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Abstract

Background: ageing is an important risk factor for a variety of human pathologies. Biological age (BA) may better capture
ageing-related physiological changes compared with chronological age (CA).
Objective: we developed a deep learning (DL) algorithm to predict BA based on retinal photographs and evaluated the
performance of our new ageing marker in the risk stratification of mortality and major morbidity in general populations.
Methods: we first trained a DL algorithm using 129,236 retinal photographs from 40,480 participants in the Korean Health
Screening study to predict the probability of age being ≥65 years (‘RetiAGE’) and then evaluated the ability of RetiAGE to
stratify the risk of mortality and major morbidity among 56,301 participants in the UK Biobank. Cox proportional hazards
model was used to estimate the hazard ratios (HRs).
Results: in the UK Biobank, over a 10-year follow up, 2,236 (4.0%) died; of them, 636 (28.4%) were due to cardiovascular
diseases (CVDs) and 1,276 (57.1%) due to cancers. Compared with the participants in the RetiAGE first quartile, those
in the RetiAGE fourth quartile had a 67% higher risk of 10-year all-cause mortality (HR = 1.67 [1.42–1.95]), a 142%
higher risk of CVD mortality (HR = 2.42 [1.69–3.48]) and a 60% higher risk of cancer mortality (HR = 1.60 [1.31–1.96]),
independent of CA and established ageing phenotypic biomarkers. Likewise, compared with the first quartile group, the risk
of CVD and cancer events in the fourth quartile group increased by 39% (HR = 1.39 [1.14–1.69]) and 18% (HR = 1.18
[1.10–1.26]), respectively. The best discrimination ability for RetiAGE alone was found for CVD mortality (c-index = 0.70,
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sensitivity = 0.76, specificity = 0.55). Furthermore, adding RetiAGE increased the discrimination ability of the model beyond
CA and phenotypic biomarkers (increment in c-index between 1 and 2%).
Conclusions: the DL-derived RetiAGE provides a novel, alternative approach to measure ageing.

Keywords: Deep learning, artificial intelligence, biological age, retinal photograph, mortality, cardiovascular disease, cancer,
older people

Key Points

• We developed a retina-based biological age (termed RetiAGE) based on a deep learning algorithm trained using retinal
photos.

• RetiAGE was associated with all-cause, cardiovascular disease and cancer mortality, and with cardiovascular and cancer
events, independently of chronological age and phenotypic biomarkers.

• Furthermore, adding RetiAGE increased the discrimination ability of the model beyond chronological age and phenotypic
biomarkers.

• This approach provides a novel, alternative approach to measure biological age using retinal photographs.

Introduction

Globally, the number of persons aged 80 years or over is
projected to increase more than threefold between 2017
and 2050, reaching 425 million in 2050 [1]. This ageing
population is likely to result in an increased prevalence
of cardiovascular [2, 3] and chronic diseases [4, 5] with
significant healthcare associated costs [6]. In this context, the
identification of robust biomarkers for disease risk stratifi-
cation could help implement early health interventions and
limit the burden of these diseases.

Biological age (BA) can be defined as a quantity expressing
the ‘true global state’ of ageing organism. Biomarkers of BA
are of particular interest, because measurements of BA may
better capture physiological changes associated with ageing
process, compared with chronological age (CA). BA can thus
be used to assess the general health status of individuals
of the same CA. Different measurements can be used to
estimate BA, including clinical biomarkers [7] (like total
cholesterol and blood pressure or combination of several
clinical biomarkers, such as ‘PhenoAge’ [8]), telomere length
[9], DNA methylation [10], etc. For example, using physio-
logical and blood biomarkers to estimate BA, studies found
that individuals of the same CA varied on their BA by as
much as 10 years above and below their CA [11]. Moreover,
the estimated BA outperformed the CA in predicting frailty
and mortality [11]. However, the invasive, high-cost and/or
time-consuming nature of these measurements has limited
their value as a clinically useful biomarker of BA.

