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ABSTRACT

Epithelial–mesenchymal transition (EMT) is a cellular
process involved in development and disease pro-
gression. Intermediate EMT states were observed
in tumors and fibrotic tissues, but previous in vitro
studies focused on time-dependent responses with
single doses of signals; it was unclear whether
single-cell transcriptomes support stable interme-
diates observed in diseases. Here, we performed
single-cell RNA-sequencing with human mammary
epithelial cells treated with multiple doses of TGF-�.
We found that dose-dependent EMT harbors multiple
intermediate states at nearly steady state. Compar-
isons of dose- and time-dependent EMT transcrip-
tomes revealed that the dose-dependent data en-
able higher sensitivity to detect genes associated
with EMT. We identified cell clusters unique to time-
dependent EMT, reflecting cells en route to stable
states. Combining dose- and time-dependent cell
clusters gave rise to accurate prognosis for cancer
patients. Our transcriptomic data and analyses un-
cover a stable EMT continuum at the single-cell res-
olution, and complementary information of two types
of single-cell experiments.

INTRODUCTION

Epithelial-mesenchymal transition (EMT) is a cellular pro-
cess in which epithelial (E) cells undergo fate switches to-
wards mesenchymal (M) types. This process renders the loss
of apical-basal polarity and the gain of migratory proper-
ties. EMT plays crucial roles in development and disease
progressions such as metastasis and fibrosis (1,2). EMT is

not a binary process. In tumor cells, for example, interme-
diate (partial) EMT states were observed (3–5), and it was
suggested that there is an association between intermedi-
ate EMT states and metastatic potentials (6,7). Interest-
ingly, intermediate EMT states can also be observed in vitro
with epithelial cell lines treated with EMT signals, such as
TGF-� (3,8), and these in vitro experiments provide useful
insights into molecular programs underlying partial EMT
(9). For example, experiments with genetically perturbed
cells have suggested that interconnected feedback loops in
gene regulatory networks can generate multiple interme-
diate EMT states (10). Additionally, mathematical mod-
els postulated stability of these states arising from intricate
gene regulatory networks (10–12).

At the fundamental level, intermediate EMT states can
be understood as either cell states en route to M-like
states, or those stable states induced by weak (low-dose)
EMT signals in the microenvironment. Recent single-cell
transcriptomic studies showed that the time-dependent
EMT programs contain intermediate states that delineate a
continuum-like EMT spectrum (13–15). However, it is un-
clear whether stable cell states in EMT program induced by
multiple levels of signals support a continuum or a discrete
EMT spectrum. While previous dose-dependent single-cell
experiments with two EMT markers (E-cadherin for E, Vi-
mentin for M) support the existence of intermediate EMT
states (8,10), much less is known about the transcriptomic
profiles of the dose-dependent EMT spectrum.

In this work, we performed single-cell RNA-sequencing
(scRNA-seq) using human mammary epithelial (MCF10A)
cells treated with multiple concentrations of TGF-�. We
found that the dose-dependent EMT program is a contin-
uum containing multiple intermediate states that are sta-
ble after two-week treatment of TGF-�. We performed
integrated analyses with our dataset and a recent time-
dependent scRNA-seq dataset for the same cell line and

*To whom correspondence should be addressed. Tel: +1 865 974 3089; Fax: +1 865 974 6306; Email: hongtian@utk.edu
Correspondence may also be addressed to Kazuhide Watanabe. Tel: +81 45 503 9222; Fax: +81 45 503 9216; Email: kazuhide.watanabe@riken.jp
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

C© The Author(s) 2022. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

https://orcid.org/0000-0002-5331-0593
https://orcid.org/0000-0002-8212-7050


2 NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 3

EMT inducer (13) (Figure 1A). We found that the dose-
dependent EMT spectrum has a stronger anti-correlation
of E and M transcriptional programs than the time-
dependent spectrum. While both spectrums show strong
cell-to-cell variability and continuum-like patterns, the
dose-dependent dataset has higher separability in terms of
the groups of cells with neighboring labels (similar doses vs.
similar time points). These differences enable higher sensi-
tivity for the dose-dependent model to detect non-canonical
EMT genes that are associated with the core EMT pro-
grams in terms of the expression pattern. Furthermore, the
time-dependent dataset contains unique cell clusters at E-
low region in the transcriptomic space, which correspond
to en route cell states that do not appear at steady state. We
found that signature genes in both dose- and time-enriched
clusters are useful for prognostic predictions of cancer pa-
tients. Our analyses revealed key differences between dose-
and time-dependent EMT programs in terms of the under-
lying dynamical processes, and showed the widespread ex-
istence of stable EMT continuum under multiple assump-
tions that may be relevant to physiological and pathological
conditions.

MATERIALS AND METHODS

Cell culture

MCF10A cells were obtained from ATCC and grown in
DMEM/F12(1:1) medium with 5% horse serum, epidermal
growth factor (10 ng/ml), cholera toxin (100 ng/ml) and in-
sulin (0.023 IU/ml). For TGF-� treatment, cells were in-
cubated with indicated concentrations (Figure 1B) of hu-
man TGF-�1 protein (R&D systems) in the complete cul-
ture medium. The culture medium was replaced daily, and
cells were passaged right before reaching full confluency.

