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Abstract: Flavoprotein monooxygenases create valuable compounds that are of high interest for
the chemical, pharmaceutical, and agrochemical industries, among others. Monooxygenases that
use flavin as cofactor are either single- or two-component systems. Here we summarize the current
knowledge about two-component flavin adenine dinucleotide (FAD)-dependent monooxygenases
and describe their biotechnological relevance. Two-component FAD-dependent monooxygenases
catalyze hydroxylation, epoxidation, and halogenation reactions and are physiologically involved
in amino acid metabolism, mineralization of aromatic compounds, and biosynthesis of secondary
metabolites. The monooxygenase component of these enzymes is strictly dependent on reduced FAD,
which is supplied by the reductase component. More and more representatives of two-component
FAD-dependent monooxygenases have been discovered and characterized in recent years, which has
resulted in the identification of novel physiological roles, functional properties, and a variety of
biocatalytic opportunities.

Keywords: hydroxylation; epoxidation; halogenation; heteroatom oxidation; biocatalysis;
flavoprotein monooxygenases; flavin reductase

1. Introduction

Enzymatic reactions are often highly chemo-, regio- and enantioselective and are therefore of high
interest for biotechnological applications. However, many enzymes require a certain cofactor to realize
a catalytic reaction. These cofactors can be divided into prosthetic groups and coenzymes/co-substrates.
Cofactors can be inorganic (metal ions), organic (e.g., flavin, pterin), or organometallic (e.g., heme,
cobalamin). A huge set of organic cofactors are employed by enzymes, which can be vitamins and
derivatives, sugars, small peptides and lipids (e.g., adenosine triphosphate (ATP), nicotinamide
adenine dinucleotide (phosphate) (NAD(P)), coenzyme A, pyridoxal phosphate, flavin adenine
dinucleotide (FAD), flavin mononucleotide (FMN), vitamin K, glutathione). Cofactors allow the
transfer of chemical groups as well as electron transfer in redox reactions. Further, they can build
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together with the protein a three-dimensional space and thus form the catalytic active site, fostering
substrate binding and/or conversion.

Amongst the most versatile cofactors are the riboflavin (vitamin B2) derivatives, flavin adenine
dinucleotide (FAD) and flavin mononucleotide (FMN) [1]. They can occur in flavoproteins in covalently
bound (~10%) as well as dissociable forms [2,3]. They are able to perform one- and two-electron
transfer reactions, which enable them to support a wide range of catalytic reactions and biological
processes [4,5]. The catalytically important moiety is the isoalloxazine ring (Figure 1), which can adopt
several redox states [6].
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One specific group of flavoproteins that has received increasing attention in biotechnology
concerns the flavin-dependent monooxygenases. These enzymes act on many different substrates
by utilization and activation of molecular oxygen via the reduced form of the flavin cofactor
(Figure 1) [7–11]. Flavoprotein monooxygenases (EC 1.14.13, EC 1.14.14, EC 1.13.12) are widespread in
nature and can be classified in several groups according to their fold and function [7,8]:

Single component monooxygenases, belonging to groups A and B, contain a tightly bound FAD
cofactor and are dependent on NAD(P)H as the external electron donor. A notable exception is
the recently discovered 2-aminobenzoylacetate N-hydroxylase (PqsL) from Pseudomonas aeruginosa.
PqsL contains a FAD cofactor but depends on free reduced flavin as external electron donor instead
of NAD(P)H [12]. Single-component Baeyer-Villiger monooxygenases (group B) are especially
useful for biocatalytic applications, because they catalyze a wide range of reactions with high
enantioselectivity [10,13–16].

Two-component flavoprotein monooxygenases use either reduced FMN (group C) or reduced
FAD (groups D, E and F) for molecular oxygen activation. The reduced flavin that binds in the
monooxygenase active site is delivered by a NAD(P)H-dependent flavin reductase [8,17]. Both protein
components are usually encoded next to each other on the genome in a respective gene cluster. Direct
interaction between monooxygenase and reductase is often not required and supply of reduced flavin
can be as well compensated by other reductases, for instance in whole cell systems.

Further, in single component internal flavoprotein monooxygenase (groups G and H), flavin
reduction can be accomplished via the substrate [7,10,18].

During the enzymatic activation of molecular oxygen, a C4a-(hydro)peroxyflavin is formed
(Figure 1), which can act as nucleophile or electrophile [11,19]. Subsequently, one oxygen atom is
inserted into the substrate while the other one is reduced to water. Insertion of oxygen into the substrate
is in many cases chemo-, regio- and enantioselective [20–22]. Stabilization of the highly reactive
C4a-(hydro)peroxyflavin intermediate within the enzyme active site is critical for the monooxygenase
activity and directs the mode of the catalytic reaction [23].
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Some recently discovered flavoprotein monooxygenases utilize a flavin-N5-oxide for
monooxygenation (Figure 1). So far, only three of them have been characterized [24–26]. Their unique
properties might allow for additional applications of flavoprotein monooxygenases [27].

Cofactor regeneration is one of the biggest issues concerning flavoprotein monooxygenases
and their industrial application [28]. Especially, application of two-component variants can become
complex and cost intensive. Besides regeneration of the flavin co-substrate, additional components are
required for recycling of NAD(P)H (e.g., by means of dehydrogenases) and for prevention of oxidative
stress (catalases). Oxidative stress can occur when reduced flavin reacts with oxygen to form hydrogen
peroxide, a process that for monooxygenases is often referred to as unproductive uncoupling [9,29].

Numerous efforts have already been made for the improvement of the biocatalytic properties
of flavin-dependent monooxygenases. Whole cell systems have been used to accomplish supply of
reduced flavin by cellular metabolism [30–34]. Further, enzymatic regeneration (e.g., by regeneration
of the nicotinamide cofactor) was examined in cell-free systems and is particularly of interest in
cascade systems and coupled reaction where biocatalysts complement each other [35]. In addition,
it is possible to reduce the complexity of the systems to generate an economic and eco-friendly
process. Therefore, flavins were regenerated non-enzymatically by applying organometallic catalysts,
electrochemical approaches, and photochemical procedures [36–38]. A promising alternative is the
supply of nicotinamide analogues for direct reduction of flavins [39–42]. These cheap biomimetics
can be supplied in stoichiometric amounts and bypass a main hindrance towards the application of
two-component flavin-dependent monooxygenases [43].

Here we put focus on the properties of two-component FAD-dependent monooxygenases.
These enzymes are involved in the degradation of a variety of (xeno-)biotics that accumulate in
the environment and which are often harmful. They also are key players in the biosynthesis of
various secondary metabolites and therefore of huge interest for industrial applications. Their scope of
catalyzed reactions offers the opportunity to introduce them into (bio-)chemical synthesis routes. In this
review, special emphasis is given to the physiological role and functional properties of new members
that were discovered in recent years, and to the biocatalytic opportunities and optimization of certain
family members. Newly discovered biochemical and structural features of the monooxygenase and
reductase components of specific members are explained as well. Information about the biochemical
properties and biotechnological applications of two-component FMN-dependent monooxygenases
(group C) can be found in other reviews [17,44].

2. Two-Component FAD-Dependent Monooxygenase Systems

According to the recent classification [7], two-component FAD-dependent monooxygenases belong
to groups D, E, and F. They structurally differ from the group C enzymes, which have a TIM-barrel fold.
Groups E and F enzymes contain a Rossmann-type FAD-binding domain, while group D enzymes have
a CATH domain, which can be found in acyl-CoA dehydrogenases [45]. Some group D monooxygenases
can utilize FMN, while group E and group F members are strictly FAD-dependent [7,45].

