer with double downsampling, the size of the third
convolution is 1 ×

(

fs/5 + 1
)

, and the sliding sum of 200m
sec data in time and further down sampling to fs/10 Hz. The
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obtained feature is transformed into a one-dimensional feature
vector expressed as F

(

x
si
k

)

for the i-th source domain or F
(

x
t
k

)

the target domain. Details of the feature extractor architecture are
presented in Table 1.

Domain Discriminator
The domain discriminator distinguishes the distribution distance
between the target domain and the source domain by adversary
learning. In this study, to eliminate domain shift, a gradient
reversal layer (Ganin et al., 2017) is introduced. For the
convenience of domain adaptation neural network, it is a
positive function in forward computing, while it is a negative
function in backpropagation. For N source domains, there

will be N domain discriminators
{

Dsj ,t
}N

j=1
to map all source

domains and target domain to a common feature space.

The features F
(

x
t
k

)

and F
(

x
sj
k

)

from feature extractors were

discriminated by the domain discriminator Dsj ,tto identify
whether they come from the distribution of the same domain.
The domain discriminators Dsj ,t adopt a full connected layer,
and the number of neurons is F2 × 1 × T/10 . The
discriminant probabilities of the target samples and source

samples are pD
sj ,t ,t

k
=Dsj ,t

(

F
(

x
t
k

))

p
D
sj ,t ,sj

k
=Dsj ,t

(

F
(

x
sj
k

))

. Using

cross-entropy loss with a softmax activation function, the domain
discrimination loss between the target domain andj-thsource
domain is given as follows:

L
sj ,t

adv
= −

K
∑

k=1

(

vs log p
D
sj ,t ,sj

k
+vt log p

D
sj ,t ,t

k

)

(1)

where vs and vt are a one-hot label for target and source domain.
K is the batch size.

Category Classifier
The category classifiers

{

Cj

}N

j=1
distinguish between deviant and

standard samples from target and source domains. They are
shaped with a full connection layer of F2×1×T/10 neurons. The

features F
(

x
t
k

)

and F
(

x
sj
k

)

from feature extractors were classified

by the classifier Cj, then the category predictions are denoted as

p
Cj ,t

k
= Cj

(

F
(

x
t
k

))

for the target domain and p
Cj ,sj
k

= Cj

(

F
(

x
sj
k

))

for the j-th source domain. For the labeled source domains, we
can use supervised cross-entropy loss to perform training. The
category loss of the source domain is given as follows:

L
Cj ,sj
class

= −

K
∑

k=1

(

y
sj
k
log p

Cj,sj
k

)

(2)

where y
sj
k

is the category label of thek-thsample from
thej-thsource domain.

For the unlabeled target domain, we use unsupervised entropy
loss to include them in the classifier training. The category loss of
the target domain is given as follows:

L
Cj ,t

class
= −

K
∑

k=1

(

ŷtk log p
Cj ,t

k

)

(3)

where ŷt
k
is the predicted pseudo label of the k-th sample

from the target domain, which is binarized from the prediction
probability p̂t

k
, an ensemble prediction probability from the target

classification operator.

Target Sample Selector for Imbalanced
Data Classification
Because of the inherent sample imbalance in EEG-based target
detection, we have to adjust the sample selection strategy of
DA networks to prevent the model from bias to the standard
samples. In this study, all deviant and randomly equivalent
standard samples from source domains can be selected for sample
balance in each epoch, since the label vector of the source
domain is available. There is only a prediction probability for
the target domain. Based on prediction probability, all the testing
data are ranked from high to low according to the probability
value predicted as deviant stimuli. The first Q samples from
the testing data are used as target domain samples in the next
iteration, which can dynamically employ the target samples as
much as possible and overcome model bias to standard samples
to some extent.