Single-cell RNA-sequencing

MCF10A cells were first labelled with Perturb-seq vectors
without sgRNA expression using guide barcodes (GBCs)
that were originally used to identify sgRNAs (16). Barcoded
MCF10A cells were then treated with different dosages of
TGF-� for 14 days and single cells were prepared and mixed
at a concentration of ∼1000 cell/�l. Transcriptome library
generation was performed following the Chromium Single
Cell 3′ Reagents Kits v2 (following the CG00052 Rev B.
user guide) where we target 10 000 cells per sample for cap-
ture. GBC library was generated from a fraction (5 ng) of
amplified whole transcriptome by dial-out PCR method ac-
cording to a previous publication (16). Both libraries were
mixed at 9:1 ratio and sequenced by paired-end sequencing
(26 bp Read 1 and 98 bp Read 2) with a single sample in-
dex (8 bp) on the Illumina HiSeq 2500. Generated FASTQ
files were aligned utilizing 10× Genomics Cell Ranger 2.1.0.
Each library was aligned to an indexed hg38 genome us-
ing Cell Ranger Count. The cell barcode (CBC)-GBC table
was generated from the GBC library and used to identify
the treatment groups. We first performed doublet exclusion
with standard 10× pipeline based on RNA amounts, and
then excluded cell barcodes that were assigned with mul-
tiple GBCs (12.7% of all cells assigned with GBCs) (16).
Nonetheless, we examined the 2402 unlabeled dose samples

in the dose data set, which are roughly evenly distributed
across UMAP and E- and M-score space (Supplemental
Figure S1A) (see the method for computing the scores be-
low). We also compared the average E- and M-scores of la-
beled and unbaled samples in each nearest neighbor clus-
ter and found them to be similar (Supplemental Figure
S1B) and excluding them from calculating E and M-scores
showed little affect (R > 0.999 with original scores). These
results suggest that the unlabeled cells are merely missing
annotation rather than contamination or doublets, which
are consistent with prior observations of GBC labeled data
(16) and thus were retained for processing and scoreing. Ad-
ditionally, following the identification of multiple putative
end states in both dose and integrate data, we also looked
at potential homotypic doublets with individual treatment
samples. To do this, we used DoubletFinder (17,18). Us-
ing 2.4% for time data which targeted 3000 cells per treat-
ment, and 8.0% for dose data which targeted 10 000 cells ad-
justed for the proportion of each labeled dose treatment in
the dataset to estimate the homotypic rate, we found 90 pu-
tative homotypic doublets in dose data, which are broadly
distributed in integrated data (Supplemental Figure S2A),
and 332 in the time data, which showed some clustering
around the edge of one cluster (Supplemental Figure S2B).
However, excluding these clustered time doublets did not
affect the pattern of separation of treatment samples, anti-
correlation of E- and M-scores, or enrichment of time and
dose samples in quartile clusters. Based on these observa-
tions, we chose not to filter these samples.

Data processing and integration

Sequencing data for time-course single-cell data from Desh-
mukh et al. (13) was obtained from National Center for
Biotechnology Information Sequence Read Archive (Bio-
Project ID: PRJNA698642) and mapped using to the same
human genome assembly as our dose (CRXh38.84) data us-
ing Cell Ranger (19). Aligned sequences we processed using
the Seurat package (version 4.1) in R (20). Gene names be-
tween experiments were correlated using the HGNChelper
package (21), using the suggested gene symbol for each gene
except when it would create a duplicate reference. Genes
were filtered from individual runs if they did not appear
in three or more cells. We then filtered each dataset for
cells with fewer than 500 features or more than three me-
dian absolute deviations beyond the median number of fea-
tures of the sample set (i.e. the long time, short time, and
dose datasets). We additionally eliminated any sample with
a fraction of mitochondrial reads that was >0.2. We then
integrated all time and dose data following the procedure
used in Deshmukh et al. to best preserve the relationship
between time samples observed in the study (13). Briefly,
the integration involves identifying the most variable genes
in each dataset, defining ‘anchor’ samples between datasets
using canonical correlation analysis, correcting the expres-
sion of related anchor samples and finally propagating this
correction to other samples based on the similarity to the
anchors. We normalized and calculated cell cycles scores for
each dataset independently prior to integration and used
the 15 000 most variable genes to identify anchors. We
applied the same top 15 000 variable genes filter to uninte-
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Figure 1. Analysis overview and progression of dose-dependent EMT at single-cell level. (A) A schematic of our analysis in this study. The analyses involve
the existing time-course data (top) contain MCF10A cells at different time points following a common TGF-� treatment (about 200 pM; Deshmukh
et al. (13)) as well as the dose-dependent data (bottom) containing MCF10A cells treated with different dosage levels of TGF-� after a fixed time period
representing near-steady-state. Gene expression of cells from both experiments were measured using single-cell RNA-sequencing and were subsequently
used individually and integrated for downstream analyses. (B) Projection of dose treatment single-cell expression data using UMAP. The color of individual
points indicates the dose of TGF-� treatment from 0 pM (red) to 800 pM (pink). (C, D) Contour plots of gene set scores of E (x-axis) and M (y-axis) genes
using M PC1 (C) and M PC2 (D) for M-scores. Color indicates the dose of TGF-� as in (B). Circles indicate the mean E- and M-score of samples from
each dose point and the associated error bars show the standard deviation (E–G) Overlay of nnPCA-derived scores from the first E (E PC1, E), first M
(M PC1, F) and second M (M PC2, G) principal components. The color of individuals points indicates the score from low (blue) to high (red). (H–J)
Overlay of the scaled expression of EMT marker genes CDH1 (an epithelial marker, H), VIM (a mesenchymal marker, I), and FN1 (a highly expressed
mesenchymal gene, J). The color of individual points indicates the Z-score of expression of each gene from low (blue) to high (red).
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grated dose data for calculating UMAP, nnPCA scores and
clustering. Finally, each dataset was scaled across genes and
the expression was corrected for the total read count, per-
cent of mitochondrial reads, and cell-cycle phases using S
and G2M scores. The importance of correction for cell-cycle
phase can be seen by contrasting the UMAP and nearest
neighbor clustering of dose data with and without cell-cycle
score correction (Supplemental Figure S3).