The retina (fundus) of the eye represents a unique non-
invasive window into the systemic health status. Changes in
retinal vasculature, for example, may reflect a range of sub-
clinical pathophysiologic responses to hyperglycemia, hyper-
tension and inflammation [12]. They are also associated
with increased risk of several chronic and age-related diseases
[13–17]. Furthermore, changes in the retina are associated
with ageing. From middle age onwards, the geometrical
complexity of the retinal vasculature is reduced [18] as well
as the retinal vessel calibres [19]. Moreover, vessel calibres are

associated with carotid artery plaque and carotid artery
intima-media thickness [20, 21]. More importantly, the
retina is amenable to noninvasive imaging and rapid assess-
ment with digital photography.

Deep learning (DL) is a subfield of machine learning
and a leading methodology for extracting insights from
unstructured data such as images. The flexibility of DL
approaches makes them especially powerful at identifying
patterns and has subsequently led to their rapid adoption
within the medical imaging community. DL algorithms have
been successfully applied to retinal photographs in predicting
the risk of systemic diseases, such as anemia [22], chronic
kidney diseases [23], estimating systemic biomarkers [24–
26] and cardiovascular risk [27].

We hypothesised that BA could be predicted using DL
on retinal images. Hence, in this study, we developed a
retinal photograph-based DL algorithm to predict BA and
determined the performance of this new BA marker in
stratifying risk for mortality (all-cause, cardiovascular disease
[CVD] and cancer) and disease events (CVD and cancer).
Finally, we investigated the ability of the new BA marker to
improve the discrimination of mortality and disease events
beyond CA and established clinical biomarkers.

Methods

This study was approved by the Institutional Review Board
(IRB) of Severance Hospital at Yonsei University College
of Medicine in Seoul, Korea. The IRB waived the require-
ment to obtain informed consent. Because of it retrospective
design and use of deidentified data (both image and clinical),
this study was deemed exempt from IRB review by the IRB
of SingHealth. In the UK Biobank study, written informed
consent was obtained from the participants.

Overall study design

We provide here a summary of the materials and
methods used for this study. A detailed version is available in
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Table 1. Characteristics of the study population

Korean Health Screening Study
(n = 46,551)

UK Biobank Study (n = 56,301)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Characteristics and PhenoAGE variables and score

Female, n (%) 21,134 (45.4%) 30.129 (53.5%)
CA (year), mean (SD) 53.8 (9.4) 57.1 (8.3)
Albumin (g/L), mean (SD) 44.7 (2.6) 45.7 (2.6)
Creatinine (umol/L), mean (SD) 69.4 (19.4) 73.2 (17.1)
Glucose (mmol/L), mean (SD) 5.5 (1.2) 5.1 (1.0)
C-reactive protein (mg/dL), mean (SD) 1.4 (4.9) 2.4 (4.2)
Lymphocyte percent, mean (SD) 33.8 (8.0) 29.3 (7.6)
Mean corpuscular cell volume (fL), mean (SD) 90.8 (4.7) 91.8 (4.5)
Red cell distribution width percent, mean (SD) NA 13.5 (1.0)
Alkaline phosphatase (U/L), mean (SD) 65.7 (20.8) 83.5 (25.3)
White blood cell count (1,000 cells/uL), mean (SD) 5.7 (1.7) 7.0 (2.1)

PhenoAGE score NA 51.3 (10.1)
Primary outcome: mortality

Follow-up period (year), mean (SD) 4.2 (2.7–5.7) 9.4 (1.3)
All death, n (%) 194 (0.4%) 2,236 (4.0%)
CVD death, n (%) 23 (0.1%) 636 (1.1%)
Cancer death, n (%) 95 (0.2%) 1,276 (2.3%)

Secondary outcome: disease events
CVDa

Follow-up (year), mean (SD) NA 9.3 (1.4)
CVD events, n (%) NA 1,255 (2.5%)

Cancerb

Follow-up (year), mean (SD) NA 8.6 (2.3)
Cancer events, n (%) NA 9,828 (20.3%)

Data are presented as n, n (% of participants), mean (standard deviation [SD]). CVD = cardiovascular disease; NA = data not available; PhenoAGE = phenotypic age
calculated based on clinical biomarkers (CA, albumin, creatinine, glucose, C-reactive protein [log], lymphocyte percent, mean [red] cell volume, red cell distribution
width, alkaline phosphatase, white blood cell count) aAmong 49,493 participants without cancers at baseline bAmong 48,457 participants without CVDs at baseline