For the target sample x
t
k
, N category classifiers can give

category predictions
{

p
C1,t

k
, . . . , p

Cj ,t

k
, . . . , p

CN ,t

k

}

, which will be

weighted for a prediction probability p̂t
k
based on the perplexity

score of domain discriminators. From the literature (Xu et al.,
2018), the target-source perplexity score of the j-th source
domain is calculated as follows:

psj = − log
(

1− Dsj ,t
(

F
(

x
t
k

)))

+lsj (4)

where lsj is obtained by averaging the discriminator loss of the j-th
source domain. The classifier weight is the normalization value of
the perplexity score:

wj = psj /

N
∑

j=1

psj (5)

Thus, the prediction probability of the k-th target sample is given
as follows:

p̂tk =
1

N

N
∑

j−1

(

wj × p
Cj ,t

k

)

(6)

which is also binarized as prediction category and training
pseudo labels Ŷt .

By integrating the domain discriminator and category
prediction losses, we obtain the following adversarial
learning problem:

min
F, D, C

α

N
∑

j=1

L
sj ,t

adv
+ γ

N
∑

j=1

L
Cj ,sj
class

+ λ

N
∑

j=1

L
Cj ,t

class
(7)

where α, γ , and λ are hyper-parameters. L
sj ,t

adv
, L

Cj ,sj
class

, and L
Cj ,t

class
denote domain loss, category loss on source domains, and
category loss on the target domain, respectively.
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FIGURE 3 | Feature extractor network. There are three convolution operations. The network starts with temporal convolution (the first convolution operation) to learn

frequency filters, then uses a spatial convolution (the second convolution operation) to learn spatial filters. The third convolution learns a temporal summary for all

feature maps.

TABLE 1 | Network parameters of feature extractor.

Layer Filter Size Output Option

Input – – (1, ch, T) –

Conv2d F1 (1, fs/2 + 1) (F1, ch, T) –

BatchNorm2d – – (F1, ch, T) –

Conv2d F2 (ch, 1) (F2, 1,T) –

BatchNorm2d – – (F2, 1,T) –

ReLU – – (F2, 1,T) –

AvgPool2d – (1, 2) (F2, 1, T/2 ) –

Conv2d F2 (1, fs/5 + 1) (F2, 1, T/2 ) –

BatchNorm2d – – (F2, 1, T/2 ) –

ReLU – – (F2, 1, T/2 ) –

AvgPool2d – (1, 5) (F2, 1,T/10 ) –

Dropout2d – – (F2, 1,T/10 ) pdropout

Flatten – – (F2 × 1× T/10 ) -

The Training and Testing Process of the
Network
The pseudocode of the P3-MSDA algorithm is presented in
Table 2. In the training stage, source domain individuals are
selected to align with the target domain for target sample
classification. The ensemble prediction probability from N
category classifiers can guide the input of target samples. The
network parameters are updated using the loss in Eq (7). In the
testing stage, all the testing data are used to predict detection
performance, as the red line shows in Figure 2.

RESULTS

Implementation Details
Theexperiments were implemented in the PyTorch platform. The
sample rate of input signals is fs = 100 Hz with 1 s length,
sample points T for single-trial signals are 100, and channel
number ch is 61. The number of neurons in the fully connected

layer for domain discriminators and category classifiers is 80.
The feature extraction parameters stated in Table 1 are set as
F1 = 4, F2 = 8, and pdropout = 0.2. For the proposed P3-
MSDA algorithm, we set the trade-off hyper-parameters (α,γ , λ)
as (0.2, 0.8, 0.2), respectively. We fit the model using the Adam
optimizer algorithm and run 300 training iterations (epochs).
The learning rate is set to 0.0003. The batch size is K = 20,
meaning that 20 samples from each source domain are conducted
in domain alignment with 20 samples from the target domain.
For the labeled source domain, there are equivalent deviant and
standard samples in each epoch. For the unlabeled target domain,
20 samples are randomly selected from the firstQ = 80% samples
with the highest prediction probability as deviant stimuli.

To evaluate the proposed P3-MSDA, more schemes are
presented and compared. To clearly describe these schemes, a
diagram of the composition of the source and target domains
is shown in Figure 4, where EEGNet (Lawhern et al.,
2016) is ever proposed as a good generalized framework
for P3 detection in online testing. However, the SDA
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TABLE 2 | Pseudocode of theP3-MSDA algorithm.

Learning algorithm for P3-MSDA

Input:The labelled samples (X0,Y0)from all available source domain individuals and the unlabelled samples Xt from target domain individuals.