Projection of single cell data in reduced dimensional space

Projection of single cell data was done using the scaled ex-
pression values for both unintegrated and integrated data.
For this process we employed Uniform Manifold Approxi-
mation and Projection (UMAP) and non-negative Principal
Component Analysis (nnPCA). For UMAP, we first per-
formed principal component analysis (PCA). We then used
the first 15 principal components to construct the map us-
ing the RunUMAP function from Seurat with defaults pa-
rameters beyond specifying the PCA input and size. UMAP
was primarily used to assess the continuity of both unin-
tegrated and integrated datasets. Average Z-score was de-
termined using the gsva package (22). nnPCA-based scores
were computed by performing non-negative principal com-
ponent analysis on subsets of the scaled dataset defined
using epithelial (E) and mesenchymal (M) genes identified
by Tan et al. (23) and a list of ten additional EMT genes
(GRHL1, GRHL3, OVOL1, FOXC2, ELF5, TWIST2,
TCF3, GSC, KLF8 and SNAI1). We used the nsprcomp
function from the R package of the same name with the
option nneg = TRUE, ncomp = 25, em maxiter = 10000,
em tol = 0.00001 and a consistent seed (set.seed (5)) to iden-
tify the top twenty five components for each subset (24).
While the first twenty-five components were calculated, as
the function greedily optimizes the variance explained by
each component in order, we initially considered only the
top E and M components and added the second M com-
ponent when clustering suggested the possibility of multi-
ple paths of progression. Further details about our nnPCA
scoring approach can be found in Panchy et al. (25). In addi-
tion to E and M axes, we analyzed the relationship between
EMT progression and PD-1 ligation. The latter was repre-
sented by the gene set M4534 from the Molecular Signature
Database (26).

Signature genes in EMT spectrum

To examine the distribution of time and dose samples, we
divided E- and M-score space into a 4 × 4 grid based on
the 25th, 50th and 75th percentile of E- and M-scores. To
obtain results comparable to progression plots in Figure 2,
enrichment only considered labeled time and dosage sam-
ples. Odds of the enrichment of time and dose samples in
each segment of the 4 × 4 grid of E- and M-score space were
calculated using the Fisher’s exact test implemented in R
(fisher.test). Differentially expressed marker genes for each
segment were identified using the FindAllMarkers func-
tion from Seurat. As recommended, for FindAllMarkers
we used unintegrated, normalized counts as integration in-
troduces non-independence between samples. In FindAll-
Markers, we used the logistic regression framework (‘LR’)

so we could use the number reads per cell, percent mito-
chondrial genes and cell cycles scores as latent variables
as well as the experiment of origin (dose, time long, and
time short) to account for batch effect. We also manu-
ally corrected P-values to account for comparing all pos-
sible genes (i.e. those with non-zero expression in at least
one sample including retesting EMT genes discussed be-
low) across all clusters, as FindAllMarkers does not ac-
count for testing multiple clusters. We used the Bonferroni
Correction as the standard to FindAllMarkers and applied
the same cutoffs as the standard FindAllMarker approach
(adjusted P-value < 0.05, absolute value average log2 fold-
change > 0.25). The same approach was also used to com-
pare VIM, FN1, EPCAM and FN1 across all samples, and
between time and dose samples in the middle 50% of E and
M scores, except we use the options ‘logfc.threshold = 0,
min.pt = 0, return.thresh = 1’ to return all results. Addi-
tionally, batch correction was excluded for comparison of
time and dose data. Finally, because EMT genes were used
to construct cell clusters, raising a possible concern of a bias
due to feature reuse, we iteratively removed each EMT gene
from the list, recalculated EMT scores, and looked at differ-
ential expression for the removed gene in a clustering con-
text agnostic to its influence. Overall, E and M scores were
robust to the loss of any individual genes (R > 0.99), but
cluster membership vary for marginal samples around the
borders of clusters, so we filtered our EMT markers genes
for significant differential expression in clusters agnostic to
it. This led to the removal of 12, 14 and 33 EMT marker
genes from all, time and dose clusters respectively, repre-
senting 1.7%, 1.8% and 6.7% of EMT marker genes. No-
tably we did not apply any average log fold-change thresh-
old to gene agnostic results as a primary concern was bias-
ing P-values due to feature reuse.

GO enrichment

GO enrichment of identified genes set was performed us-
ing the clusterProfiler package in R (27), using a back-
ground of all genes in the integrated data, and significance
was assessed using the Benjamini–Hochberg adjusted P-
value with a cutoff of 0.05. Otherwise, we used default pa-
rameters which filters overly narrow (<10 genes) and overly
board (>500 genes) sets as well as terms which do not over-
lap with the gene set of interest. Each combination of gene
set and ontology (Biological Process, Cellular Component,
and Molecular Function) were tested independently.