Appendix 1. In brief, we trained the DL algorithm to predict
the probability for an individual of being ≥65 years old
based on retinal photos using data from a health-screening
centre in South Korea (Korean Health Screening study).
We used a Visual Geometry Group (VGG), a classical deep
convolutional neural network architecture with multiple
layers that is widely used for image recognition [28]. The
algorithm was trained to predict the likelihood of being old
using a cut off value of 65 years old. No other information
was used to train the algorithm. By doing so, we aimed at
capturing patterns in the retina related to age by comparing
an ‘older’ group with a ‘younger’ group in a broad and
unspecific way. The algorithm was trained to pick up
patterns that might occur in different parts of the retina
and that might not be visible for human eyes. Furthermore,
recognizing that 65 years old is an arbitrary cutoff, we also
trained additional models by using 70 and 75 years old as
the cutoff. We then assessed the association between this
new marker (termed ‘RetiAGE’) in quartiles and mortality
(all-cause, CVD and cancer related), and between RetiAGE
and disease events (CVD and cancer) in the UK Biobank
[29]. The flowchart of the study is presented in Appendix 7.

Statistical analyses

Cox proportional hazards model was used to estimate
the hazard ratios (HRs) corresponding to the associations

between RetiAGE and the five outcomes. The Cox models
were adjusted either on CA or on PhenoAGE, a pheno-
typic biomarker built using the following demographic
and clinical data: CA, albumin, creatinine, glucose, c-
reactive protein (log), lymphocyte percent, mean (red) cell
volume, red cell distribution width, alkaline phosphatase
and white blood cell count [8]. C-index was used to
assess the discrimination of the Cox proportional hazards
models [30]. The improvement of discrimination when
adding RetiAGE to the risk model with either CA or
PhenoAGE was assessed by testing the significance of the
difference in c-index between the models with and without
RetiAGE [31].

Results

Study population characteristics

In the Korean Health Screening study, the mean baseline age
was 53.6 years (SD, 9.2) and 45.4% were female (Table 1).
Among the 46,551 participants, 194 (0.4%) died during
the 6-year follow-up. In the UK Biobank study, the mean
baseline age was 57.1 years (SD, 8.3) and 46.5% were female
(Table 1). Among the 56,301 participants, 2,236 (4.0%)
died for all causes during the 10-year follow-up. Of them,
28.4% (636/2,236) were due to CVD-related causes and
57.1% (1,276/2,236) due to cancer related causes.
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Figure 1. Kaplan–Meier estimates of mortality, CVD and cancer risks by RetiAGE quartiles in the UK Biobank study.

Performance of RetiAGE in predicting
the probability of being ≥65 years old

The performance of RetiAGE in predicting the probability
of being ≥65 years old in the internal testing set (derived
from the Korean Health Screening study) was very good
with an area under the receiver operating characteristic
curve (AUROC) of 0.968 (95% confidence interval [CI]:
0.965–0.970) and an area under the precision-recall curve
(AUPRC) of 0.83 (95% CI: 0.83–0.84) (Appendix 8). The
characteristics of the developmental set for the DL algorithm
training are shown in Appendix 2. The performance of
RetiAGE in the UK Biobank study was moderate with
an AUROC of 0.756 (0.753–0.759) and an AUPRC
of 0.399 (0.388–0.410). Finally, the correlation between
RetiAGE and CA was 0.62 (Spearman’s rank correlation
coefficient, P < 0.001, Appendix 9A ) and between RetiAGE
and PhenoAGE was 0.56 (Spearman’s rank correlation
coefficient, P < 0.001, Appendix 9B).

Relationship between DL-predicted RetiAGE score
and mortality and diseases events

The distributions of RetiAGE and the corresponding quartile
groups in the two studies are presented in Appendix 10.
These distributions in the UK Biobank study are presented
in Appendix 11 according to the CA and the survival status.
In the UK Biobank study, the participants in the fourth
RetiAGE quartile had highest all-cause (6.8% [n = 952] for

all-cause, 2.1% [n = 301] for CVD and 3.9% [n = 543]
for cancer mortality) compared with those in the first
quartile (1.6% [n = 225]), CVD (0.3% [n = 37]) and cancer
mortality rates (1.0% [n = 147]) (Appendix 3).