Two-component FAD-dependent monooxygenases are involved in the catabolism and
detoxification of aromatic compounds, amino acids, vitamins, cofactors, and in the biosynthesis
of secondary metabolites by catalyzing hydroxylations, epoxidations, or halogenation reactions.
Many of them are able to convert derivatives of their physiological substrate and some also perform
heteroatom oxidations. This promiscuity is of interest for synthesis of fine chemicals, pharmaceuticals,
agrochemicals, and makes these enzymes of value for biotechnological applications [21,22,28,32,46,47].

2.1. Group D Flavoprotein Monooxygenases

Group D flavoprotein monooxygenases (Table 1) catalyze hydroxylation of aromatic compounds
but also N-hydroxylation reactions are described. Members of group D can be divided into FAD- and
FMN-dependent enzymes, while some are also promiscuous towards the flavin co-substrate [7,48,49].
This clustering is also reflected by phylogenetic analysis of group D (Figure 2).
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Figure 2. Condensed phylogenetic distance tree of group D monooxygenases. Group D enzymes can
be distinguished into FAD and FAD/FMN-dependent clades. Amino acid sequences were aligned
by using the ClustalW algorithm and after phylogenetic analysis, the maximum likelihood tree was
constructed applying the MEGA7 software with bootstraps of 1000 replicates [50].

Table 1. Representatives of Group D.

Enzyme EC Number Reference

Pyrrole 2-carboxylate monooxygenase 1.14.13.130 [51]
4-Nitrocatechol 4-monooxygenase 1.14.13.166 [52]
4-Nitrophenol 4-monooxygenase 1.14.13.167 [52]

2-Aminobenzoate 3-monooxygenase 1.14.14.8 [53]
4-Hydroxyphenylacetate 3-hydroxylase 1.14.14.9 [54]

Phenol 2-hydroxylase 1.14.14.20 [55]
Isobutylamine N1-monooxygenase 1.14.14.30 [49]

2,4,5-Trichlorophenol monooxygenase - [56]
2,4,6-Trichlorophenol 4-monooxygenase - [57]

4-Chlorophenol monooxygenase - [58]
4-Chlorophenol dechlorinase - [59]

(S)-3-Chloro-β-tyrosine hydroxylase - [60]
Indosespene cyclase XiaF - [48]

3-HSA - [61]
Sulfonamide monooxygenase - [62]

MeaX monooxygenase - [63]
Dibenzothiophene monooxygenase - [64]

4-Fluorophenol monooxygenase - [65]
Indole 3-acetate monooxygenase - [66]

3-Hydroxyphenylacetate 6-hydroxylase - [67]
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Two of the first characterized members are the phenol 2-hydroxylase and the
4-hydroxyphenylacetate monooxygenase, which will be described in the first place to outline
a general overview about FAD-dependent group D monooxygenases. Many group D monooxygenases
that originate from Streptomyces are involved in the biosynthesis of secondary metabolites (antibiotics,
antitumor agents) [48,49,60,68]. For example, a recently discovered enzyme (XiaF) is involved in the
biosynthesis of an indolosesquiterpene (xiamycin) [48]. Other recently characterized members are
involved in the degradation and detoxification of halogenated phenols [58,59]. One of the latter ones,
HadA, performs an oxidative dechlorination and will also be highlighted in the following section [59].

2.1.1. Phenol 2-Hydroxylase

Physiological context. Two-component phenol hydroxylases (PHs) consist of a monooxygenase
(PheA1; EC: 1.14.14.20) and a flavin reductase (PheA2; EC: 1.5.1.-). They catalyze the first step of
the degradation of phenol in several aerobic microorganisms. For that, phenol is hydroxylated at
the ortho-position to catechol (Scheme 1) [55,69,70]. Catechol can be further catabolized via ortho- or
meta-cleavage pathways into metabolites of the TCA-cycle [71]. PHs were identified and characterized
in mesophilic organisms (Rhodococcus) but also thermophilic organisms (Geobacillus thermoglucosidasius
A7; Geobacillus stearothermophilus) [70,72–75].

Biochemistry. The monooxygenase component PheA1 is a 44–57 kDa protein with a high amino
acid (aa) sequence identity to other two-component aromatic hydroxylases like 4-hydroxyphenylacetate
hydroxylase and 4-nitrophenol 2-hydroxylase. The FAD cofactor cannot be replaced by other flavins
like FMN or riboflavin. PheA1 from G. thermoglucosidasius A7 is active as homodimer and thermostable
up to 60 ◦C with an optimum at 55 ◦C [69]. Interestingly, PheA1 from Rhodococcus erythropolis UPV-1
exists as homotetramer [73].
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Scheme 1. Hydroxylation at the ortho-position of phenol by PheA1. Reduced FAD is supplied by the
second component PheA2. The product catechol is subsequently converted into TCA cycle intermediates.

PheA1 enzymes can further catalyze the hydroxylation of phenol derivatives like 2-methylphenol,
2-chlorophenol, 3-methylphenol, 3-nitrophenol, 4-methylphenol, 4-nitrophenol, 4-chlorophenol,
4-fluorophenol, 2,4-dichlorophenol, and resorcinol but not benzoate, orcinol, 4-hydroxybenzoate,
4-hydroxyacetophenone, and 4-hydroxyphenylacetate [69,70,73,74]. Not all substrates were assayed
for all enzymes; see respective references for detailed information.

The reductase component PheA2 is a 16–19 kDa protein with about 30% aa sequence identity
to the styrene monooxygenase reductase StyB from Pseudomonas fluorescens [69,70,73]. PheA2 is a
NADH-dependent reductase and contains FAD as a prosthetic group. A tightly bound FAD (Kd ~10 nM)
is rather uncommon for such short-chain reductases [76]. Thus, a second FAD molecule (KM ~1.5 µM)
is used as substrate to establish a ping pong-bi-bi-mechanism [69]. PheA2 from G. thermoglucosidasius
A7 is active as homodimer and thermostable up to 65 ◦C (>65% of initial activity) with an optimum of
55 ◦C. Phenol did not influence the rate of NADH oxidation or oxygen consumption [69]. PheA2 has
a clear preference for NADH over NADPH and catalyzes the reduction of FAD with a kcat of about
250 s−1. FMN and riboflavin are reduced at similar rates but the affinity for these flavins is 3–4 times
lower than for FAD [69].
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PheA2 from R. erythropolis UPV-1 contains, in contrast to the previous variant, no tightly bound
flavin and follows a random sequential mechanism [73]. Besides being less thermostable, it shows lower
conversion rates and a lower affinity for the FAD substrate than PheA2 from G. thermoglucosidasius
A7. Both PheA2 reductases can utilize NADPH as electron donor, although with a lower efficiency
compared to NADH. No physical interaction between monooxygenase and reductase is necessary for
transfer of reduced FAD [69,73].

Structure. The biochemical differences between the thermophilic-like PHs and mesophilic-like
PHs are also reflected by phylogenetic analysis [74]. This is probably due to the adaption of the
bacterial host to the habitat conditions. However, so far, only the crystal structure of the reductase
component PheA2 from G. thermoglucosidasius A7 is available (Protein Data Bank (PDB) ID: 1RZ1;
Figure 3) [76]. PheA2 is structurally related to ferric reductase (FeR), although no such activity was
reported [69,76].