Prognostic models

TCGA bulk RNA-seq data and associated meta-data were
obtained from TCGAbiolinks (28). Of the 33 available
datasets (cancer types), we selected those with at least ten
patients in both the survivor and non-survivor groups,
which gave rise to the 27 cancer types listed in Figure 5B.
For each dataset, FPKM expression values were extracted
from all non-normal tissue samples, filtered for duplicate
samples from the same aliquot, and normalized to log plus
1 TPM values. We then calculated overall survival as our
survival metric, which is defined as the time from date of
diagnosis to the date of death (for non-survivors) or date
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Figure 2. Continuity of integrated single cell dose and time data in low-dimensional projections. (A) Projection of integrated dose and time data using
UMAP. Each panel uses the same underlying UMAP for samples, but the coloring of points has different meaning. Left panel: color indicates the origin
of the sample from the Days 0, 4 and 8 of the time experiment (red), the Days 0, 1, 2 and 3 of the time experiment (green), or the dose experiment (blue).
Middle panel: color indicates the treatment dose of samples from the dose experiment; time samples are masked. Right panel: color indicates the time of
treatment for samples from the time experiment, dose samples are masked. (B, C) Contour plots of gene set scores of E (x-axis) and M (y-axis) genes using
nnPCA for dose (B) and time (C) samples from integrate data. Color indicates the dose of TGF-� treatment from 0 pM (red) to 800 pM (pink) for dose
data and time of treatment from 0 days (red) to 8 days (pink) for time data. Circles indicate the mean E- and M-score of samples from each dose point and
the associated error bars show the standard deviation. (D) Boxplots show the distribution of E (left) and M (right) scores across different dose treatments
from integrated data. Color indicates the dose of TGF-� as in (B). (E) Boxplots show the distribution of E (left) and M (right) scores across different time
treatments from integrated data. Color indicates the time of treatment as in (C).
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of last follow up (for survivors), the latter being right cen-
sored in our model. Samples with missing or non-positive
values for survival time were dropped as the modelling ap-
proach does not tolerate these values. For features, we used
the set of up-regulated marker genes (a fold change in ex-
pression > the 75th percentile of all significant marker genes
across all segments at an adjusted P-value < 0.05) in each
segment. Each combination of cancer expression data and
gene set was then used to construct Cox proportional haz-
ard models using glmnet implemented in R. A glmnet func-
tion employed Lasso regularization (alpha = 1). The func-
tion optimizes the lambda parameter which influences the
strength of regularization. For each lambda value, a 10-fold
cross validation was performed, and the performance was
measured by C-index, which is the proportion of concor-
dant pairs to total pairs in the dataset, i.e. the proportion
of all possible samples pairs where increased model haz-
ard corresponds to reduced survival. For each model, we
used the default range and interval of the tested lambda
values determined by glmnet. In theory, the stronger Lasso
regularization should reduce the number of active predic-
tors (genes) in the model, but we do not actively seek the
minimized predictors. Instead, we report the model which
maximizes the average cross-fold C-index. This measure is
roughly analogous to AUC–ROC in a censored data context
such as survival.

Clustering from shared-nearest-neighbor graphs

To confirm that the associations we found in E- and M-score
space reflect the full dataset, we examined sample associ-
ations across the 15 000 most variable expressed genes in
the integrated and dose only dataset using the clustering
based on shared-nearest-neighbor graphs via Seurat. Af-
ter scaling and correcting single cell data, principal compo-
nent analysis was done using RunPCA with 15 components
(npcs = 15) and then passed to FindNeighbors with options
reduction = ‘pca’, dims = 1:15. Finally, FindCluster was
run with resolution = 0.5 and default parameters and seed-
ing otherwise. Comparisons between clusters we done using
the Jaccard package in R which implements tests from (29).

RESULTS

A single-cell transcriptomic landscape of dose-dependent
EMT reveals a continuum-like spectrum

To characterize the transcriptomic spectrum with multiple
levels of EMT signals, we performed dose-dependent in-
duction of EMT with MCF10A cells and analyzed cells at
a near-steady-state time point (14 days after TGF-� treat-
ment) using scRNA-seq (Figure 1A, red box). Transcrip-
tomic profiles of 8876 cells with dosage annotation were
identified after a standard filtering process and each con-
dition of TGF-� concentration (dose) yielded more than
800 cells. We found that cells treated with various concen-
trations of TGF-� showed a continuous spectrum when
visualized in the low-dimensional Uniform Manifold Ap-
proximation and Projection (UMAP) space (Figure 1B). To
visualize the transcriptomic variability with interpretable,
functional space, we used a recently developed projection

Table 1. Common language effective size of separation of dosage groups
based on EMT scores

Comparison E PC1 M PC1 M PC2

0 versus 12.5 pM 0.879a 0.700a 0.706a

12.5 versus 25 pM 0.638a 0.601a 0.624a

25 versus 50 pM 0.403 0.474 0.609a

50 versus 100 pM 0.551a 0.641a 0.743a

100 versus 200 pM 0.474 0.495 0.498
200 versus 400 pM 0.528 0.425 0.438
400 versus 800 pM 0.461 0.522 0.554a

aIndicates statistically significant separation based on Mann–Whitney U-
test (P < 0.05 after Bonferroni correction).

method based on nonnegative principal component analy-
sis (nnPCA) (25). Previously identified epithelial-associated
genes (E-genes) and mesenchymal-associated genes (M-
genes), of which 203 E- and 137 M-genes were present in the
processed dataset, were used to construct low-dimensional
space using the first principal component of E scores and
either the first (M PC1, Figure 1C) or the second (M PC2,
Figure 1D) principal component of M-scores (23). We ob-
served a progression of MCF10A cells from E-high-M-low
state to E-low-M-high state with increasing concentrations
of TGF-�. The effect of the progression was saturated as
higher concentration of TGF-� treatment overlap in both
E- and M-scores (Figure 1C-D), such that our scores and
significantly separated treatments of 100 pM and below, but
not above (Table 1). Furthermore, we observed the contin-
uous progression of key E-genes (e.g. CDH1) and M-genes
(e.g. VIM and FIN1) expression (Figure 1E–G). The con-
tinuity of the transition and the saturation of the progres-
sion were similar to time-dependent EMT in MCF10A cells
reported recently (13). Additionally, we found that the ex-
pression of VIM and FN1 followed the M PC1 and M PC2
scores, respectively, when mapped to UMAP space, and
both regions are distinct from the high E-score/EPCAM
region on the opposite end of UMAP space (Figure 1H–
J). Furthermore, these regions are reflected in the nearest
neighbor clusters of dose samples (Supplemental Figure
S4A), which also showed a progression from E-high M-low
to E-low M-high in the E- and M-score space (Supplemen-
tal Figure S4B). The divergence of the mesenchymal-like
cell states represented by these two clusters appears to be
driven by a difference in high (≥100 pM) dose cells (Clus-
ter 0) and predominantly lower dose cells in G1 (Cluster
2), which may have undergone cell cycle arrest (30) (Sup-
plemental Figure S4C-D). Notably, neither dimensionality
reductions nor nearest neighbor clusters depend on dose la-
bels, yet all approaches showed a progression of the expres-
sion of EMT genes with multiple possible end states. Over-
all, our results show that the near-steady-state EMT pro-
gram of MCF10A cells has a continuum-like spectrum that
is independent of projection methods and sample labels.