Output: Well-trained feature extractor F, domain discriminator
{

Dsj ,t
}N

j=1
, category classifier

{

Cj

}N

j=1
, and prediction label Ŷt for target samples.

Training stage:

1: for 1: tdo (t is epochs)

2: Select source domain individuals (Xs,Ys)using a P3 map-clustering method from (X0,Y0). Divide source domain individuals intoNsource domains as
{(

Xsj ,Ysj

)}N

j=1
.

3: Select all deviant samples and randomly equivalent standard samples
{(

X′
sj ,Y

′
sj

)}N

j=1
from

{(

Xsj ,Ysj

)}N

j=1
as source domain and the first Q samples X′

t fromXrank
t as

target domain. The initialization of Xrank
t is Xt.

4: for 1: mdo(m is batch times with batch size K)

5: Sample batch
{

x
si
k , y

si
k

}K

k=1
from

{(

X′
sj ,Y

′
sj

)}N

j=1
and

{

xtk
}K

k=1
from X′

t.

6: Compute domain loss
{

L
sj ,t

adv

}N

j=1
by Eq(1) for each source domain and target domain.

7: Compute category loss
{

L
Cj ,sj
class

}N

j=1
by Eq(2) for each source domain.

8: Compute classifier weight
{

wj

}N

j=1
by Eq(5).

9: Compute prediction probability
{

p̂tk
}K

k=1
by Eq(6).

10: Compute prediction loss
{

L
Cj ,t

class

}N

j=1
by Eq(3) for target domain.

11: Update F,
{

Dsj ,t
}N

j=1
,and

{

Cj

}N

j=1
by Eq(7).

12: end for

13: Evaluate the target samples Xtfor prediction probability p̂t. According to the probability value predicted as deviant stimuli, samples from target domain are ranked

from high to low as X
rank
t for next epoch.Binary prediction probability p̂t as category label vectorŶt.

14: end for

Testing stage:

All the unlabelled samples Xt from target domain individuals are used as testing data. Using the well-trained feature extractor F and category classifier
{

Cj

}N

j=1
, the

testing labels are predicted as Ŷt.

and MSDA are offline computing networks for achieving
better detection performance. These schemes are given
as follows:

(a) EEGNet. Samples from the single group are directly used as
training data for EEGNet network training, and the testing
data in the target domain are classified without domain
adaption. For strong, medium, weak, and combined groups,
the EEGNet network is subdivided into P3-sEEGNet, P3-
mEEGNet, P3-wEEGNet, and P3-cEEGNet with the P3 map-
clustering method for source domain selection.

(b) SDA. This is a DA method with a single source
domain. Source samples from the single group are
used as one source domain for domain alignment with
the target samples. For strong, medium, weak, and
combined groups, single domain adaption schemes are
subdivided into P3-sSDA, P3-mSDA, P3-wSDA, and P3-
cSDA with the P3 map-clustering method for source
domain selection.

(c) MSDA. This is a DA method with multiple source domains
instead of a single source domain. Individuals from the
strong group are evenly divided into several source domains
for domain alignment with the target samples. Here, sub-
classifiers are trained for each source domain. The prediction
results from the sub-classifiers are integrated to achieve the
final classification. The MSDA scheme can be denoted as P3-
MSDA when individuals with a strong P3 map are selected as
source domains.

Source Domain Selection
Based on theP3 map-clustering method, all individuals can be
divided into three groups. The averaged P3 maps for each
group are shown in Figure 5, including a strong P3 map group,
g1 ={sub2, sub5, sub8, sub9, sub10, sub11, sub13, sub15,
sub22, sub28}, medium P3 map group, g2 ={sub1, sub7, sub12,
sub17, sub18, sub19, sub20, sub25, sub26}, and weak P3 map
group, g3 = {sub3, sub4, sub6, sub14, sub16, sub21, sub23, sub24,
sub27, sub29, sub30, sub31, sub32, sub33, sub34}.

