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Despite more than two decades of extensive re-
search, sepsis and excessive systemic inflamma-
tory response syndrome have recently become 
the leading cause of death in intensive care units 
(Nguyen et al., 2006). Severe sepsis, which is 
complicated by organ dysfunction, may rapidly 
progress into septic shock, characterized by re-
fractory hypotension. Only 50% of patients with 
severe sepsis survive hospital admission; mortal-
ity rates of ≥70% have been reported for septic 
shock. In the first days after diagnosis, severe re-
fractory hypotension is generally the cause of 
death. Afterward, deaths are caused by multiple 
organ failure resulting from prolonged hypoten-
sion and tissue ischemia because of injured and 

dysfunctional peripheral microvasculature, in 
combination with severe mitochondria- and 
organ-damaging cytotoxicity. These are collec-
tively the result of exaggerated proinflammatory 
and procoagulant processes triggered by both 
pathogen-associated molecular patterns from the 
infecting microorganism, such as LPS, as well as 
endogenously induced cytokines, chemokines, 
danger-associated molecular patterns, reactive 
nitrogen species, and reactive oxygen species 
(ROS; Cinel and Opal, 2009).
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Nitrite (NO2
), previously viewed as a physiologically inert metabolite and biomarker of 

the endogenous vasodilator NO, was recently identified as an important biological NO 
reservoir in vasculature and tissues, where it contributes to hypoxic signaling, vasodila-
tion, and cytoprotection after ischemia–reperfusion injury. Reduction of nitrite to NO 
may occur enzymatically at low pH and oxygen tension by deoxyhemoglobin, deoxymyo-
globin, xanthine oxidase, mitochondrial complexes, or NO synthase (NOS). We show that 
nitrite treatment, in sharp contrast with the worsening effect of NOS inhibition, signifi-
cantly attenuates hypothermia, mitochondrial damage, oxidative stress and dysfunction, 
tissue infarction, and mortality in a mouse shock model induced by a lethal tumor necro-
sis factor challenge. Mechanistically, nitrite-dependent protection was not associated 
with inhibition of mitochondrial complex I activity, as previously demonstrated for ischemia–
reperfusion, but was largely abolished in mice deficient for the soluble guanylate cyclase 
(sGC) 1 subunit, one of the principal intracellular NO receptors and signal transducers 
in the cardiovasculature. Nitrite could also provide protection against toxicity induced  
by Gram-negative lipopolysaccharide, although higher doses were required. In conclusion, 
we show that nitrite can protect against toxicity in shock via sGC-dependent signaling, 
which may include hypoxic vasodilation necessary to maintain microcirculation and organ 
function, and cardioprotection.

© 2009 Cauwels et al.  This article is distributed under the terms of an  
Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six 
months after the publication date (see http://www.jem.org/misc/terms.shtml). After six  
months it is available under a Creative Commons License (Attribution–Noncommer-
cial–Share Alike 3.0 Unported license, as described at http://creativecommons 
.org/licenses/by-nc-sa/3.0/).
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and actually indicated a protective role for sGC1 against car-
diac dysfunction and mortality (Buys et al., 2009).

When injected into mice, TNF causes inflammation, ac-
companied by oxidative and nitrosative stress, culminating in 
hypothermia, hypotension, multiple organ failure, and death, 
similar to the shock syndrome induced by LPS or bacteria 
(Cauwels et al., 2003; Bultinck et al., 2006; Cauwels and 
Brouckaert, 2007). Although NOS inhibition may revert 
TNF-induced hypotension (Kilbourn et al., 1990), NOS in-
hibition or iNOS deficiency also exacerbates TNF toxicity, 
implicating a protective role for NO that is at least partially 
attributable to its antioxidant capacities (Cauwels et al., 2003, 
2005). In vitro, TNF-induced necrosis is largely caused by 
mitochondrial ROS (Fiers et al., 1999). Also in vivo, we 
have identified mitochondrial complex I as an important 
source of TNF-induced oxidative stress (Cauwels et al., 
2003). Considering the fact that (a) both iNOS- and eNOS-
derived NO may exert protective effects in inflammatory  
and septic shock, (b) circulating nitrite may function as an 
important source of NO specifically in hypoxic and/or acidic 
conditions that are present in the ischemic microvasculature 
of vital organs during shock, (c) mitochondrial complex  
I–derived ROS are involved in TNF-induced toxicity in 
vitro and in vivo, and (d) nitrite may inhibit mitochondrial 
complex I and mitochondrial oxidative damage during  
ischemia–reperfusion (Shiva et al., 2007), we decided to test 
the protective capacity of nitrite on TNF-induced toxicity. 
We found that, as hypothesized, nitrite is protective not only 
against TNF- but also against LPS-induced mortality. To 
evaluate the mechanism of this phenomenon, we studied the 
effect of nitrite on mitochondrial respiration and oxidative 
damage, on tissue damage and inflammation, and in eNOS/ 
and sGC1