Dose-dependent states show less variation and are more sep-
arable than time-dependent states in the E/M space

We next compared the dose-dependent EMT and time-
dependent EMT at the single-cell resolution. We first in-
tegrated our dose-dependent dataset (abbreviated as dose
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dataset) with the previously published time-dependent
dataset (abbreviated as time dataset) using the same ap-
proach as in Deshmukh et al. (13) (see Materials and Meth-
ods). Because the time-dependent dataset contains two
sets of experiment (short-time and long-time conditions),
the integration involved three experiments. While compar-
ison can be performed with unintegrated datasets, the in-
tegration is helpful as it reduces the effect of experimen-
tal batches not associated with the meaningful biologi-
cal differences and increases the similarity between com-
mon cell states. As expected, we found that the integrated
data contains cells from all experiments distributed in one
region more continuously (Figure 2A) compared to the
same analysis of unintegrated data (Supplemental Fig-
ure S5). Furthermore, the untreated control in the dose-
dependent dataset and the Time-0 control in the time-
dependent dataset were located in similar regions in the ex-
pression space (Figure 2A, middle and right panels). These
results suggest that the datasets can be compared in a rea-
sonably uniform framework.

The data integration resulted in some alteration of the
gene expression values and coverage (207 E and 144 M
genes), but the progression of EMT in the dose-dependent
manner was preserved. In fact, comparing dose samples be-
tween dose only and integrated data, the first E and M com-
ponents in each data set were highly correlated (R = 0.84
and 0.81, respectively). We also found a strong correlation
between dose M PC1 and integrated M PC2 (R = 0.78),
as well as between dose M PC2 and integrated M PC1
(R = 0.79), but only moderate correlation between dose M
PC2 and integrated M PC2 (R = 0.21). As such, it is unsur-
prising that when we applied dose PCs to the dose samples
in integrated data, we saw a similar distribution of scores
(Supplemental Figure S6) and vice versa for integrated PCs
applied to dose data (Supplemental Figure S7), particularly
between dose M PC1 and integrated M PC2 as well as in-
tegrated M PC1 and dose M PC2. Likewise, we observed a
similar correspondence between nearest neighbor clusters
defined using each data set (Supplemental Figure S8); in
particular, dose Cluster 0 had a significant overlap with dose
samples in the union of integrated Clusters 0 and 3 (Jac-
card index = 0.74, P-value < 1e−5 based on bootstrap test-
ing), while dose Cluster 2 had significant overlap with dose
samples from the union of Clusters 1 and 10 (Jaccard in-
dex = 0.76, P-value < 1e−5 based on bootstrap testing).
Notably, Cluster 1 is predominantly time samples, suggest-
ing that the region identified by integrated M PC2 scores is
not simply an artifact of the dose data.

For subsequent definition of E- and M-score space, we
chose to use M PC1 as it represents the greatest variation
in M-genes across our data and is more correlated with
time (R = 0.48) and dose (R = 0.42) progression, than
M2 (R = 0.16 for time and R = 0.06 for dose). In this E-
and M-score space, the time-dependent data points were
distributed more broadly compared to the dose-dependent
data (Figure 2A-C). Nonetheless, the continuous E-to-M
progression was observed (Figure 2C and E). Note that the
broader distribution of cells in the time-dependent dataset
was also observed with unintegrated data (Supplemental
Figure S9). This broader distribution of time-dependent
data likely reflects distinct transient trajectories during the

Table 2. Common language effect size of separation of time and dosage
groups based on EMT scores of integrated data

Comparison E PC1 M PC1 M PC2

Time
0 versus 1 days 0.605a 0.885a 0.524a

1 versus 2 days 0.530a 0.797a 0.683a

2 versus 3 days 0.502 0.418 0.445
3 versus 4 days 0.469 0.371 0.478
4 versus 8 days 0.593a 0.605a 0.569a

Dosage
0 versus 12.5 pM 0.887a 0.892a 0.833a

12.5 versus 25 pM 0.616a 0.685a 0.603a

25 versus 50 pM 0.363 0.528 0.420
50 versus 100 pM 0.472 0.753a 0.516
100 versus 200 pM 0.468 0.524 0.478
200 versus 400 pM 0.546a 0.434 0.513
400 versus 800 pM 0.455 0.533a 0.474

aIndicates statistically significant separation based on Mann–Whitney U-
test (P < 0.05 after Bonferroni correction).

response to the EMT signal, and the difference in these tra-
jectories may be caused by different initial conditions at un-
perturbed state of MCF10A cells as well as temporal fluc-
tuations. Dosage data maintained a similar pattern of sepa-
rability as the unintegrated data with significant differentia-
tion between conditions up to the putative saturation point
between 100, though we could no longer separate 25 and 50
pM treatments as we could with dose data alone. Time sam-
ples, however, show greater separability between the earliest
(0–2 days) and latest (4 versus 8 days) time points, but not
interior points, which includes 3 versus 4 days, the break-
point between the two time data batches (Table 2).