Kaplan–Meier plots showed distinct mortality risk curves
for the RetiAGE quartile groups (Figure 1A-C). The unad-
justed HRs for participants in the fourth quartile group
were 4.74 (95% CI: 4.10–5.48) for all-cause, 9.19 (95%
CI: 6.53–12.93) for CVD and 4.11 (95% CI: 3.42–4.93)
for cancer mortality, compared with those in the first quar-
tile (Table 2). Adjustment on CA decreased the magnitude
of effects, but the association remained significantly. After
further adjustment on PhenoAGE (which includes CA and
other established ageing biomarkers [8]), the HRs corre-
sponding to the fourth quartile were 1.67 (95% CI: 1.42–
1.95) for all-cause, 2.42 (95% CI: 1.69–3.48) for CVD
and 1.60 (95% CI: 1.31–1.96) for cancer mortality. In
addition to mortality, similar analyses were conducted with
CVD events and cancer events (including fatal and non-
fatal events). We consistently observed the association of
disease risks with the RetiAGE quartile groups (Table 2 and
Figure 1D and E). Compared with participants in the first
quartile group, the risk of events for those in the fourth quar-
tile was 39% and 18% higher for CVD (HR = 1.39 [1.14–
1.69]) and cancer events (HR =1.18 [1.10–1.26]), respec-
tively, independent of PhenoAGE. Finally, in the Korean
study, the HRs adjusted for CA were 2.03 (95% CI: 0.96–
4.28) for the 2nd, 2.38 (95% CI: 1.05–5.41) for the 3rd
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Table 2. Risk of mortality and morbidity associated with the quartiles of the deep-learning predicted age (RetiAGE score)
in the UK Biobank study

RetiAGE Events Inc. Unadj. HR (95%CI) CA-adj. HR (95%CI) PhenoAGE-adj. HR (95%CI)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
All-cause mortality a

1st quartile 225 1.6 1.00 (reference) 1.00 (reference) 1.00 (reference)
2nd quartile 447 3.3 2.06 (1.75, 2.42) 1.31 (1.10, 1.54) 1.26 (1.06, 1.48)
3rd quartile 612 4.6 2.89 (2.48, 3.37) 1.41 (1.19, 1.67) 1.32 (1.12, 1.55)
4th quartile 952 7.5 4.74 (4.10, 5.48) 1.82 (1.54, 2.15) 1.67 (1.42, 1.95)
HR trend, P for trend 1.62 (1.55–1.68),

P < 0.001
1.21 (1.15–1.26),
P < 0.001

1.17 (1.12–1.23),
P < 0.001

CVD mortality a

1st quartile 37 0.3 1.00 (reference) 1.00 (reference) 1.00 (reference)
2nd quartile 116 0.9 3.26 (2.25, 4.72) 1.87 (1.27, 2.74) 1.7 (1.16, 2.48)
3rd quartile 182 1.4 5.26 (3.69, 7.49) 2.21 (1.51, 3.22) 1.91 (1.32, 2.75)
4th quartile 301 2.4 9.19 (6.53, 12.93) 2.93 (2.01, 4.26) 2.42 (1.69, 3.48)
HR trend, P for trend 1.88 (1.74–2.04),

P < 0.001
1.33 (1.22–1.46),
P < 0.001

1.26 (1.16–1.38),
P < 0.001

Cancer mortality a

1st quartile 147 1.1 1.00 (reference) 1.00 (reference) 1.00 (reference)
2nd quartile 256 1.9 1.80 (1.47, 2.21) 1.16 (0.94, 1.43) 1.15 (0.93, 1.42)
3rd quartile 330 2.5 2.38 (1.96, 2.89) 1.19 (0.96, 1.48) 1.17 (0.95, 1.44)
4th quartile 543 4.3 4.11 (3.42, 4.93) 1.65 (1.34, 2.04) 1.60 (1.31, 1.96)
HR trend, P for trend 1.57 (1.49–1.65),