/ mice.

RESULTS AND DISCUSSION
Nitrite protects against TNF-induced morbidity  
and mortality, in contrast to NOS inhibition
i.v. pretreatment of mice with sodium nitrite protected 
against progressive hypothermia and mortality induced by a 
lethal dose of TNF (Fig. 1, A and B). Although biological 
variability existed between experiments, as protection by ni-
trite pretreatment varied from 40% (Fig. 1, A and B) to 100% 
(Fig. 1, C and D), the significance of the protective capacity 
of nitrite increased dose dependently when protection was 
not absolute (Fig. 1 B). After TNF challenge, endogenous 
concentrations of nitrite (0.5 µM) were not significantly 
increased after 2 h, but reached 3 µM after 6 h (Fig. S1 A). 
In contrast, the protective effect of exogenous nitrite was 
observed at doses ≥0.17 mg/kg (50 nmol/mouse), which is 
known to increase endogenous nitrite concentration in 
circulation to >10 µM (Duranski et al., 2005). Nitrite did 
not accumulate systemically or locally, because at the time of 
the TNF challenge (2 h after nitrite injection), or 2 or 6 h 
later, there was no significant increase of nitrite levels in  
circulation or in tissues (Fig. S1, A–C). Nevertheless, ni-
trite increased phosphorylation of vasodilator-stimulated 

The circulating anion nitrite (NO2
) was previously 

considered a stable and inert oxidation product of NO me-
tabolism, but recent data clearly indicate that nitrite is actu-
ally a bioactive product, serving as an endocrine transporter 
and storage pool of NO (Lundberg et al., 2008). The gener-
ation of bioactive NO, via its reduction from the circulating 
nitrite reservoir, may occur along a pH and oxygen gradient 
by several mechanisms, including enzymatic reduction by 
deoxygenated hemoglobin or myoglobin, components of 
the mitochondrial respiratory chain, xanthine oxidase, endo-
thelial NO synthase (eNOS), and cytochrome P450, as well 
as nonenzymatically by acidic disproportionation (Lundberg 
et al., 2008; Raat et al., 2009). In this way, nitrite may func-
tion as an important hypoxic and/or acidic NO reservoir in 
both vasculature and tissues, contributing to hypoxic signal-
ing, vasodilation, and cytoprotection. In a variety of animal 
models, the reduction of nitrite back to NO thus limits 
apoptosis and cytotoxicity at reperfusion in the mammalian 
heart, liver, kidney, and brain (Lundberg et al., 2008; Raat et al., 
2009). The mechanism of this protection against ischemia–
reperfusion injury appears to involve the S-nitrosation and 
subsequent inhibition of mitochondrial complex I, resulting 
in diminished mitochondrial generation of ROS at reperfu-
sion (Shiva et al., 2007).

Until the recognition of nitrite as an endogenous source 
of NO, NO was known to be generated by three NOS en-
zymes: the constitutive eNOS and neuronal NOS isoforms, 
and the inducible NOS (iNOS) enzyme. During infection 
and inflammation, iNOS produces high levels of NO. Con-
trary to the general expectation, the major source of systemic 
iNOS-derived NO metabolites during inflammation or sepsis 
seems to be parenchymal cells rather than blood cells (Bultinck 
et al., 2006). Although excessive NO production by iNOS 
has long been implicated in the development of severe sepsis 
and shock (Cauwels, 2007), eNOS-derived NO has also been 
shown to contribute (Connelly et al., 2005). However, NOS 
inhibition in animal models and septic shock patients exacer-
bated organ damage and mortality despite circulatory improve-
ment, suggesting additional protective effects of NO (Feihl et al., 
2001; Cauwels, 2007). Historically, these protective effects 
were attributed to NO generated by the constitutive eNOS 
enzyme, and cardiomyocyte overexpression of eNOS could 
indeed attenuate myocardial dysfunction and improve survival 
in endotoxemia and experimental sepsis (Ichinose et al., 2007). 
On the other hand, iNOS-derived NO was also credited with 
protective effects in TNF-, LPS-, or sepsis-induced shock 
models (Cauwels, 2007).