In addition to the difference in the width of the dis-
tribution, the dose-dependent dataset had stronger anti-
correlation between E and M scores (R = −0.495) than
the time dataset (R = −0.307) (Figure 2B and C). We hy-
pothesized that the stronger coordination between E and
M transcriptional programs can facilitate the discovery of
EMT-associated genes within our integrated dataset that
were not classically considered EMT genes in previous stud-
ies (23,31). Indeed, with the same threshold of Pearson cor-
relation coefficient (+/−0.25), the dose-dependent dataset
revealed greater numbers of genes that had association (cor-
relation with M-scores and anti-correlation with E-scores
or vice-versa) with the overall expression of E and M genes
(167) compared to the time-dependent dataset (41) (Fig-
ure 3A and B). The genes that showed association with E-
program in the dose-dependent dataset but not in the time-
dependent dataset were enriched with GO terms such as
keratinization, keratinocyte differentiation and epidermis
development, while M-correlated genes included those as-
sociated with integrin, chemokine binding, and neuronal
components like the dendrite and protosynapse (Supple-
mental Tables S1 and S2) while there were too few (0 E
and 2 M) found only in the time data to test. Notably,
TGF-� has been shown to be involved in keratinocyte
growth arrest (32), which is consistent with keratinocyte
differentiation being associated with the E-program. We
then focused on specific genes there were specifically cor-
related in with EMT progression in dose data, but not time
data. FARP1 was among the genes most highly correlated
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Figure 3. Correlation of non-classical EMT genes with E and M scores in integrated data. (A, B) Correlation of non-EMT gene expression with sample
E-scores (x-axis) and M Pc1-scores (y-axis) in dose (A) and time (B) samples from the integrated dataset. Each point represents one of the 15 000 most
variable genes from the integrated single cell dataset, excluding those genes used to define the E- and M- scores. Blue points indicate genes which are anti-
correlated with EMT progression (R> 0.25 for E-scores, < −0.25 for M-scores), while red points indicate genes which are correlated with EMT progression
(R < −0.25 for E-scores, >0.25 for M-scores). (C, D) Correlation of non-EMT gene expression with sample E-scores (x-axis) and M PC2-scores (y-axis)
in dose (C) and time (D) samples from the integrated dataset. Labels and colors are defined as in (A, B). (E, F) The correlation between E-scores with M
PC1 (bottom) and M PC2 (top) across different treatments in dose (E) and time (F) data. The color of each cell indicates the strength of anti-correlation
from weak (red) to strong (blue).

M-scores scores (R = 0.60) in dose data, but not in time
data (R = 0.18). FARP1 was recently shown to be impor-
tant for cancer cell motility and associated with poor prog-
nosis (33). Similarly, ESM1 was highly correlated with M-
scores in dose (R = 0.47) but not time (R = 0.10), and it
contributes to the metastasis in colorectal cancer via NK-
�B activation (34). In contrast, we saw comparable anti-
correlation between E-scores and M PC2 in dose (R =
−0.764) and time (R = −0.666), with 212 anti-correlated
genes in dose and 102 in time using the 0.25 threshold.
Among these genes, those unique to dose data showed simi-
lar, but fewer significantly overrepresented GO terms (Sup-
plemental Tables S3 and S4). M-program genes from time
data were enriched in a variety of metabolic processes, in-
cluding those related to fatty acids, alcohol, and steroids,
while E-program genes from time data were found in actin
filament and cell-cell junction terms, but this represents only
two or three of seven genes (Supplemental Tables S5 and
S6). We found two genes correlated with M PC2 in time
data, but not dose, SLC20A1 and HPCAL1, which are in-
volved in Wnt signaling in tumor cells, though in this con-

text SLC20A1 showed antagonism to mesenchymal mark-
ers without affect epithelial markers, suggesting a possible
atypical/intermediate EMT state (35,36). Finally, we con-
sidered anti-correlation between E and M-scores at indi-
vidual treatment points in dose (Figure 3E) and time (Fig-
ure 3F). For M PC2, values were relatively similar across
treatments and datasets, consistent with the higher over-
all anti-correlation for this principal component. Dose and
time data show more distinctions for M PC1: dose data have
the strongest anti-correlation for low dose (<50 pM) after
which it saturates, while anti-correlations in time samples
are strong at the end points (0 and 8 days), but weak for
the intermediate samples. This would suggest dose treat-
ment achieves the greatest anti-correlation prior to satura-
tion, while time treatments are most anti-correlated at end
points of no or protracted treatment. However, care must
be taken with interpreting these results as the presence of
multiple path or end points of EMT suggested by our data,
indicates these results may be influenced by Simpson’s para-
dox compared to the overall correlation scores which in-
tentionally consider the variation across multiple treatment
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populations. Note that the correlation analyses (Figure 3A
and B) were performed in the absence of dose and time
treatment labels, so the correlations were primarily driven
by the intrinsic EMT continuum. Our results suggest that
compared to the time-dependent data, the dose-dependent
scRNA-seq data may provide higher sensitivity to detect
non-classical EMT genes that are coordinated by the core
EMT module.