P < 0.001
1.19 (1.12–1.26),
P < 0.001

1.18 (1.11–1.25),
P < 0.001

CVD events b

1st quartile 168 1.3 1.00 (reference) 1.00 (reference) 1.00 (reference)
2nd quartile 271 2.3 1.74 (1.44,2.11) 1.17 (0.96,1.43) 1.14 (0.93,1.39)
3rd quartile 358 3.2 2.43 (2.02,2.92) 1.29 (1.06,1.58) 1.23 (1.01,1.50)
4th quartile 458 4.5 3.46 (2.90,4.13) 1.48 (1.21,1.82) 1.39 (1.14,1.69)
HR trend, P for trend 1.48 (1.41–1.56),

P < 0.001
1.14 (1.07–1.21),
P < 0.001

1.11 (1.05–1.18),
P < 0.001

Cancer events c

1st quartile 1908 16.8 1.00 (reference) 1.00 (reference) 1.00 (reference)
2nd quartile 2,297 21.5 1.29 (1.22,1.37) 1.07 (1.00,1.14) 1.05 (0.98,1.12)
3rd quartile 2,629 26.0 1.57 (1.48,1.66) 1.13 (1.05,1.20) 1.11 (1.04,1.18)
4th quartile 2,994 31.6 1.93 (1.82,2.04) 1.20 (1.12,1.29) 1.18 (1.10,1.26)
HR trend, P for trend 1.24 (1.22–1.26),

P < 0.001
1.06 (1.04–1.09),
P < 0.001

1.06 (1.04–1.09),
P < 0.001

Inc = incidence per 1,000 person-years; CI = confidence interval; CVD = cardiovascular disease; HR = hazard ratio; Unadj. HR = unadjusted HR; CA-adj. HR = HR
adjusted HR on chronological age; PhenoAGE-adj. HR = HR adjusted on PhenoAGE; PhenoAGE = phenotypic age calculated based on clinical biomarkers (CA,
albumin, creatinine, glucose, C-reactive protein [log], lymphocyte percent, mean [red] cell volume, red cell distribution width, alkaline phosphatase, white blood
cell count); RetiAGE = deep learning-based retinal biological age. an = 56,301; bn = 49,493 for CVD; cn = 48,457

and 4.07 (95% CI: 1.70–9.74) for the 4th quartile group
(Appendix 12).

The subgroup analysis by gender showed that RetiAGE
performed better in males with higher magnitude of effects
between RetiAGE and all-cause mortality (PhenoAGE-
adjusted HR in the 4th quartile group = 1.79 [95% CI:
1.44–2.22] in males and 1.54 [95% CI: 1.21–1.95] in
females) (Appendix 13). Moreover, to account for a possible
reverse causality bias, we performed a sensitivity analysis
by excluding participants that died within the first 2 years
and observed similar findings (Appendix 14). Furthermore,
we performed additional analyses on the age threshold
considered for the DL algorithm training. Because 65 years
old is an arbitrary cutoff, we also trained the DL algorithm
using 70 and 75 years old and calculated the corresponding
c-index values (Appendix 4). The results were similar and
did not change the conclusion of the study. Finally, we
further adjusted the models on vessel calibres [25] (Appendix
5) and found very similar results.

To localise the anatomy contributing to RetiAGE,
saliency maps were generated (Figure 2). The saliency maps
indicate that RetiAGE commonly focuses on the macula,
optic disc and retinal vessels.

Improvement in predictive performance
when adding the DL-predicted RetiAGE
score to the risk models

Adding RetiAGE onto CA (model 2 versus model 1) or Phe-
noAGE (model 4 versus model 3) increased the discrimina-
tion around 1.5% for all mortality outcomes (Table 3). The
highest increase in c-index was found for CVD mortality,
with a difference in c-index up to 1.8%. Regarding CVD
and cancer events, the differences in c-index after adding
RetiAGE were within the same range (Table 3). Appendix
6 presents the sensitivities and specificities of the different
risk models.
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Figure 2. Saliency map localise anatomy contributing to RetiAGE

Table 3. Improvement in predictive performance (measured using c-index) when adding the deep learning predicted age
(RetiAGE score) to the risk models in the UK Biobank study

Model 0: RetiAGE Model 1: CA Model 2:
CA + RetiAGE

Model 3: PhenoAGE Model 4: PhenoAGE +
RetiAGE

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Primary outcome
All-cause mortality 0.664 (0.653–0.675) 0.706 (0.696–0.716) 0.720 (0.709–0.730)a 0.737 (0.727–0.747) 0.750 (0.740–0.760)a