As an uncharged diatomic gas, NO may diffuse to neigh-
boring cells to activate its intracellular receptor soluble gua-
nylate cyclase (sGC), a heterodimer consisting of an 1 or 2 
subunit together with a 1 subunit, which has long been re-
garded the predominant target for the vasodilating effect of 
NO (Cauwels, 2007). Nevertheless, our studies with mice 
deficient for sGC1, an important cardiovascular sGC iso-
form (Mergia et al., 2003), revealed no protection against in-
flammatory shock at all, although hypotension was prevented, 
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donor diethylenetriamine/NO adduct could not provide 
any protection (unpublished data).

In contrast to the protective effect of nitrite, NOS inhibi-
tion by NG-nitro–l-arginine methyl ester (L-NAME), which 
was given either as a pretreatment (Fig. 2, A and B), posttreat-
ment (Fig. 2, C and D), or oral treatment (Fig. 2, E and F), 
drastically exacerbated TNF-induced toxicity and mortality. 
In fact, the detrimental effect of NOS inhibition was so dras-
tic that nitrite pretreatment could only moderately ameliorate 
morbidity for a couple of hours (Fig. 2 G) but had no effect 
on mortality (Fig. 2 H). These results might indicate the in-
volvement of eNOS in the reduction of nitrite into bioactive 

phosphoprotein (VASP), an in vivo biomarker for activation 
of the NO–sGC–protein kinase G pathway, in naive mice as 
well as in TNF-challenged animals (Fig. S1 D), indicating its 
cGMP-mediated bioactivity.

Interestingly, therapeutic treatment with nitrite (injected 
3 h after TNF challenge) resulted in an improvement of 
subsequent hypothermia and mortality (Fig. 1, E and F). The 
same was true for oral nitrite therapy administered via the 
drinking water (Fig. 1, G and H). Additional prophylactic 
or therapeutic nitrite injection in mice on increased dietary 
nitrite significantly improved survival (Fig. 1, G and H). 
However, treatment of mice with 60 mg/kg of the NO 

Figure 1.  Nitrite protection against TNF-induced hypothermia and mortality. Results for protection against hypothermia (left) and mortality 
(right) are shown. (A and B) WT mice were injected i.v. with 6 µg TNF at t = 0 and were pretreated i.v. with PBS or 0.1, 0.2, 0.3, 0.7, or 1.3 mg/kg sodium 
nitrite 2 h earlier (n = 5 for each group, except for 0.7 mg/kg [n = 4]). (C and D) WT mice were injected i.v. with 8 µg TNF at t = 0 and were pretreated i.v. 
with PBS or 0.2 or 1.3 mg/kg sodium nitrite 2 h earlier (n = 5). (E and F) WT mice were injected i.v. with 6 µg TNF at t = 0 and were treated i.v. with PBS  
(n = 12) or 1.3 mg/kg sodium nitrite 3 h later (arrow). The combined results of two independently performed experiments are shown (n = 14). (G and H) 
WT mice were injected i.v. with 7 µg TNF. Control TNF-treated mice received normal drinking water, and the other groups received 1 wk of 500 mg/liter of 
nitrite drink. In addition, mice were injected with 1 mg/kg nitrite at 2 or +4 h (n = 6 for all groups; a representative experiment is shown, repeated 
twice). Data are means ± SEM. **, P < 0.01; and *, P < 0.05 compared with control TNF-challenged animals.
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et al., 2007), we first tested the effects of nitrite pretreatment 
on complex I respiration. Interestingly, and to our knowl-
edge shown for the first time in vivo for a shock-inducing 
agent, TNF caused a drastic decrease in complex I activity 
(Fig. 4 A) as early as 2 h after the TNF challenge and persist-
ing for at least 6 h. However, unlike its inhibitory effect on 
complex I activity in ischemia–reperfusion (Shiva et al., 
2007), nitrite treatment did not further decrease complex I 
activity in our shock model (Fig. 4 A).