En route cell clusters unique to time dependent EMT program

Based on the distinct distributions of cells between time-
and dose-dependent EMT programs (Figure 4A), we won-
dered whether our comparative study can reveal expression
regions containing cells that are en route to the M state
rather than (partially) stabilized at intermediate EMT at-
tractors. To simplify the representation of the expression
profiles in the EMT spectrum, we focused on a 4 × 4 grid
in the E- and M-score space. We found that a region with
low scores of one (E or M) program, and low-to-medium
scores of the other program (M or E) is enriched with cells in
the time-dependent EMT program (Figure 4B, lower left).
This result reveals a transient EMT path that may primar-
ily involve the relatively low expression of both E and M
genes. Nonetheless, the enrichment of time data points in
the regions of high E-gene activity and M-gene activity sug-
gested a possible alternative transient EMT path (Figure
4B, right) (37,38). We next considered the relationship be-
tween these transient paths, particularly the E-low and M-
low region, with our alternative M-score. To do this, we con-
sidered the nearest neighbor clusters identified in the inte-
grated data which coincide with high expression in M PC2
and found that Cluster 1 was broadly distributed across the
lowest E-quartile and is predominantly time samples (Sup-
plemental Figure S10A). Cluster 10, which was mostly dose
samples, is also in the lowest E quartile (Supplemental Fig-
ure S10B), but was more concentrated in the highest M
cluster (Fisher’s Exact Test, odds = 1.73, P-value = 6.9e-
12), consistent with transient progression through the re-
gion. Notably, both clusters have high M PC2 expression in
the integrated data (compare Supplemental Figure S6 and
Figure S8), suggesting that while there is transience in the
highest variance of component of M-genes, there is a sig-
nature of expression for these sample that has been iden-
tified by the second M principal component. Finally, we
looked at differentially expressed genes across all sixteen
segments of the 4 × 4 grid and focused first on the known
EMT marker genes CDH1, EPCAM, VIM and FN1. In-
terestingly, while the transient path crossing the E-low-M-
low region is generally consistent with the profiles of the
E marker CDH1 and EPCAM as well as M markers VIM
and FN1 (Figure 4C–F), a distinct sequence of M gene ac-
tivations was observed in the hypothetical E-to-M path: for
example, VIM was activated before FN1 in this path (Fig-
ure 4E and F). This observation is consistent with our ear-
lier transcriptomic data showing significant diversity of M-
genes in response to EMT signals (31). We also considered
the differential expression of these genes between time and
dose samples in the middle 50% of E and M scores. We
found a significant difference (adjusted P-value < 0.05) in
the expression of VIM, FN1 and EPCAM, with FN1 favor-

ing dose samples (average log2 fold change = 2.14) while
EPCAM (average log2 fold change = 0.31) and VIM (av-
erage log2 fold change = 1.29) favor time samples. How-
ever, the fold change of these genes in the central clusters
was low compared to clusters around the extrema (Fig-
ure 4B). As such, while this result is consistent with the
expected expression differences associated with transient
EMT, it is difficult to infer a specific biological meaning
to this difference as the underlying expression values are
moderate.

Signature genes from both dose- and time-dependent datasets
contribute to better prognostic models

To examine the roles of the signature genes at various lo-
cations of the EMT spectrum in prognosis, we again fo-
cused on the sixteen segments of the 4 × 4 grid of the EMT
space containing both time and dose data. First, we ex-
panded our search for differentially expressed genes to in-
clude all possible (non-zero expression) genes and selected
those in the top 75th percentile of fold change values after
filtering for significance (adjusted P-value < 0.05) and min-
imum average log2 fold-change threshold (absolute value of
0.25). We then obtained 27 diverse cancer datasets with tu-
mor RNA-seq and patient data from The Cancer Genome
Atlas (TCGA). We used the signature genes of each seg-
ment to construct a Lasso penalized Cox model for pre-
dicting the survival outcomes of cancer patients for each of
the 27 cancer types. Interestingly, segments with high aver-
age prognostic performance measured in C-index were pri-
marily found in the lowest E-score quartile (Figure 5A, left
edge) and highest M-score quartile (Figure 5A, top edge).
We next scaled performance index across cancer types to
account for dataset level variance in model construction,
(Figure 5B). We found that, in general, E-low intermediate
states (green) and M-high intermediates (light blue) both
outperformed other (blue) segments, apart from (3,4) and
(1,1), with similar average performance to the extreme M
state (yellow), although there was a large degree of variance
across cancers and on the high end of the performance spec-
trum. The superior prognostic performance of the extreme
M-state and certain intermediate states was also observed
in the recent study based on time-dependent EMT alone
(13), and our analysis revealed the characteristics of these
high-performing groups in the 2-dimensional EMT spec-
trum. We also considered the predictive power of signature
genes defined using only time and only dose samples. We
found that signature genes from time samples alone had the
highest C-index in the lowest E-quartile (Figure 5C), while
signature genes from dose samples alone had high C-index
only in the high M end of the lowest E-quartile (Figure
5D), reflecting difference in distribution of Clusters 1 and
8 (see Supplemental Figure S10). This suggests that gene
differentially enriched in time and dose samples contribute
to the predictive power of lower E-quartile sample. How-
ever, time and dose samples also showed unique prognos-
tic values, as high E and high M signatures segments had
high C-index only in time data, but high E low M signature
genes had high C-index only in dose data. This suggests that
there may be further differences in expression between tran-
sient and steady state EMT that were not highlighted by our
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Figure 4. Enrichment of dose and time samples in E- and M-score space. (A) A contour map showing the distributions of time (blue) and dose (red) samples
in E- and M-score space. (B) Bubble chart showing the enrichment of time samples in different segments of E- and M-score space. Each point represents
a segment of E- and M-score space defined by a particular quartile of E-score (x-axis) and M-score (y-axis). The size of the point corresponds to the total
number samples in the segment and the color of the point represent the log-odds of time sample enrichment from low (blue) to high (red) with a log-odds
of 0 (white) indicating balanced representation. (C–F) Bubble charts showing the differential expression of key EMT genes, CDH1 (C), EPCAM (D) VIM
(E) and FN1 (F) in different segments of E- and M-score space. Point positions and size are defined as in (B). The color of the point represents the log fold
change of expression of the gene from low (blue) to high (red) with a log fold change of 0 (white) indicating no-change relative to other samples. All fold
change values are shown regardless of significance.