CVD mortality 0.702 (0.684–0.720) 0.742 (0.725–0.759) 0.760 (0.744–0.777)a 0.788 (0.773–0.802) 0.804 (0.790–0.819)a

Cancer mortality 0.657 (0.642–0.671) 0.696 (0.682–0.709) 0.709 (0.695–0.722)a 0.718 (0.705–0.731) 0.732 (0.718–0.745)a

Secondary outcome
CVD event 0.646 (0.631–0.661) 0.691 (0.673–0.705) 0.701 (0.687–0.716)a 0.720 (0.706–0.733) 0.730 (0.716–0.744)a

Cancer event 0.601 (0.593–0.608) 0.629 (0.622–0.636) 0.637 (0.629–0.644)a 0.646 (0.639–0.654) 0.653 (0.646–0.661)a

The values in the table corresponded to the expressed as c-index with their 95% confidence intervals aSignificant difference between Model 1 and 2 (P < 0.001), and
Model 3 and 4 (P < 0.001) based on DeLong’s method. CVD = cardiovascular disease; RetiAGE = deep learning predicted biological age; PhenoAGE = phenotypic
age calculated based on clinical biomarkers (CA, albumin, creatinine, glucose, C-reactive protein [log], lymphocyte percent, mean [red] cell volume, red cell
distribution width, alkaline phosphatase, white blood cell count)

Discussion

We developed a retinal BA marker (RetiAGE) based on
a DL algorithm trained using retinal photos from a large
Korea dataset and demonstrated that this new marker can
risk stratify for mortality and morbidity in the UK Biobank
study, independently of CA and phenotypic biomarkers.
RetiAGE corresponded to the probability of being older than
65 years old. People in the fourth quartile of RetiAGE (thus
with a higher probability of being older) had a risk increased
by 67% for all-cause mortality, 142% for CVD and 60%
for cancer mortality; and by 39% for CVD events and 18%
for cancer events over 10-year, compared with people in the
first quartile. The best discrimination ability for RetiAGE
alone was found for CVD mortality (c-index = 0.70, sensitiv-
ity = 0.76, specificity = 0.55). Furthermore, adding RetiAGE
increased the discrimination ability of the model beyond
CA and phenotypic biomarkers (increment in c-index
between 1% and 2%). These results indicate that retinal
marker of BA could be used as an alternative measurement
of BA.

Our DL-predicted RetiAGE was associated with all-cause,
CVD and cancer mortality, and with CVD and cancer
events with moderate to high magnitude of effects (HRs
corresponding to the highest quartile between 1.60 and 2.42
for mortality, and between 1.18 and 1.39 for disease events).
These increased risks were similar to measurements of accel-
erated ageing related to oxidative stress (HR the fourth versus
the first quartile = 1.56) and DNA methylation (HR = 1.71
for moderate and 2.92 for high epigenetic score) with regard
to all-cause mortality during a 15-year follow-up period [32].
Moreover, similar associations were found for circulating
biomarkers (alpha-1-acid glycoprotein, albumin, very low-
density lipoprotein particles and citrate) with regard to all-
cause (HR [per 1-SD increase] = 1.49), CVD (HR = 1.34)
and cancer mortality (HR = 1.43), independently of conven-
tional risk factors [33]. Compared with these measurements,
our DL-predicted score based on retinal photos is simple
and noninvasive. It is furthermore relatively cheap, usually
charged $20–30, compared with genetic tests that cost few
hundred dollars. All these characteristics make our DL-
predicted marker an appropriate and relevant screening tool
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that could help early identify patients with a physiological
deterioration possibly leading to diseases and increased risk
of mortality.