Detection Performance
In this study, F1 score is used for performance comparison
because of imbalanced samples for the dynamic visual target
detection task. The best detection performances of all schemes
under different training individual numbers are summarized.
They includeF1 score, classification accuracy, hit rate, false alarm
rate, and significance level, as shown in Table 3, where the
significance level calculated by ANOVA analysis evaluates the
difference between P3-MSDA and others. During the experiment,
the labeled individuals are selected from the corresponding
groups as the training set or source domain. To ensure
the randomness of individual selection, three individuals are
respectively selected from the remaining individuals in the
strong response group, medium response group, and weak
response group as the target domain. The averaged results
of three individuals represent the current detection ability.
The experiment was randomly conducted 20 times, and their
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FIGURE 4 | Diagram of the composition of source and target domains for all schemes. The EEGNet networks with single groups (P3-sEEGNet, P3-mEEGNet, and

P3-wEEGNet) used data from the corresponding group to train the classifier without domain adaption. The single source domain adaption schemes (P3-sSDA,

P3-mSDA, and P3-wSDA), respectively aligned the data from the corresponding source domain with the data from the target domain. The P3-cEEGNet scheme

based on the combination of strong, medium, and weak groups used data from all groups training the classifier without domain adaption. Besides, the P3-cSDA

scheme based on the combination of strong, medium, and weak groups aligned the data from the corresponding source domain with the data from the target

domain. P3-MSDA based on multiple individuals or multiple sub-groups from the strong group individuals aligned the data from the multiple source domains with the

data from the target domain.

FIGURE 5 | Averaged P3 map of the three groups. (A) Strong P3 map in, (B) medium P3 map in, and (C) weak P3 map in are from the strong P3 group, medium P3

group, and weak P3 group, respectively.

average value was considered the detection results. Among these
schemes, the P3-MSDA network achieves the highest F1 score
and classification accuracy, and performs significantly better than
EEGNet and SDA. Although there is no significance between the
P3-cSDA and P3-MSDA networks, the P3-MSDA network can

perform better with fewer labeled individuals. For SDA schemes,
the P3-cSDA network performs slightly better than the P3-sSDA
network, while the P3-sSDA network can also perform well
with fewer source domain individuals. The F1 scores of domain
adaptation schemes are higher than those of EEGNet schemes.
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The optimal training individual number varies from 5 to 7 for this
experiment. Correspondingly, the convergence of training loss
and detection performance (F1 score) for the P3-sSDA network
and the P3-MSDA network is analyzed in Figure 6. The training
loss and F1 score can be gradually stable with 100 iterations
and 20 iterations for the P3-sSDA network. Relatively, the P3-
MSDA network can converge later than the P3-sSDA network.
The training loss and F1 score can be gradually stable with 250
iterations and 50 iterations for the P3-MSDA network.

DISCUSSION

Evaluation of Different Source Domain
Selectors
Source domain selection is very crucial for the DA network. To
verify the validity of the proposed P3 map-clustering method,
three other criteria, namely, deviant ERP energy, energy ratio of
deviation and standard ERP, and signal-to-noise ratio (SNR), are
considered for clustering. The criteria of the P3 map and deviant
ERP energy are proposed from a deviant sample perspective.
However, the criteria of energy ratio and SNR are proposed based
on the difference between deviant and standard samples. For each
criterion, all individuals are clustered into three groups: strong,
medium, and weak groups, according to the amplitude value.

(a) Deviant ERP energy: Since the negative wave at about 700ms
is as strong as the P3 component in the deviant ERP of
video target detection, the entire deviant ERP response should
be considered to balance more ERP components. Thus, the
deviant ERP energy from the entire 1,000ms with all channels
is adopted as the individual feature for individual clustering.

(b) Energy ratio: The essence of EEG-based target detection is
to distinguish between deviant and standard samples. Thus,
the difference between deviant and standard samples should
be highlighted for classification. Here, the energy ratio of
deviation ERP and standard ERP can be viewed as a criterion
for individual clustering. The higher the ratio, the greater the
difference. The greatest difference group is the strong group.

(c) SNR: In addition to energy ratio, SNR can also reflect the
overall signal quality. The higher SNR means better signals
and performance. The actual collected signals consist of brain
response and noise signals. Here, the brain response signals
are denoted by the averaged ERP, and the noise signals are the
difference between the collected signals and averaged ERP. The
energy ratio of brain response and noise signals denotes the
signal SNR. The greatest SNR group is the strong group.