The core of PheA2 is formed by a six-stranded antiparallel β-barrel, which is capped by an α-helix.
PheA2 lacks a Rossmann fold domain, but is able to bind the nicotinamide coenzyme in a stacked
mode in the cleft next to the isoalloxazine ring of FAD (Figure 3). As already mentioned, PheA2
contains a tightly bound FAD as a prosthetic group. Most other related flavin reductases weakly bind
FAD as co-substrate. The strong affinity of PheA2 for FAD might arise from a loop located at the
protein surface, which embeds the adenine moiety of FAD. PheA2 does not tightly interact with FMN,
suggesting that the adenine moiety is essential for binding as prosthetic group [76]. The isoalloxazine
ring of the FAD prosthetic group and the nicotinamide ring of the pyridine nucleotide co-substrate are
located at the dimer interface of PheA2. The double-stacked conformation of NAD with reduced FAD
(Figure 3) is rather unusual but might be necessary to stabilize the interaction between the cofactors in
the solvent exposed active site. After reduction of the FAD, the NAD+ is released and a substrate FAD
binds at the NAD binding site of PheA2 and might adapt a similar conformation. The affinity for the
FAD substrate is much weaker than for the cofactor FAD [76]. PheA2 is still unique amongst this type
of reductases, although recently an artificial homolog was constructed that might allow for further
insights into the origin of the properties of PheA2 [77].
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Figure 3. Structure of PheA2 dimer (Protein Data Bank (PDB) ID: 1RZ1). Coloring is according to
secondary structure: helices (deep teal), sheets (brown) and loops (pale yellow). Surface is indicated
transparently. For clarity, only one FAD (orange) and nicotinamide adenine dinucleotide (NAD) (light
blue) is illustrated per dimer. Note that the FAD is reduced and that the NAD coenzyme is bound in a
stacked conformation.
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2.1.2. 4-Hydroxyphenylacetate 3-Hydroxylase

Physiological context. Two-component 4-hydroxyphenylacetate 3-hydroxylases (HPAH;
EC: 1.14.14.9) are involved in the catabolism of 4-hydroxyphenylacetate. Many microorganisms can use
this aromatic compound as sole source of carbon and energy. To initiate its biodegradation, a second
hydroxyl group is introduced by an inducible flavin-dependent hydroxylase (HPAH; Scheme 2).
The product of HPAH, 3,4-dihydroxyphenylacetate can undergo meta-cleavage and is funneled into
the TCA cycle [78,79].
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Reduced FAD is supplied by the second component HpaC. The product is subsequently converted into
TCA cycle intermediates but is also part of the tyrosine metabolism.

Two different types of two-component 4-hydroxyphenylacetate 3-hydroxylases are known [7].
Although the overall fold of both monooxygenase components is similar, the one from
Acinetobacter baumannii (C2) employs a large FMN-dependent reductase (35 kDa; C1) that contains
a substrate-binding regulatory domain [80–84]. Interestingly, the monooxygenase component C2 is
promiscuous towards the flavin co-substrate [82,83].

Furthermore, a FAD-dependent HPAH system is known (HpaB, oxygenase; HpaC, reductase),
which shows higher similarities to most other two-component systems [54]. The FAD-dependent
HPAH system was found in several organisms (Arthrobacter sp., Escherichia coli, Geobacillus sp.,
Halomonas sp., Klebsiella pneumonia, Pseudomonas sp., Sulfolobus tokodaii, Thermus thermophilus) and will
be described here in detail.

Biochemistry. The HpaB monooxygenase component has a size of about 54–65 kDa and shares at
least 28% amino acid sequence identity [85–88]. It is active as homodimer and able to bind and stabilize
reduced FAD in absence of the substrate in order to prevent autooxidation of the co-substrate [54,85,89].
Oxygenation of 4-hydroxyphenylacetate is highly FAD-dependent [90].

The monooxygenase is able to act on several other aromatic compounds including
(halo)phenols, (halo)catechols, cresols, amino acids, phenylpropanoids, and resveratrol among
others [31,33,78,80,86,91,92]. Not all substrates were assayed for all enzymes; see respective references
for detailed information. In some cases, NADH consumption was used to determine the activity
on a substrate and therefore unproductive NADH oxidation instead of product formation cannot
be excluded.

The reductase component has a size of 16–19 kDa with a weakly bound FAD as co-substrate [89].
It is likely that the reductase is active as homodimer, although studies also found the monomeric form
in solution [85,89,90]. The reductase prefers NADH over NADPH as substrate. It binds FAD with an
affinity in the low µM range and does not discriminate between other flavins [89,90].

In contrast to the FMN-dependent system, the HpaC reductase activity is not allosterically
regulated by 4-hydroxyphenylacetate and the HpaB monooxygenase component does not directly
interact with the reductase component [54,89,90,93]. However, it cannot be excluded that some
protein–protein interaction influences the overall reaction [89,90]. Effective coupling is dependent on
the molar ratio of the monooxygenase and reductase component [80,85,89].
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Structure. The crystal structure was determined for the FMN-dependent monooxygenase from
Acinetobacter baumannii (PDB ID: 2JBT) and for the FAD-dependent system from Thermus thermophilus
HB8 (PDB ID: 2YYJ). The overall folding of both HPAHs is very similar but there are significant
deviations at the cofactor and substrate-binding site. For instance, the adenine moiety of FAD binds at
a loop that is not present in the Acinetobacter enzyme, which is in accordance with the FMN-dependent
nature of monooxygenase C2 [89].

The monomer of HpaB consists of three domains and a C-terminal tail [94]. The N-terminal and
C-terminal domain contain mainly antiparallel α-helices, while the middle domain contains β-sheets
forming a barrel-like structure (Figure 4). A cave at the interspace of the three domains allows binding
of reduced FAD and the substrate. FAD adopts an extended conformation, while also residues of the
adjacent monomer are required for binding. A conformational change was observed in a loop region
of the middle domain upon binding of FAD, which is hypothesized to be responsible for the preference
of FAD over FMN as co-substrate. The cavity is largely open to the solvent and allows access of the
substrate and oxygen after binding of the co-substrate. An additional movement of another loop in the
middle domain shields the active site from the solvent after binding of the substrate. The substrate is
located at the re face of the isoalloxazine ring [94].

The hydroxyl group of 4-hydroxyphenylacetate is oriented by conserved residues, which interact
in other enzymes with analogous compounds. In contrast, the residues that direct the carboxyl group
of the substrate are not conserved. The aromatic moiety is layered by hydrophobic residues [94].
As mentioned previously, the C4a-hydroperoxyflavin is stabilized in the active site as long as no
substrate is present. This is assumed to be achieved through hydrogen bonding with an arginine,
which is conserved in similar monooxygenases, and further, a threonine and the N5 atom of the flavin
isoalloxazine ring [89,94,95].
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Figure 4. Structure of 4-hydroxyphenylacetate 3-hydroxylase (HPAH) monomer (PDB ID: 2YYJ).
Coloring is according to the N-terminal domain (teal), middle domain (brown), the C-terminal domain
(pale green), and the C-terminal tail (yellow). The surface is indicated transparently, FAD (orange) and
4-hydroxyphenylacetate (blue). The loop region that allows recognition of the adenine moiety of FAD
is indicated by an arrow.