In the context of ageing population with the rise of
chronic diseases, provision of early personalised recommen-
dations may have major public health benefits. For example,
we found that RetiAGE alone had a quite good discrimina-
tion ability for CVD mortality (AUROC = 0.70), with 76%
of the individuals that died within 10 years being correctly
identified using this marker. Moreover, adding RetiAGE
beyond CA and a phenotypic age score based on clinical
biomarkers (PhenoAGE) allowed to further increase the
predictive performance of the mortality risk models. The
increases in discrimination were moderate, overall comprised
between 1% and 1.8% increase in c-index, the maximum
being found for CVD mortality. Adding RetiAGE beyond
PhenoAGE increased the sensitivity by 9% for all-cause mor-
tality and by 4% beyond CA for CVD events. However, these
improvements came at the expense of decreases in specificity.
Finally, we found that RetiAGE better risk stratifies in male
compared with female. This is possibly due to differences in
retinal vasculature between sex that are associated with sys-
temic diseases. For example, retinal arteriolar vessel calibres
are narrower in male [34]; and narrower arteriolar calibres
are strongly associated with hypertension [35].

The c-index metric is known to be quite insensitive [36–
38] and small increases around 1% might still be clinically
meaningful [36]. For example, the increase we found when
adding RetiAGE beyond CA to predict CVD mortality (c-
index increment = 1.8%) was larger than the added value of
HDL cholesterol to predict CVD risk beyond age, systolic
blood pressure (SBP) and smoking (c-index increment = 1%)
[38]. Despite this, HDL cholesterol is a strong risk factor of
CVD risk and widely used in clinic to evaluate individual
risks. C-reactive protein is another example of biomarker
that is strongly associated with CV events but that do not
improve the discrimination capability of the risk prediction
model [37, 39]. Although our result seems promising, we
need to confirm our results in other populations, and the
clinical usefulness needs to be evaluated. Other DL algo-
rithms have been used to predict BA from other kind of
images or scans such as neuroimaging [40], facial images
[41] or chest X-ray [42]. However, to the best of our knowl-
edge, no study has yet investigated the association between
these BA measurements and mortality. More research is
thus needed to assess these associations and compare the
usefulness of the different approaches using DL in mortality
risk stratification.

Strengths of our study included a large Korean study for
the development of our DL-predicted score, and a large
study for validation (UK Biobank). The difference of the
ethnicity between these two studies may explain the drop in
the DL algorithm performance in predicting the probability
of age being ≥65 years between the training dataset and the
external one. However, in the latter one, we showed signifi-
cant associations and improved predictive performance when
adding RetiAGE in the mortality models, suggesting that our

new BA biomarker could be used in different populations.
Moreover, we included in our analysis clinical biomark-
ers previously used to build a validated ageing biomarker
(‘PhenoAGE’), thus demonstrating the ability of our new
biomarker in predicting mortality and morbidity related
to CVD and cancer above and beyond these biomarkers.
Finally, the similar results obtained after adjustment on vessel
calibres along with the saliency maps show that RetiAGE
did not only capture information in the retinal vasculature
but also in other areas, such as macula or optic disc. This
study has, however, limitations. Firstly, we trained the algo-
rithm to predict the probability for an individual of being
≥65 years old based on retinal photos to capture retinal
patterns associated with ageing process. However, because
the training is only based on CA, the patterns might not
specific to poor health status. Secondly, we used a cut off
to train the algorithm at 65 years old. Although frequently
used, this cut off can be seen as arbitrary. We have thus
performed sensitivity analyses using cut off at 70 and 75 years
old. We found similar results that show that our approach
is not dependant on the cut off value. Thirdly, in the UK
Biobank study, the CVD and cancer statuses at baseline were
self-reported and thus there might be recall bias. Fourthly,
the unbalanced distribution of ethnicity did not allow to
stratify the analyses on this factor. Finally, we only used good
quality retinal photos for model training and validation.
For example, in the Google’s diabetic retinopathy screening
study [43], 11.6% of the photos in a real-world prospec-
tive dataset, EyePACS-1, were ungradable. Therefore, our
model performance may not be generalizable to real-world
settings where clinical services are provided, such as dia-
betic retinopathy screening programs. The impact of ungrad-
able photos on the performance would thus need to be
evaluated.

In conclusion, we demonstrate here, using two large
datasets from Korea and UK, that a DL algorithm applied
on retinal photos can estimate BA and be used for the risk
stratification of mortality and major morbidity related to
CVD and cancer. Our approach provides a novel, alter-
native approach to measure ageing. The findings of the
study highlight the usefulness of digital technology applied
on retinal photos in the risk stratification of population
health.

Supplementary Data: Supplementary data mentioned in
the text are available to subscribers in Age and Ageing online.
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