M-scores because they do not represent broad variance
across both data sets. Comparably, the moderate E- and
M-score clusters are weak predictors in all cases, likely re-
lated to the few signature genes found there. As such, further
study of the extrema of EMT expression in both transient
and steady state conditions may be important for identify-
ing prognostic predictors.

We next asked whether the comparable contributions of
dose- and time-dependent EMT to the prognostic models
can be partially explained by their involvement in immune
evasion activity (39,40). We used a list for genes previously
known to be upregulated by PD-1 ligation (26), as a gene
set representative of immune evasion, and we found that
progressions of both dose- and time- dependent EMT had
moderately positive correlations with the expression of the
gene set (R ≈ 0.3). This result was expected because some
M-genes such as VIM and LGALS1 are in this PD-1 upreg-
ulation set.

DISCUSSION

Time dependent EMT processes have been extensively stud-
ied with single-cell transcriptomics in recent years (3,13,14).

While these studies provided substantial information about
EMT progression in multiple contexts, the connection be-
tween the intermediate cell states observed in these exper-
iments and cell attractors was elusive. Using near-steady-
state single-cell transcriptomic profiling, we showed that the
EMT spectrum can be described as a stable continuum un-
der multiple levels of EMT signals. This information com-
plements earlier studies with single-dose time course data,
and it provides stronger evidence supporting the existence
of multiple intermediate EMT states that widely exist in tu-
mors and metastatic cells (5). Furthermore, by comparing
the time- and dose- dependent single-cell data, we identi-
fied groups of cells that are exclusively en route to M state,
which shows the possibility that some cells can transiently
deactivate the epithelial program before activating the mes-
enchymal program. Nonetheless, it is likely that many other
en route cells are also close to the stable intermediate EMT
states, and these states have intermediate levels of both E
and M genes. Furthermore, given the heterogeneous mi-
croenvironment of cells under physiological conditions, the
cells states may be determined by both the multi-level EMT
signals and the time-dependent stages of the EMT process,
so both dose dependent and time dependent in vitro data
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Figure 5. Performance of prognostic models. (A) Bubble chart shows the average performance of Cox hazard models built using the up-regulated genes
from different segments of the E- and M-score space. Each point represents a segment defined by a particular quartile of E-score (x-axis) and M-score (y-
axis). The size of the point corresponds to the average number predictor genes across all models built using the up-regulated genes from that segment. Color
represents the C-index averaged across all models of cancer datasets, where C-index is a measure of the correspondence between the models predicted risk
and survivorship, similar to the area under the receiver operating curve (AUC-ROC). Red represents higher C-index (better performance). Black represents
lower C-index (poorer) performance. White represents the approximate median of scores (0.635). (B) Heatmap of individual model performance across all
combinations of segment-gene-derived models (x-axis) and cancer datasets (y-axis). The color of individual cells represents the C-index of the model scaled
against all models of that cancer datasets to account for data-set-level differences in model performance. Segments are ordered across the x-axis by the
increased average scaled C-index from left to right, while cancer datasets are ordered by increasing number of samples from bottom to top. The shading of
segment coordinates along the x-axis distinguishes between the extreme M state (yellow), E-low intermediates (green), M-high intermediates (light blue),
and other segments (dark blue). (C-D) Bubble charts show the average performance Cox hazard models built using the up-regulated genes identified using
only time (C) or dose (D) samples from different segments of E- and M-score space. Point position, size, and color as defined as in (A).
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can contribute to the understanding of the EMT program
in vivo.

Previous mathematical models have provided mechanis-
tic insights into the gene network structures supporting
multiple intermediate EMT states (10–12,41–44). While in-
terconnected positive feedback loops involving a few genes
can govern discrete intermediate states, the continuum-like,
wide distributions of cells in the EMT spectrum even un-
der the near-steady-state condition suggest that the discrete
cells states may only partially explain the stable phenotyp-
ical heterogeneity. At least two mechanisms may explain
the gap between the existing theories the observed contin-
uum: realistic gene regulatory networks may contain much
more positive feedback loops than those described by ex-
isting models (45), and these loops can support many in-
termediate states; dynamical and reversible cell-state tran-
sitions at stationary phase, such as those driven by tran-
scriptional noise and slow-timescale oscillations (46), can
give rise to cells that are far away from point attractors in
the gene expression space. While it is possible that many
unknown transcriptional and post-transcriptional circuits
may contribute to the numbers and dynamical properties of
the EMT attractors, we cannot exclude the possibility that
the technical noise in scRNA-seq experiments may mask
the effects of discrete attractors. Nonetheless, existing mod-
els have provided a strong theoretical foundation for sta-
ble intermediate EMT states, and future development of the
theories and quantitative experiments will be important to
the understanding of EMT continuum.

EMT involves dramatic phenotypic changes of cells. It is
therefore expected that transcriptome-wide alteration is in-
duced during the multi-stage transition. This suggests that
classically defined core EMT genes may not be sufficient to
provide a holistic view of the EMT program. We showed
that the dose-dependent single-cell transcriptomes can be
useful to identify genes that show expression patterns highly
correlated with the core EMT genes at the single-cell level.
The dose-dependent scRNA-seq experiment can therefore
provide crucial links of the core EMT networks to the rest
of the transcriptomes, and some of these connections may
not be revealed by time-course scRNA-seq experiments due
to the large numbers of cells that transiently activate parts of
the transcriptional program. Nonetheless, the two types of
scRNA-seq experiments contain complementary informa-
tion, and we suggest that both can be used in future studies
to reveal cellular programming that determines cell-to-cell
variabilities in cell populations.
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