To determine whether nitrite-mediated protection was 
mediated through other components of the respiratory chain, 
we also determined complex II and complex IV activities in iso-
lated liver mitochondria. As demonstrated in Fig. 4 (B and C), 

and protective NO, as previously suggested (van Faassen  
et al., 2009). However, eNOS deficiency could not prevent 
nitrite-dependent protection against TNF toxicity (Fig. 3).

Nitrite protection is not caused by decreased mitochondrial 
respiration
To elucidate the mechanism of nitrite-mediated protection 
against TNF-induced morbidity and mortality, we examined 
mitochondria isolated from the liver of mice 2 and/or 6 h 
after the lethal TNF challenge. As complex I is known to be 
an important site of ROS production after TNF (Fiers et al., 
1999) and considering the protective inhibitory effect of ni-
trite on complex I activity in ischemia–reperfusion (Shiva  

Figure 2.  In contrast to nitrite, L-NAME worsens TNF-induced hypothermia and mortality. Results for TNF-induced hypothermia (left) and mor-
tality (right) are shown. (A and B) WT mice were injected i.v. with 5 µg TNF at t = 0 and were pretreated i.v. with PBS, L-NAME, or 1.3 mg/kg sodium nitrite 
2 h earlier (n = 6). (C and D) WT mice were injected i.v. with 4.6 µg TNF at t = 0 and were treated i.v. with PBS, L-NAME, or 1.3 mg/kg sodium nitrite 4 h 
later (arrow; n = 6). (E and F) WT mice received normal drinking water or 500 mg/liter nitrite or L-NAME for 1 wk and were then injected i.v. with 4.6 µg 
TNF (n = 6). (G and H). WT mice were injected i.v. with 5 µg TNF and 100 mg/kg L-NAME at t = 0 and were treated i.v. with PBS or 1.3 mg/kg sodium nitrite 
2 h earlier or 4 h later (n = 6). Experiments were repeated at least once (representatives are shown). Data are means ± SEM. **, P < 0.01; and *, P < 0.05 
compared with control TNF-challenged animals.
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could dose-dependently protect against TNF-mediated in-
hibition of complexes I and IV. In contrast, NOS inhibition 
had no protective effect at all (Fig. 4, A and C). Consistent 
with its protective effect on mitochondrial respiration, ni-
trite also improved cellular energetics, as indicated by the 
protection of ATP levels (Fig. 4 D). As complex I is an im-
portant site of ROS production in mitochondria, we evalu-
ated the effect of nitrite on the activity of the Fe-S–containing 
mitochondrial matrix enzyme aconitase, which is highly 
susceptible to oxidation and an indicator of mitochondrial 
oxidative damage (Shiva et al., 2007). Consistent with its 
protection against respiratory damage, nitrite also preserved 
the activity of aconitase, in contrast with NOS inhibition 
(Fig. 4 E). These data demonstrate that nitrite is capable of 
protecting mitochondrial function and preventing TNF- 
induced oxidative damage in our model.

To assess the effect of nitrite on tissue infarction associ-
ated with shock, we measured systemic parameters for liver 
and kidney function and myocyte damage. Alanine amino 
transferase (ALT) and creatinine levels were much higher in 
the circulation of TNF-challenged mice but were restored 
to basal levels by nitrite pretreatment, indicating decreased 
liver damage as well as improved creatinine clearance (kid-
ney function) in nitrite-treated animals (Fig. 4, F and G). As 
a measure for myocyte damage, circulating creatine kinase 
levels were assessed and revealed a striking increase because 
of the lethal TNF challenge, which was significantly pre-
vented by nitrite (Fig. 4 H). In contrast to NO delivery by 
nitrite, NOS inhibition by L-NAME did not attenuate TNF-
induced organ damage (Fig. 4, G and H).