The structure of reductase HpaC from T. thermophilus HB8 (PDB ID: 2ED4, T. thermophilus HB8;
2D37, Sulfolobus tokodaii 7) resembles that of PheA2 (cf. Figure 3) [96,97]. Comparison of apo- and
holoenzymes showed only minor conformational differences between both states [97]. Soaking
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experiments of HpaC with NADPH revealed binding in a stacked mode similar to the binding
mode of NADH. However, NADPH was positioned upside down in the active site, unfavorable for
hydrogen transfer [96]. This might explain why these FeR-like reductases are strictly NADH-dependent.
The position of the FMN moiety and NADH is almost identical to that of PheA2 and related reductases.
Interestingly, differences were found in a loop, which is hypothesized to interact with the AMP part
of FAD. This loop is less conserved in length and amino acid sequence [97]. As HpaC, in contrast to
PheA2, contains a weakly bound FAD, it is likely that this loop defines whether FAD can also function
as a prosthetic group [97].

2.1.3. 4-Chlorophenol Dechlorinase

Physiological context. The FAD-dependent monooxygenase HadA catalyzes the dechlorination
of (poly)-chlorinated phenols with a preference for para-substituted substrates [59]. Such chlorinated
compounds are often used as pesticides in agricultural industries and are therefore often contaminants
in the environment. While being formerly denoted as persistent, several microorganisms are able
to degrade these compounds. The required replacement of the chloride is often catalyzed by group
D hydroxylases [56,57,98]. The dechlorinase HadA originates from Ralstonia eutropha JMP134 and
displays a broader substrate spectrum than homologous enzymes [59].

Biochemistry. A recent investigation of HadA has uncovered the first mechanistic study of
oxidative dechlorination by two-component flavin-monooxygenases [59]. HadA is a 59-kDa protein
highly similar to previously characterized trichlorophenol monooxygenases [57,98]. It can only bind
and utilize FAD as a cofactor [59]. In single turnover reactions, HadA catalyzes the incorporation of a
hydroxyl group at the para-position of the substrate. When this position contains a chlorine substituent,
simultaneous dechlorination occurs [59]. Multiple chlorinated substrates are further hydroxylated at
the remaining chlorinated positions of the phenolic ring until complete dehalogenation of the substrate
occurs [59]. A detailed elucidation of the kinetic mechanism revealed that binding of reduced FAD
to HadA leads to formation of two different protein•FADH− species that react with O2 at different
rates. Similar observations were already made, inter alia, for a group F flavoprotein monooxygenase
(RebH) but not for other group D monooxygenases [59,99]. The observed reactivity of HadA with O2

was attributed to an intrinsic control mechanism for regulation of O2 diffusion into the active site or
the formation of the C4a-hydroperoxyflavin [59].

The associated reductase component HadX has similarity to other NADH:flavin oxidoreductases
like TcpX, TftC, and HpaC, but is so far not characterized in detail [100].

2.1.4. Biotechnological Relevance of Group D Flavoprotein Monooxygenases

Hydroxylated aromatic compounds are of interest for chemical and pharmaceutical industries
as they are used as precursor for chemical synthesis. This is in particular true for (halo)catechols,
which can be produced by HPAHs and PHs [31,47,101]. HPAHs are able to produce cinnamic acid
derivatives, which are potential antioxidants and anti-inflammatory agents [33,102]. Hydroxylated
phenylpropanoids are of interest for pharmacological approaches [103,104].

Phenolic compounds are widely used in industrial processes and therefore may also be liberated
into the environment. (Halo)phenolic substances are considered to be toxic and thus removal of
them from wastewater and industrial sites is of high ecological relevance [46]. PHs can play a key
role in this process as they initiate the degradation but were also found to be able to dechlorinate
halophenols [59]. Further, PHs are of interest for synthesis of other hydroxylated compounds such as
hydroxytyrosol [105].

Another promising feature is the activity of recently characterized group D flavoprotein
monooxygenases with bulky compounds. Some hydroxylases are involved in the biosynthesis of
the enediyne antitumor antibiotics like C-1027, kedarcidin, maduropeptin, and sporolides A and
B [60,106–108]. Therefore, the substrate is tethered to a peptidyl carrier protein allowing for interaction
with the monooxygenase [109]. This tethering can increase the efficiency of the catalysis and might
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therefore be a starting point for the optimization of the enzymes [110]. The requirement for a substrate
that is bound to a carrier protein can also be found in group F monooxygenases (cf. Section 2.3.2).

In addition, a better understanding about the flavin and substrate binding can facilitate enzyme
design. As already mentioned, the loop region in the middle domain can influence flavin as well
as substrate preference but potentially also the reactivity. For instance, the hydroxylase XiaF shows
hydroxylation-induced terpenoid cyclization [48]. The active site of XiaF is more open what might
help to accommodate bigger substrates and absence of the loop that is required for recognition of the
adenine domain might explain the promiscuity towards the flavin co-substrate (Figure 5). A preference
for FMN can also be found for other group D enzymes that are often involved in biosynthesis of
antibiotics [68,111–113]. Swapping and changing of this region might allow conversion of bigger
substrates but also other reactivities.Biology 2018, 7, x 10 of 34 
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ID: 2YYJ) and XiaF (PDB ID: 5MR6). HPAH is shaded in grey with bound FAD (purple). XiaF is
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the substrate-binding pocket (indicated by an arrow) is more open in XiaF, allowing for promiscuity
towards the flavin co-substrate [48].

2.2. Group E Flavoprotein Monooxygenases

Physiological context. To date, the only representatives that are assigned as group E flavoprotein
monooxygenases are the styrene monooxygenases (SMOs) [7,8,22]. SMOs consist of a monooxygenase
(StyA, SMOA; EC: 1.14.14.11) and a flavin reductase (StyB, SMOB; EC: 1.5.1.36). SMOs were described
for the first time in Pseudomonas sp. [114] where they enable the degradation of styrene and its utilization
as source of carbon and energy by catalyzing its conversion to (S)-styrene oxide (Scheme 3) [115].
The “classical” styrene degradation cluster consists of SMO, a styrene oxide isomerase (SOI) [116] and
a phenylacetaldehyde dehydrogenase [117]. Since then, SMOs have been isolated and characterized
from several other proteobacteria and actinobacteria [118–121]. These studies established that the
organization of the gene cluster is heterogeneous, especially concerning the regulatory and transport
machinery [120]. Recently, a gene cluster was discovered on a plasmid of Gordonia rubripertincta
CWB2, where the SMO initiates an alternative styrene degradation pathway. Thereby, styrene oxide
is converted by a glutathione S-transferase via additional steps to phenylacetic acid as a central
intermediate [122].
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glutathione-dependent (B) pathway to the central intermediate phenylacetic acid, which is funneled
via several steps into the TCA cycle.

However, the number of enzymes that are assigned to group E exceeds the number of enzymes
that are located in one of these styrene degradation gene clusters by far (Figure 6). Moreover, a natural
fusion of the monooxygenase and the reductase (StyA2B) was found some years ago in Rhodococcus
opacus 1CP (RoStyA2B) [123] and marks the beginning of the diversification into two subtypes E1 and
E2 (Figure 6) [22]. The prototype StyA2B usually clusters together with a separate monooxygenase
StyA1 [124]. The corresponding oxygenase components of the StyA1/StyA2B system share about
50% amino acid sequence identity [125]. Recently, such a cluster was found in the β-proteobacterium
Variovorax paradoxus EPS and was characterized (VpStyA1/VpStyA2B) [125,126]. The Variovorax-like
enzymes form a separate branch within the phylogenetic tree and there are indications for a convergent
evolution of the StyA1/StyA2B-systems, also because the Variovorax variant possesses higher sequence
identity (74%) between the monooxygenase subunits [125].