Here, the EEGNet and SDA networks are used for evaluating the
different clustering criteria. Samples from five labeled individuals
are combined as source domain, and these individuals are
from the same group. For each testing, one of the remaining
individuals in each group is selected to form the target domain,
and three target individuals from the strong, medium, and weak
groups are considered. Finally, detection performance is obtained
from the average value of 20-time random validation. The F1
score of detection performance with different clustering criteria
is shown in Table 4, where performances on different source

domains are analyzed. The highest F1 score is shown in bold
for each case. For the same target individual, the detection
performances on different source domains (strong, medium, and
weak groups) are compared where a higher F1 score denotes the
superiority of individuals as source domains. The results showed
that the best performances for the EEGNet and SDA networks
are produced from the strong source domain selected by the P3
map-clustering criterion. For the P3 map-clustering criterion,
individuals from the strong group can act as the best source
domain, and the SDA network with a strong P3 map achieves the
best performance. Furthermore, the significance level between P3
map criteria with SDA scheme and other criteria is calculated
by ANOVA analysis. Results indicate that the proposed P3 map-
clustering method with SDA scheme can significantly improve
the detection performance. These suggest that the proposed P3
map-clustering criterion, which can select active individuals as
source domain to achieve better performance for the EEGNet
and SDA networks, outperforms the three other criteria. Besides,
the SDA network performs better than the EEGNet network
with a 0.08 higher F1 score. Compared with the three other
criteria, the P3 map criterion can contain the distribution and
strength information of brain activity, which might explain why
the P3map criterion achieves the best performance. The response
difference among brain regions from the strong P3 map group
was maximized for training better classifiers.

Furthermore, we test the effect of P3 map-clustering method
on the target domain, as shown in Table 5. Here, we calculate
the F1 scores when source domain and target domain are paired
with different P3 intensity, using five source domain individuals.
Results indicate that data from strong activation can perform best
for both source domain and target domain. If the source data
come from strong activation, the F1-score will get decreased with
the target data changing from strong activation to low activation.

Effect of the Number of Labeled Individuals
for Training
Since the P3 map-based clustering criterion performs well for
source domain selection, we compare the performance among
the P3-sEEGNet, P3-mEEGNet, P3-wEEGNet, P3-cEEGNet, P3-
sSDA, P3-mSDA, P3-wSDA, and P3-cSDA schemes, and explore
the effect of the number of labeled individuals. The averaged F1
scores on the EEGNet network (P3-sEEGNet, P3-mEEGNet, P3-
wEEGNet, and P3-cEEGNet) and the SDA network (P3-sSDA,
P3-mSDA, P3-wSDA, and P3-cSDA) are respectively shown in
Figure 7, where P3-cEEGNet and P3-cSDA combine individuals
from three groups with three times individuals as the training
set or source domain. The detection performance is given by
the average value of 20-time random validation. The significance
level of performance difference between EEGNet and SDA is
calculated by ANOVA analysis. The results showed that the
SDA network can significantly improve the F1 score, relative
to the EEGNet network, and the performance can be improved
with increasing labeled individuals. More labeled individuals do
not always mean better performance. The best performance can
be achieved with about five or six labeled individuals. For the
EEGNet network, P3-cEEGNet achieves the best performance,
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TABLE 3 | Best detection performances of all schemes.

Model F1 score Classification accuracy Hit rate False alarm rate Labeled individuals P value

Strong group Medium group Weak group

P3-sEEGNet 0.56 0.83 0.61 0.12 5 - - **

P3-mEEGNet 0.53 0.78 0.69 0.20 - 7 - **

P3-wEEGNet 0.54 0.77 0.71 0.21 - - 6 **

P3-cEEGNet 0.61 0.82 0.78 0.18 6 6 6 **

P3-sSDA 0.63 0.82 0.85 0.19 5 - - *

P3-mSDA 0.60 0.79 0.85 0.22 - 5 - **

P3-wSDA 0.59 0.78 0.86 0.23 - - 6 **

P3-cSDA 0.64 0.82 0.85 0.19 5 5 5 -

P3-MSDA 0.66 0.84 0.80 0.15 1,1,1,1,1 - - -

(**: p < 0.01, *: p < 0.05, -: p > 0.05).