The importance of NO as an antiinflammatory cytopro-
tective molecule has been well established. However, the 

TNF did not affect complex II activity, whereas complex IV 
activity was severely inhibited. The subunits of the five mito-
chondrial enzyme complexes necessary for oxidative phos-
phorylation are encoded by both nuclear and mitochondrial 
DNA (mtDNA), with 13 out of the 82 structural subunits 
encoded by mtDNA and complex II the only complex in 
which all subunits are encoded by nuclear genes (Shoubridge, 
2001). Although TNF significantly inhibits mitochondrial 
complexes I and IV, complex II activity is not altered at all 
(Fig. 4, A–C), even after 6 h (not depicted), making it inter-
esting to speculate that selective damage of mtDNA by TNF 
contributes to TNF-induced toxicity and mortality in vivo. 
TNF-induced ROS and reactive nitrogen species may not 
only damage mtDNA, which is much more susceptible than 
nuclear DNA, but also mitochondrial enzymes and lipids 
(Bailey et al., 2005; Van Houten et al., 2006). Inhibition and 
destruction by oxidative/nitrosative stress of the mitochon-
drial respiration complexes would call for immediate turn-
over of the appropriate proteins, for which intact mtDNA and 
functional transcription/translation machinery is required. 
Interestingly, reactive species–induced damage to mtDNA, 
mRNA stability, protein synthesis, respiration, and ATP pro-
duction have been shown as early as 1 h after various oxidative/
nitrosative challenges (Ballinger et al., 2000). Consistent with 
the inhibition of mitochondrial respiration, a significant de-
crease in hepatic ATP levels was observed as early as 2 h after 
challenge (Fig. 4 D).

Nitrite protects mitochondria and organs  
from shock-induced damage
Although nitrite did not have inhibitory effects on complex 
I in this shock model, it was found that nitrite treatment 

Figure 3.  Nitrite protection is independent from eNOS. (A and B) WT or (C and D) eNOS/ mice were injected i.v. with 8 µg TNF at t = 0 and were 
pretreated i.v. with PBS or 1.3 or 3.3 mg/kg sodium nitrite 2 h earlier. The combined results of three completely independent experiments are shown (WT 
mice: n = 18 [TNF alone], 14 [1.3 mg/kg NaNO2], or 6 [3.3 mg/kg NaNO2]; eNOS/ mice: n = 13 [TNF alone], 11 [1.3 mg/kg NaNO2], or 5 [3.3 mg/kg 
NaNO2]). Data are means ± SEM. ***, P < 0.001; **, P < 0.01; and *, P < 0.05 compared with control TNF-challenged animals.
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Figure 4.  Nitrite protects mitochondria, liver, kidney, and myocytes from TNF-induced damage and oxidative stress. (A) Complex I activity of 
liver tissue from mice 0, 2, or 6 h after TNF challenge without or with nitrite (0.2 or 1.3 mg/kg) or L-NAME (100 mg/kg) pretreatment. (B) Complex II activity 
rates of liver tissue from mice 2 h after TNF without or with nitrite (0.2 or 1.3 mg/kg) or L-NAME (100 mg/kg) pretreatment. (C) Complex IV activity of liver 
tissue from mice 2 h after TNF without or with nitrite (0.2 or 1.3 mg/kg) or L-NAME (100 mg/kg) pretreatment. Data are means ± SEM. ***, P < 0.001; **, P < 
0.01; and *, P < 0.05 compared with TNF-challenged mice for all mitochondrial complex data (A–C). (D) ATP production in liver tissue from mice 2 or 6 h 
after TNF challenge without or with nitrite (1.3 mg/kg) pretreatment. (E) Aconitase activity of mitochondria from liver tissue from mice 6 h after TNF chal-
lenge without or with nitrite (1.3 mg/kg) or L-NAME (100 mg/kg) pretreatment. (F–H) ALT (F), creatinine concentrations (G), and creatine kinase activities (H) 
in serum from mice 6 h after TNF challenge without or with nitrite (0.2 or 1.3 mg/kg) or L-NAME (100 mg/kg) pretreatment. (I and J) MPO activity in per-
fused liver (I) and lung (J) from mice 2 or 10 h after TNF challenge without or with nitrite (1.3 mg/kg) pretreatment. The combined results of two indepen-
dently performed experiments are shown (n = 8). Data are means ± SEM. ***, P < 0.001; **, P < 0.01; and *, P < 0.05 compared with control mice (D–J).