Additionally, several branches of StyA-like enzymes emerge in E2-type monooxygenases
(Figure 6). However, genomic and cluster analysis of the E2-type enzymes illustrate that there is
no relationship of these enzymes to styrene degradation clusters. E2-type gene clusters often contain a
short-chain dehydrogenase (SDR) and a dienelactone hydrolase (DLH; carboxymethylenebutenolidase)
in proximity to the monooxygenase(s) [125]. Further, genes that are probably involved in degradation
of aromatic (anthranilate, catechol, benzoate, phenol) and heteroaromatic compounds (indolepyruvate,
xanthine) are encoded in these clusters. Recent studies suggest a role in indole metabolism and/or
detoxification [125,127,128]. Thereby, the E2-type FAD-dependent monooxygenase initiates a catabolic
cascade by epoxidation of indole. However, the product of indole oxygenation by those enzymes
need to be described as there is no analytical proof of epoxidation, hydroxylation, or dioxygenation
available, so far [128]. Usually indigo is formed under aerobic conditions by dimerization of indoxyl,
which is prevented by the activity of the SDR-like enzyme and further converted into anthranilic acid
by the DLH-like enzyme, acting as a cofactor-independent oxygenase (Scheme 4) [127,128].
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Figure 6. Condensed phylogenetic distance tree of group E monooxygenases. Group E enzymes cluster
in two different types (E1 and E2). Styrene monooxygenases (SMOs) that are edged by a bracket are
proven or likely involved in styrene degradation, as the strains harbor cognate gene clusters [118–122].
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the maximum likelihood tree was constructed applying the MEGA7 software with bootstraps of
1000 replicates [50]. Fusion proteins were truncated for the reductase part.
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performed by IndA or IndA1/IndA2B. FAD is recycled by a NADH-dependent oxidoreductase IndB or
IndA2B. It is not clear yet whether the product of this reaction is an epoxide or indole-2,3-dihydrodiol.
However, further degradation yields anthranilic acid, which can be used for the synthesis of secondary
metabolites or amino acids.

According to the distinct physiological role and biochemical properties (see section below) of
both subtypes, we herein introduce a reclassification of group E monooxygenases into “styrene
monooxygenases” (SMOs; previously designated as E1-type) and “indole monooxygenases” (IMOs;
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previously designated as E2-type) (Figure 6, Table 2). IMOs catalyze the FAD-dependent epoxidation of
indole. However, it is yet unclear if the product of the IMO is indole-2,3-oxide or indole-2,3-dihydrodiol,
which is then rapidly transformed to indoxyl (Scheme 4) [128]. IMOs occur as two-component systems,
which are composed of a FAD-dependent monooxygenase (IndA) and a reductase (IndB), and as
self-sufficient fusion proteins (reassigned as ImoA2B) with an associated monooxygenase (reassigned
as IndA1) [123].

Table 2. Representatives of Group E.

Enzyme EC Number References

Styrene monooxygenase 1.14.14.11 [119–122,129–131]
Indole monooxygenase - [121,123,124,126,127]

2.2.1. Styrene Monooxygenase

Biochemistry. The monooxygenase component StyA has a molecular mass of about 45 kDa.
Many representatives from Pseudomonas spp. as well Rhodococcus spp. have been characterized in
detail [121,129–132]. StyAs showed the ability to convert a variety of styrene derivatives as well as
aryl alkyl sulfides in a regio- and enantioselective manner [43,121,129,132–150].

StyA contains a weakly bound FAD co-substrate and has a higher affinity for the reduced
form of the flavin [129,130,151]. The inverse of this relationship exists for StyB, which has been
shown to bind oxidized FAD more tightly than reduced FAD [152]. This arrangement facilitates
thermodynamically the vectoral transport of reduced FAD from the reductase to the epoxidase and
the return of oxidized FAD to the reductase [151]. StyA can operate in the absence of StyB provided
a source of reduced FAD is available, but kinetic modeling suggests the most efficient coupling of
NADH oxidation to styrene epoxidiation is consistent with the occurrence of a transient flavin-transfer
complex involving the monooxygenase and reductase [130]. Single-turnover studies indicate that the
oxygen half-reaction of StyA is not significantly influenced by StyB [131,152]. However, in catalysis
by the StyA/StyB system, the catalytic activity of StyB is regulated by StyA. The transfer of FAD
from StyB to StyA prevents the continuation of the StyB-catalyzed flavin reduction reaction during
the course of the oxidative half-reaction of StyA and the half-life of StyB is greatly increased through
its interaction with StyA during steady-state turnover [152]. On this basis, it is hypothesized that
both components can form a transfer-state, which allows effective handover of the reduced FAD.
The monooxygenase StyA forms homodimers in solution [121,129,151] and due to the sequestered
position of the crystallographically-resolved dimer, it was postulated that this configuration represents
the primary resting state of SMO [151]. These studies concerning the hydrodynamic state were carried
out under oxidized conditions. Recently it was shown that StyA from R. opacus 1CP shifts to the
monomeric form under reduced conditions, which shows that these monooxygenases can be active
as monomers [121]. This state might be beneficial for protein-protein interaction with the reductase
component StyB.

The reductase component StyB has a molecular mass of about 18 kDa and is catalytically active as
a dimer. StyB contains a weakly bound FAD as co-substrate and resembles the reductases that were
mentioned in the previous sections [121,129,130,132,152,153]. The StyB reductase is rather unstable
and tends to form inactive inclusion bodies upon expression. However, these inclusion bodies can
be easily purified and refolded in the presence of FAD [129,132]. StyB is NADH-specific, but does
not discriminate between FMN, FAD or riboflavin. StyB reductases follow an ordered sequential
mechanism with NADH as leading substrate [129,130]. The active form of StyB is a homodimer and
it was shown that the activity increases significantly upon dilution [121,129,130,132,152,153]. This is
in accordance with the formation of inactive quaternary structures, especially at high concentrations.
Therewith, turnover rates of over 500 s−1 are possible for reductases from Pseudomonas sp. [77,153].
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Structure. The crystal structure of the monooxygenase component from Pseudomonas putida S12
(PDB ID: 3IHM) was solved by Ukaegbu et al., 2010 (Figure 7) [151]. SMOA forms a homodimer and
the structure is related to group A p-hydroxybenzoate hydroxylase (PHBH). PHBH is a one-component
system, which is able to reduce the flavin by itself. Therefore, a NAD(P)H binding site is needed [154],
which is not present in SMOA [151]. Thus, SMOA seems to have lost or never had the ability
for reduction of FAD and requires the external reductase StyB. This hypothesis is supported by
investigations of 2-aminobenzoylacetate N-hydroxylase (PqsL), which is also not able to bind
NAD(P)H [12]. In a similar manner, critical residues for recognition and binding of NAD(P)H are
different to the group A prototype PHBH (Table 1) or adopt a considerably different orientation
(Figure 8) [12,151].
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Figure 8. Comparison of the cofactor-binding site of p-hydroxybenzoate hydroxylase (PHBH) with
2-aminobenzoylacetate N-hydroxylase (PqsL) and SMOA. The crystal structures of SMOA (light teal) is
compared with the group A enzymes PqsL (PDB ID: 2X3N, pale green) [12] and PHBH (PDB ID: 1PBE,
grey) [155]. Critical residues for nicotinamide binding in PHBH are indicated (light orange) as well as
the respective residues in SMOA (red) and PqsL (yellow). Numbering is in accordance with Table 3.
The FAD ligands are shaded like the respective protein backbone.
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Table 3. Comparison of critical amino acid residues that are probably involved in nicotinamide binding
in PHBH with respective residues of StyA and PqsL [12,151].