The bold values means the best value in each column.

FIGURE 6 | Convergence of training loss and detection performance in (A) P3-sSDA network and (B) P3-MSDA network.

especially for more training individuals. However, P3-sEEGNet
performs better than P3-mEEGNet and P3-wEEGNet. For the
SDA network, the P3-sSDA network can outperform P3-mSDA
and P3-wSDA, and achieves an approximate detection effect with
P3-cSDA. These findings further highlight the importance of
individuals from the strong P3 group as the source domain and
illustrate that more samples from the medium and weak groups
cannot be beneficial to the performance of the SDA network.
Thus, the P3-sSDA scheme with five to six training individuals

from the strong P3 group is good as the single source domain for
EEG-based dynamic visual target detection.

Effect of the Number of Source Domains
for the P3-MSDA Network
Based on the excellent performance of the P3-sSDA network,
we developed a P3-MSDA network, where source domain
individuals are selected from the strong P3 map group. Here,
P3-MSDA can assume a single individual as one source domain
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TABLE 4 | F1 scores of detection performance with different clustering criteria.

Clustering criteria Schemes Performances on different source domains(strong, medium, weak) Average P value

P3 map EEGNet 0.56, 0.51, 0.52 0.53 **

SDA 0.63, 0.60, 0.58 0.61 -

Energy of deviant ERP EEGNet 0.54, 0.54, 0.51 0.53 **

SDA 0.52, 0.52, 0.53 0.52 **

Energy ratio EEGNet 0.51, 0.54, 0.51 0.52 **

SDA 0.51, 0.52, 0.54 0.53 **

SNR EEGNet 0.52, 0.52, 0.51 0.52 **

SDA 0.53, 0.54, 0.51 0.53 **

(**: p < 0.01, -: p > 0.05).

The bold values means the best value in each row.

FIGURE 7 | Effects of the number of labeled individuals for training.

or evenly divide all individuals into several source domains.
The F1 scores of P3-MSDA are presented in Figure 8 where
performances from the number of source domains are compared.
For each case, three target individuals from different groups are
randomly selected, and the averaged F1 scores are compared.
The F1 score of the target domain performance from the strong,
medium, and weak groups, and their average value are presented.
The results showed that the individual number, rather than the
source domain number, has a greater impact on the F1 scores of
the P3-MSDA network. The best performance of P3-MSDA can
be achieved with 5–6 training individuals, and target individuals
from the strong P3 map group achieve the best performance,
which is consistent with that of the SDA network. Besides, P3-
MSDA outperforms P3-sSDA.

CONCLUSION

In this study, we developed an unsupervised multi-source
domain adaptation (P3-MSDA) network for dynamic visual

TABLE 5 | Effects of P3 map-clustering method on the target domain.

Source
F1score domain

Target
domain Strong Medium Weak

Strong 0.68 0.65 0.64

Medium 0.62 0.58 0.56

Weak 0.59 0.57 0.56

The bold values means the best value in the whole table.

target detection, which is an individual generalized model
with imbalanced samples. In the P3-MSDA network, a P3
map-clustering method was proposed for source domain
selection. The results showed that individuals with a strong
P3 map could perform best as source domains, suggesting
the superiority of individuals with high-brain activation
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FIGURE 8 | Effects of the number of source domains for the P3-MSDA network. The detection performances of target domain individuals from the strong, medium,

and weak groups, and their average value are included. It shows the effect of the number of source domain with each source domain consisting of (A) one individual

in, (B) two individuals in, and (C) three individuals in.

levels for dynamic visual target detection. Besides, a target
sample selector was designed to guide the input of target
samples for imbalanced data classification. Based on these, the
proposed P3-MSDA could exhibit higher classification accuracy
and F1 score than the EEGNet network without domain
adaptation and SDA networks with a single source domain,
achieving an individual generalized model for dynamic visual
target detection.
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