mechanism by which NO can prevent leukocyte adherence 
is still controversial, with data suggesting the involvement of 
its direct antioxidant properties (Granger and Kubes, 1994) as 

well as indirect sGC-dependent signaling (Ahluwalia et al., 
2004). To evaluate the effect of nitrite on leukocyte adher-
ence, myeloperoxidase (MPO) activity was determined in 
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suggest that nitrite provides protection against shock via sGC-
mediated vasodilation, which is necessary to maintain peripheral 
blood flow in the ischemic microcirculation of vital organs, 
and/or via sGC-mediated cardioprotection.

Nitrite protects against LPS-induced morbidity  
and mortality
To validate the potential of nitrite to protect against toxicity 
and mortality in shock, we tested the effects of nitrite in  
a model of LPS-induced shock. Although nitrite doses of 
0.2–1.3 mg/kg provided up to 100% protection against TNF 
toxicity (Fig. 1 D), they failed to protect against LPS-induced 
shock (Fig. 6, A and B). However, increasing the dose to  
3.3 mg/kg resulted in significant protection (Fig. 6, A and B). To 
investigate whether we could further increase the protective 
potential, we injected mice with even higher doses of nitrite, 
resulting in very significant protection (Fig. 6, C and D).

In conclusion, we have shown that nitrite significantly 
reduces hypothermia, mitochondrial damage and oxidative 
stress and dysfunction, tissue infarction, and even mortality in 
mouse shock models induced by lethal TNF or LPS chal-
lenges. Mechanistically, nitrite-dependent protection was not 
associated with inhibition of mitochondrial complexes I, II, 
or IV. In contrast, protection by nitrite clearly depended  
on the presence of a functional sGC1 enzyme, one of the 
primary NO receptors and signal transducers in the cardio
vascular system, suggesting that the protection involves 
sGC-dependent microvascular dilation and/or inhibition  
of platelet aggregation, which is necessary to maintain ade-
quate circulation of vital organs, and/or sGC-dependent car-
dioprotection. Increased NO production has been held 

organs from perfused mice, revealing no significant differ-
ence between sham- or nitrite-pretreated mice early or late 
after TNF challenge (Fig. 4, I and J).

Nitrite protection occurs predominantly via sGC1
Besides its interaction with other radical species, NO is 
known to act mainly via two different signaling pathways, ei-
ther modulating protein function by S-nitrosation or through 
binding to the heme of sGC, the principle NO receptor. Be-
cause the mechanism of nitrite-dependent protection against 
toxicity in TNF shock did not depend on the inhibition of 
mitochondrial complex I (Fig. 4 A), which is known to occur 
via S-nitrosation (Shiva et al., 2007), we focused our atten-
tion on the sGC enzyme. In addition, the NO–sGC–cGMP 
signaling cascade modulates several pathophysiological pro-
cesses that may theoretically contribute to improved mito-
chondrial and organ function and survival in shock, including 
vasodilation and inhibition of platelet aggregation in the mi-
crovasculature, as well as protection against cardiac dysfunc-
tion (Buys et al., 2009). To evaluate the involvement of sGC 
in nitrite protection, we made use of animals deficient in 
sGC1 (Buys et al., 2008), which is considered to be the 
principal cardiovascular isoform of sGC (Mergia et al., 2003). 
Although nitrite significantly protected against the progres-
sive hypothermia and mortality induced by a lethal dose of 
TNF in WT mice (Fig. 5, A and B), it failed to do so in 
sGC1/ animals (Fig. 5, C and D). Although there was 
significant protection against hypothermia in sGC1/ very 
early (2–5 h) after challenge, after this period the body tem-
peratures dropped as drastically as in the sham-treated TNF-
challenged control sGC1/ mice (Fig. 5 C). Our data thus 

Figure 5.  Nitrite protection depends on sGC1 signaling. (A and B) WT or (C and D) sGC1
/ mice were injected i.v. with 8 µg TNF at t = 0 and 

were pretreated i.v. with PBS or 0.2 or 1.3 mg/kg sodium nitrite 2 h earlier. The combined results of three completely independent experiments are 
shown (n = 15–17 for WT mice; n = 15 for each group of sGC1

/ mice). Data are means ± SEM. ***, P < 0.001; and **, P < 0.01 compared with control 
TNF-challenged animals.
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100 mg/kg or in the drinking water (500 mg/liter for 1 wk). Diethylenetri-
amine/NO adduct (Sigma-Aldrich) was injected i.v. at 60 mg/kg.