Enzyme PDB ID 1 2 3 4 5 6 7 8

PqsL 2X3N Q36 R41 I43 G45 I163 A164 R168 G275
SMOA 3IHM D33 Y39 R43 N46 G144 K145 G149 V274
PHBH 1PBE R33 Y38 R42 R44 F161 H162 R166 R269

It was not possible to obtain crystals of SMOA with bound FAD in oxidized or reduced form
and/or substrate and hence the binding sites has been estimated by structural comparison to PHBHs
(PDB ID: 1PBE). The putative substrate binding site is accessible via a cleft at the dimer interface of
SMOA (Figure 7). This cleft accommodates one FAD molecule per monomer and enables entrance
to the substrate cavity through a small tunnel, which is located beyond the isoalloxazine ring of
FAD [151]. The hydrophobic cavity is formed between two loops above the seven stranded β-sheet.
However, it is likely that the protein-FAD-substrate interaction is more complex as can be deduced
from the apoprotein structure. PHBH contains a mobile flavin cofactor, which attains several different
orientations during the catalytic cycle [156]. As the substrate-binding site in SMOA is not accessible
for the isoalloxazine ring, it is likely that flavin and protein dynamics are needed to allow reaction
between the oxygenated FAD and styrene [151].

The reductase component SMOB (or StyB) is homologous to group D-like reductases. This is
reflected by high structural similarities between these enzymes [152]. However, the structure of StyB
from Pseudomonas putida S12 (PDB ID: 4F07) is special in several points. It was shown that SMOB,
refolded from inclusion bodies, is stabilized by the addition of FAD. Interestingly, the crystal structure
was solved with each monomer binding two FAD molecules. The isoalloxazine ring of one FAD
molecule is located at the active site of one monomer, while the adenine moiety of the same FAD
is located in the nicotinamide binding pocket of an adjacent monomer [152]. Distinct differences
at the loop region that were found to be responsible for interaction with the AMP part of FAD in
related reductases are also observed in SMOB (cf. Discussion). This unusual binding mode of the FAD
supports a possible interaction between the monooxygenase and the reductase component for the
purpose of reduced FAD transfer as mentioned in the section before. Unfortunately, the N-terminal
part of the reductase is not visible in the crystal structure. This would be of interest as recent studies
show that this region influences the biocatalytic properties of these reductases [77]. Moreover, it was
observed that NSMOB, which has an N-terminal extension of about 20 amino acids follows exclusively
a double displacement steady-state mechanism and that the linker proteins which were observed
follow a sequential ternary mechanism at low FAD concentration, but switch to a double displacement
mechanism at higher concentrations of FAD [157].

2.2.2. Indole Monooxygenase

Biochemistry. As already mentioned, IMOs can be discriminated into IndA/IndB- and
IndA1/IndA2B-systems. With regard to our reclassification, so far 7 IMOs were shown to be
active [124,126,127,158,159]. To date, IndA-like monooxygenase activity is solely attributed to indigo
formation upon gene expression and therefore no additional information can be given with regard
to biochemical properties [127,128,158,159]. However, detailed characterizations were conducted for
IndA1/IndA2B-systems from Rhodococcus [121,123,124] and Variovorax [126] as well as for the reductase
AbIndB from Acinetobacter baylyi ADP1 [160].

IndA1s and IndA2Bs have a comparable activity as StyA-like enzymes for the conversion of
styrene. Further, the substrate specificities are similar. However, the fusion proteins possess a much
lower epoxidase activity than the associated IndA1s [124,126]. Therefore, it is hypothesized that
IndA2B acts mainly as a reductase that provides reduced FAD for IndA2 and IndA1 [115]. The low
epoxidation activity can be explained by the fact that RoIndA2B stabilizes the FAD C4a-hydroxide
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upon styrene epoxidation, which supports the hypothesis that it is not the natural substrate for
these enzymes [161]. Further, the low reductase activity of RoIndA2B is assumed to result from the
N-terminal fusion to the monooxygenase [77]. The phylogenetic distance between the Rhodococcus and
the Variovorax variants (cf. Figure 6) is reflected in the biochemical properties. In general, the Variovorax
enzymes have a higher activity and the reductive power of VpIndA2B cannot be improved by an
additional reductase, in contrast to RoIndA2B [123,124,126].

As SMOs, IMOs are able to perform enantioselective epoxidations and sulfoxidations on a variety
of (substituted) styrene derivatives and aryl alkyl sulfides [43,123,124]. In contrast to RoStyAs, RoIndA1
and RoIndA2B showed a higher tendency to form oligomers and further the active form seems to
be a dimer [121]. Although no direct interaction between the monooxygenase and the reductase is
necessary [43] it was shown that the epoxidation activity of RoIndA1 decreased, when RoIndA2B is
replaced by another reductase [17,124].

So far, only one IndB reductase from A. baylyi ADP1 has been characterized [160]. AbIndB
follows a random sequential mechanism in contrast to StyBs that display an ordered binding [129,130].
Above that, both reductase types are very similar.

Structure. There is no crystal structure of IMOs available yet. However, it is likely that the general
fold of these enzymes is very similar to that of SMOs.

2.2.3. Biotechnological Relevance of Group E Flavoprotein Monooxygenases

In recent years, group E monooxygenases have gained a lot of attention in the field of oxidative
biocatalysis [28,32,162–167]. SMOs and IMOs can catalyze the conversion of a huge variety of substrates
(Scheme 5) with often exquisite enantioselectivity. While epoxidation is limited to the production of
the (S)-enantiomer, several reports describe the generation of either (S)- or (R)-sulfoxides, depending
on the biocatalyst and the substrate [124,126,138,145]. However, there is still space for optimization as
enantiopurity of (R)-sulfoxides produced by group E monooxygenases is often not very high.

Enantiopure epoxides are of relevance as building block for synthetic chemistry [168] and
sulfoxides are used for instance in pharmaceutical and agricultural industries [165,169]. In addition,
group E flavoprotein monooxygenases are able to produce indigoid dyes, as far as known, without the
appearance of byproducts such as indirubin [170–172]. Indigoid dyes are of relevance for industrial
and pharmaceutical applications [173–179].

Therefore, alternative cofactor regeneration systems have been developed for group E
monooxygenases, including the direct regeneration by an organometallic catalyst, electrochemical
approaches and the use of cofactor mimics [135,180]. Usability in a biocatalytic process has
already been shown in liquid two-phase systems [181–183] and was transferred into large and pilot
scale [30,184]. Further, group E monooxygenases can be used as modules in multi-enzymatic cascade
reactions [150,168,185–187].