Body temperature measurements. Rectal body temperature was re-
corded with an electronic thermometer (model 2001; Comark Electronics).

Plasma and tissue nitrite determination. The concentration of nitrite in 
plasma was determined by triiodine-based reductive chemiluminescence as 
previously described (MacArthur et al., 2007). Heart and liver tissue was 
harvested, immediately flash frozen, and homogenized in a buffer containing 
1 mM potassium cyanide and 1 mM potassium hexacyanoferrate before be-
ing subjected to triiodide-based reductive chemiluminescence.

Immunoblot analysis. Lung tissue was isolated 2 or 6 h after challenge and 
snap frozen in liquid nitrogen. Tissue samples were homogenized in 1 ml 
RIPA buffer (Boston BioProducts) supplemented with 1% protease inhibitor 
cocktail (Sigma-Aldrich) and 1% phospatase inhibitor cocktail (Sigma-
Aldrich), and were microcentrifuged for 20 min at 20,000 g. 15 µg of superna-
tant proteins were fractionated on 12% SDS-PAGE gels and transferred to 
polyvinylidene fluoride membranes. Membranes were blocked for 1 h in 5% 
nonfat milk in TBS with 0.1% Tween 20 (TBST milk) and incubated over-
night with a primary antibody directed against Phospho-VASP (Ser239; di-
luted 1:1,000; Cell Signaling Technology). Bound antibody was detected 
with a horseradish peroxidase–linked antibody directed against rabbit IgG 
(diluted 1:1,000; Cell Signaling Technology) in TBST milk and visualized 
using chemiluminescence with ECL Plus (GE Healthcare). Antibody di-
rected against GAPDH (diluted 1:1,000; Cell Signaling Technology) was 
used to confirm that equal amounts of protein were loaded in each lane.

Mitochondrial isolation, respiration, and aconitase activity. Livers 
were isolated 2 or 6 h after challenge and snap frozen in liquid nitrogen. 
Whole tissue was used for the measurement of mitochondrial complexes I, II, 
and IV, and aconitase activities as follows: for complex I, the rotenone-sensitive 
rate of nicotinamide adenine dinucleotide oxidation was spectrophoto-
metrically monitored at 340 nm in permeabilized tissue. Complex II activity 
was determined by measuring the reduction of dichloroindophenol at 600 nm, 
which was coupled to the oxidation of CoQ2 using succinate as a substrate. 
Thenoyltrifluoroacetone (complex II inhibitor) was used to determine 

responsible for the progressive and refractory hypotension in 
septic shock, leading to the development of (selective) NOS 
inhibitors to treat patients. Nevertheless, several studies from 
the 1990s already suggested that treatment with various ex-
ogenous NO donors might be a useful therapy to maintain 
adequate organ blood flow and tissue perfusion during endo-
toxic shock (Westberg et al., 1994; Pastor et al., 1995; Zhang 
et al., 1996; Pedoto et al., 1998). Nitrite therapy, however, 
had only been used in a feline splanchnic ischemic shock 
model so far, where it improved survival time (Aoki et al., 
1990). Our data provide an indication for nitrite therapy to 
prevent tissue damage, organ failure, and mortality in inflam-
matory circulatory shock. In addition, they again challenge 
the current paradigm that NO and sGC contribute to organ 
damage and death associated with shock.

MATERIALS AND METHODS
Mice. Female C57BL/6J mice were bought from Janvier, and eNOS/ 
(Shesely et al., 1996) mice on a C57BL/6J background were bred in our 
own facilities. sGC1

/ mice were generated on a mixed 129S6/Swiss 
background as previously described (Buys et al., 2008) and backcrossed for 
10 generations to the C57BL/6J background. sGC1

/ mice carry a tar-
geted deletion of the sixth exon of the gene encoding sGC1, resulting in 
the expression of a mutant, catalytically inactive protein. Mice were housed 
in temperature-controlled, air-conditioned facilities with 14/10-h light/
dark cycles and food and water ad libitum, and used at 10–14 wk. All  
experiments were approved by the animal ethics committee of Ghent 
University.

Reagents and injections. Recombinant mouse TNF was produced in and 
purified from Escherichia coli, and LPS content was <0.02 ng/mg (chromo-
genic Limulus amebocyte lysate assay; Kabivitrium). TNF or E. coli LPS (se-
rotype 0111:B4; Sigma-Aldrich) were injected i.v. in LPS-free PBS. Mortality 
was scored up to 5 d. NaNO2 (Sigma-Aldrich) was given either i.v. (2 h be-
fore or 3 or 4 h after the shock-inducing challenge) or in the drinking water 
(500 mg/liter for 1 wk). L-NAME (Novabiochem) was given i.v. at  

Figure 6.  Nitrite protection against LPS-induced hypothermia and mortality. (A and B) WT mice were injected i.v. with 170 µg LPS at t = 0 and 
were pretreated i.v. with PBS or 0.2, 1.3, or 3.3 mg/kg sodium nitrite 2 h earlier (n = 6). (C and D) WT mice were injected i.v. with 160 µg LPS at t = 0 and 
were pretreated i.v. with PBS or 3.3, 17, or 66 mg/kg sodium nitrite 2 h earlier. The combined results of three completely independent experiments are 
shown (n = 11–17 for each group). Data are means ± SEM. ***, P < 0.0001; **, P = 0.0041; and *, P = 0.0118 compared with control LPS-challenged animals.
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specificity of the assay for complex II activity. Complex IV was measured by 
monitoring the oxidation of ferrocytochrome c at 550 nm. Potassium cyanide 
was used to determine specificity of oxidation by complex IV. For aconitase 
activity, tissue was lysed by three freeze/thaw cycles, and aconitase activity 
was measured by spectrophotometrically monitoring the formation of 
NADPH at 340 nm using the Bioxytech Aconitase-340 kit (Oxis Research).

ATP determination. ATP levels were measured in lysed snap-frozen tissue 
using a luciferin–luciferase–based kit (ATP determination kit; Invitrogen).

ALT, creatinine, and creatine kinase determination. 6 h after chal-
lenge, blood was collected by cardiac puncture, and serum was obtained after 
clotting at room temperature and cold centrifugation. Creatinine was assayed 
using a rate-blanked kinetic-compensated Jaffe method using isotope dilu-
tion mass spectrometry calibration (Wuyts et al., 2003). The activity of cre-
atine kinase was determined at 37°C according to the International Federation 
of Clinical Chemistry and Laboratory Medicine (IFCC; Schumann et al., 
2006). ALT was assayed in plasma samples photometrically according to the 
IFCC method (Schumann et al., 2002), using a kinetic ALT kit (Infinity; 
Thermo Fisher Scientific) according to the manufacturer’s specifications.

MPO activity. To minimize background MPO activity by the remaining 
nonadherent intravascular leukocytes, mice were perfused with at least 10 ml 
of 0.9% NaCl via insertion of a needle into the beating heart. Lungs and liver 
were snap frozen in liquid nitrogen and stored at 80°C. To determine tis-
sue MPO activity, samples were weighed, thawed, and homogenized in a 
lysis buffer exactly as directed by the manufacturer. MPO activity was mea-
sured using an MPO ELISA kit (Cell Sciences).

Statistics. Statistics were performed using Prism software (GraphPad 
Software, Inc.). Body temperatures, mitochondrial complex and aconitase 
activities, and serum parameters are shown as means ± SEM; they were 
compared with a one-way analysis of variance test with either a Bonfer-
roni posttest for comparison of all pairs, or a Dunnett posttest for compari-
son of all data with the control (PBS). Survival curves were compared with 
a log-rank Mantel-Cox test.

Online supplemental material. Fig. S1 shows endogenous nitrite con-
centrations in plasma, heart, and liver, as well as phosphorylated VASP in 
lungs from mice injected with PBS, nitrite, TNF, or nitrite plus TNF. On-
line supplemental material is available at http://www.jem.org/cgi/content/ 
full/jem.20091236/DC1.
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