Beyond that, several studies showed that engineering of group E flavoprotein monooxygenases
could be advantageous. It was possible to improve activity, enlarge substrate specificity and change
enantioselectivity [32,77,139,141,143]. Generation of artificial fusions between the two-components
monooxygenase and reductase showed that the linker has a huge impact on the biocatalytic mechanism
and activity. It was therewith possible to increase efficiency of the chimeric enzyme [157,188].
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2.3. Group F Flavoprotein Monooxygenases

Group F comprises a variety of flavin-dependent halogenases. These enzymes are involved
in the production of secondary metabolites like antibiotics and antitumor agents and catalyze the
regioselective halogenation of mostly aromatic substrates [189,190]. Group F can be distinguished
into free-substrate halogenases and carrier protein-bound substrate halogenases, which also form
separate clades in a phylogenetic tree (Table 4) [191,192]. An increasing interest in these halogenating
enzymes is underlined by several reviews in recent years [191,193–196]. Here, a general overview of
flavoprotein halogenases is presented and novel biotechnological aspects are outlined.

Table 4. Representatives of Group F.

Enzyme EC Number Reference

Free substrate halogenases

Typtophan 7-halogenase 1.14.19.9 [197,198]
Tryptophan 2-halogenase (a) - [199]
Tryptophan 4-halogenase (b) - -

Tryptophan 5-halogenase - [200]
Tryptophan 6-halogenase - [201–205]

Indole-3-halogenase - [192]
Fungal halogenases - [206–208]

Carrier protein-bound substrate halogenases

Pyrrolyl-S-PCP halogenases - [209–211]
(S)-β-Tyrosyl-S-PCP halogenase - [212]
Chondrochloren halogenase (a) - [213]

Chondramide halogenase (a) - [199]
Chloramphenicol halogenase (a) - [214]

Tiacumin halogenase (a) - -
Monodeoxypyoluteorin C3-halogenase (a) - [215]
Monodeoxypyoluteorin N-halogenase (a) - [215]

(a) Physiological role of the halogenase was derived from the chemical structure of the secondary metabolite and the
sequence homology with known flavin-dependent halogenases or (b) solely from the structure of the metabolite.
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2.3.1. Free Substrate Halogenases

Physiological context. Tryptophan halogenases were the first characterized representatives of
group F and have been extensively studied. Tryptophan can be halogenated by these enzymes at
the 2-, 4-, 5-, 6-, and 7-position of the indole ring [198,216]. The tryptophan 7-halogenase is so far
the only representative of class F that has been assigned to EC classification (1.14.19.9). It is among
others involved in the biosynthesis of the antitumor agent rebeccamycin, which is produced by
Lechevalieria aerocolonigenes [217] (Scheme 6).

In addition, a recently characterized halogenase BvrH was shown to catalyze the bromination
of indole at the C3 position and is not able to convert tryptophan [192]. In bacterial and
fungal halogenases, halogenation can occur at different stages of biosynthesis of secondary
metabolites [206–208].
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Scheme 6. Chlorination of L-tryptophan by the halogenase RebH. FAD is recycled by the
NADH-dependent oxidoreductase RebF. This reaction represents the initial step in the synthesis
of the antitumor agent rebeccamycin [217].

Biochemistry. The tryptophan halogenase is a 60-kDa protein that is strictly FAD-dependent.
For catalysis, reduced FAD is utilized to reduce oxygen to the flavin C4a-hydroperoxide,
which subsequently reacts with a chloride anion to form hypohalous acid (HOCl) and water in
the active site [197,198,203]. Tryptophan and FAD are about 10 Å distant from each other within
the protein [197]. Thus, HOCl is funneled through the enzyme and where activation occurs
via a hydrogen bonding interaction with a lysine residue close to the tryptophan binding site
(Figure 9) [218,219]. This adduct is assumed to direct the halogenation of the tryptophan by
electrophilic aromatic substitution [219]. In RebH, a chloramine was detected and hypothesized to be
the chlorinating agent [220] but might be not strong enough for halogenation [218]. The orientation
of the tryptophan in the active site determines the regioselectivity [221] and can be changed by
site-directed mutations [221–223]. Interestingly, stabilization of the C4a-hydroperoxyflavin is required
for the bound substrate in this halogenase [94]. This behaviour is similar to that of one-component
FAD-dependent monooxygenases [224] and differs from that of the above mentioned two-component
systems. Besides its natural substrate, these halogenases can utilize a variety of tryptamine derivatives,
the tricyclic tryptoline, indole and substituted naphthalenes [198,225].

The halogenases require reduced FAD and in many cases flavin reductases are encoded together
in a gene cluster with them. For example, the 20-kDa oxidoreductases PrnF and RebF are located in
proximity to PrnA and RebH, respectively [217,226]. Yet, in contrast to other two-component systems,
it is not clear whether these reductases couple with the halogenases. Direct interaction between the
halogenase and the reductase is not necessary for catalysis [227] and it is proposed that these reductases
rather supported another oxygenase within the gene cluster [226]. However, RebF is, in analogy to
group D and E reductases, strictly NADH-dependent but does not discriminate between FAD and
FMN as co-substrates.
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Lys79 is indicated in blue [197].

Structure. Two structures of the tryptophan 7-halogenase were solved with bound FAD and
substrate (PDB ID: 2AQJ and 2OA1) (Figure 9). The overall fold of these is similar to that of
group A and group E flavoprotein monooxygenases. While binding of the FAD co-substrate is
also similar, the tryptophan binds distant from the position of the flavin. The chloride anion
binds close to the re-side of the isoalloxazine ring of FAD, in agreement with its reaction with the
C4a-hydroperoxyflavin [197,228].

2.3.2. Carrier Protein-Bound Substrate Halogenases

Physiological context. A second subtype of group F catalyzes the halogenation of a carrier
protein (CP)-associated substrate for natural product synthesis and these halogenases are part of
non-ribosomal peptide synthesis or polyketide synthesis [192,194]. The first report for halogenation of
such a tethered substrate was PltA, which is involved in pyoluteorin biosynthesis [209].

Biochemistry and Structure. These halogenases can further be distinguished by their action on
either pyrrolyl or tyrosyl residues [192]. They require their substrate to be bound to the CP. The CPs
guide the growing molecule through the biosynthesis pathway allowing for correct assembly of the
final natural product and it is possible that protein–protein interaction between the halogenase and the
CP is needed for catalysis [229]. However, the mechanism of these halogenases is not fully understood
yet [194]. In particular, there is so far no structure available with bound CP-tethered substrate and
therefore the positioning towards the active site remains unclear or can only be estimated by homology
modelling [210].

The only characterized flavin reductase, which is encoded in a biosynthesis cluster in proximity
of a CP halogenase, is SgCE6 [109,230]. The clusters allow for production of the enediyne antitumor
antibiotic C-1027 and contain a group D halogenase [231]. It is also hypothesized that it supplies the
hydroxylase as well as the halogenase with reduced FAD [230]. However, there is no evidence for
direct interaction between the reductase and the monooxygenases, which is reasonable as it has to act
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in concert with both [230]. The crystal structure of SgcE6 is similar to other HpaC-like flavin reductases
but it is strictly dependent on FAD [109,230].

2.3.3. Biotechnological Relevance of Group F Flavoprotein Monooxygenases

Regioselective halogenated aromatic compounds are used as building block for chemical synthesis
as well as pharmaceutical, polymer and agrochemical industry [191,198,203]. A great proportion of
drugs and in particular agrochemicals are halogenated as this is often crucial for their biological
effect [194,195]. This comprises the type of halogen as well as the position within the molecule what in
turn is required for a regioselective, substrate-specific enzymatic halogenation.

The substrate spectra of group F halogenases includes anilines, indoles, azoles,
and pyrroles [191,232]. The halogenases can be integrated into biosynthetic pathways of natural
products to generate derivatives of the original compound or non-natural products [195,207,229,233–237].
In particular, the introduction of halogens into natural compounds is a promising strategy to improve
products like antibiotics and enhance their therapeutic properties [238,239].

Limitations according to their usability were attributed to their narrow substrate scope, low
enzyme production, and stability. However, significant progress in production was achieved by
co-expression with chaperones [198]. Their applicability in a biotechnological process was further
shown, accompanied by immobilization of the halogenase RebH on a gram scale. The halogenase
and the enzymes for cofactor regeneration (reductase PrnF and alcohol dehydrogenase) were
co-immobilized as cross-linked enzyme aggregates [240].

Several approaches addressed the improvement of the stability and substrate
preference of the halogenases. It was shown that engineering of halogenases can alter
the regioselectivity [196,203,222,223,241–243] and expand the substrate scope of these
enzymes [190,196,203,236,242–244]. Similar to group E monooxygenases, it was possible to
create functional fusion proteins of halogenase and reductase [245]. In addition, a thermophilic
halogenase was identified that is a promising template for further optimizations [246].

3. Discussion

Two-component FAD-dependent monooxygenases are versatile enzymes that are involved in
many metabolic processes. They are mainly involved in the biosynthesis and degradation of aromatic
compounds. They employ flavin:NADH oxidoreductases for generating reduced flavin and in some
cases two monooxygenases that are involved in the same enzymatic cascade, accepting the flavin from
one reductase [230].

The reductase components show higher sequence identities compared to the monooxygenase
components, which might point to a slower evolution [90]. In addition, similar reductases can also
be found in other two component enzyme systems [90,226]. This is reasonable, as the pressure
towards the oxygenase to convert a different substrate, which is available for the host organism,
is likely higher than for the reductase, which delivers the same flavin co-substrate in each case.
Nevertheless, some differences are observed in flavin binding, activity, and kinetic mechanisms
of the reductases. Except for PheA2, usually no tightly bound FAD is present and thus the FAD
is rather a co-substrate than a cofactor. As a result, PheA2 employs a ping-pong mechanism,
while the other ones usually follow a sequential mechanism. Most of the reductases are promiscuous
towards the flavin that can be reduced. For example, this was reported for PheA2 [69], RebF [217],
and HpaC [89]. However, several systems are known, where FAD specificity is not restricted to the
monooxygenase component: SgcC/SgcC3/SgcE6 [60,230], NphA1/NphA2 [247,248], TftD/TftC [98],
HPAH C2/C1 [80], 4-nitrophenol monooxygenase [249], pyrrole 2-carboxylate monooxygenase [51],
and RoStyA/RoStyB [77].

These differences in flavin substrate specificity are remarkable as the structural similarity between
the reductases is high. Two regions in the protein are variable and seem to be responsible for that.
First, the N-terminus shows high flexibility and differs in length. As this region is assumed to be
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involved in binding of the nicotinamide and/or a second flavin, the conformation and length of the
N-terminus might influence the properties of the reductase. Second, a loop region in proximity to the
flavin binding site is highly variable in length, orientation and amino acid composition (Figure 10).
Structural comparisons indicate that these differences determine the orientation of the adenine moiety
of FAD [109]. In some cases, when the loop has an open conformation, that moiety adheres to
the protein surface. When the loop closes the respective binding site, the adenine moiety remains
solvent-exposed. We see these effects also in proline dehydrogenase from Thermus thermophilus, an
FAD-dependent oxidoreductase that can also act with FMN [250].
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The question arises as to whether there is a physiological reason for that. It is possible that the
distinct orientations of the adenine moiety reflect different control mechanisms of FAD reduction and
transfer. The monooxygenase and reductase components are usually located in one cluster and also
expressed concurrently. Thus, the monooxygenase does not depend on a reduced FAD pool from the
cellular metabolism. On the other hand, most flavin reductases do not discriminate between different
flavins and might therefore reduce FMN and FAD non-preferentially within the cell. This might cause
the accumulation of reactive oxygen species and oxidative stress.

The reduced FAD-transfer step is somewhat of an Achilles heel for the two-component flavin
monooxygenase due to the susceptibility of reduced FAD to react with oxygen in aqueous solution
with the generation of reactive oxygen species. The two-component monooxygenases employ several
approaches to minimize deleterious reactive oxygen species-generating reactions by minimizing the
concentration of free flavin in solution. In the thermodynamic cycle of flavin exchange, the reductase
component has a high affinity for the oxidized form of FAD, while the monooxygenase preferably binds
reduced FAD. This arrangement ensures that upon reduction, the flavin is efficiently sequestered to
react productively with the epoxidase. Flavin channelling through a direct protein-protein interaction
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can further contribute to the efficiency of the FAD-transfer reaction [17,89,152] and the activity of
the reductase can influence the rate of the monooxygenase [51,69,73,81]. In those cases, where the
reductase does not discriminate between the flavins, it might be possible that the adenine moiety of
FAD remains bound within the monooxygenase and only the isoalloxazine system is transferred for
reduction within the reductase, allowing for efficient coupling. However, this concept has not been
proven so far. The above mentioned strategies for efficient handover of reduced FAD might explain
the different binding modes as shown in Figure 10.

From a biotechnological point of view, it can be advantageous that the monooxygenases can
operate independently from the reductase. Flavin regeneration can be accomplished by only one
reductase, especially in a cascade reaction where several of these two-component monooxygenases
are coupled. Additional flexibility is inferred by the fact that nicotinamide analogues allow for direct
reduction of flavins, making the final systems even more simple [39–42]. The herein mentioned
FAD-dependent enzymes catalyze epoxidations, hydroxylations, and halogenations as well as
heteroatom oxidations on aromatic substrates in an often regio- and enantioselective manner. Many of
them are further able to act on substituted, halogenated, or bulky derivatives of the natural substrate.
These reactions are of high interest and hardly accessible by chemical transformations. Exploration and
engineering of these enzymes can provide a biotechnological toolbox for the environmental friendly
supply of e.g., pharmaceuticals, fine- chemicals, and agrochemicals.

Natural enzyme cascades that include two FAD-dependent monooxygenases as found in the
biosynthesis pathway of the antibiotic C-1027 can serve as a template for artificial production lines [212].
Herein, one reductase SgcE6 is able to generate reduced FAD for both monooxygenases [109,230].
Such bio- or chemobiocatalytic cascades can be used to develop green processes and novel
products [167,185,186,251–254]. In addition, linking of artificial fusion proteins might optimize the
processes and simplify the co-substrate/cofactor regeneration [157,188,245].

4. Conclusions

Two-component FAD-dependent monooxygenases are able to catalyze reactions that are of high
interest for several industrial applications. Several challenges of enzymatic catalysis like limited
stability, selectivity, or activity as well as cofactor regeneration certainly apply to these enzymes.
Considerable effort has been made in recent years to identify and engineer promising variants. Further
attempts focused on the optimization of in vivo and in vitro processes with the aim to use these
enzymes at a large scale. Although there is still space for optimization, first large-scale demonstrations
showed that these monooxygenases can be a real support and/or alternative to chemical catalysis.
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