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Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nt that are

involved in tumorigenesis and play a key role in cancer progression. To determine

whether lncRNAs are involved in acute myeloid leukemia (AML), we analyzed the

expression profile of lncRNAs and mRNAs in AML. Five pairs of AML patients and

iron deficiency anemia (IDA) controls were screened by microarray. Through coex-

pression analysis, differently expressed transcripts were divided into modules, and

lncRNAs were functionally annotated. We further analyzed the clinical significance

of crucial lncRNAs from modules in public data. Finally, the expression of three

lncRNAs, RP11-222K16.2, AC092580.4, and RP11-305O.6, were validated in newly

diagnosed AML, AML relapse, and IDA patient groups by quantitative RT-PCR,

which may be associated with AML patients’ overall survival. Further analysis

showed that RP11-222K16.2 might affect the differentiation of natural killer cells,

and promote the immunized evasion of AML by regulating Eomesodermin expres-

sion. Analysis of this study revealed that dysregulated lncRNAs and mRNAs in AML

vs IDA controls could affect the immune system and hematopoietic cell differentia-

tion. The biological functions of those lncRNAs need to be further validated.
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1 | INTRODUCTION

Acute myeloid leukemia (AML) is the most common form of hema-

tological malignant tumor that threatens human health. In the last

decade, the rapid evolution in the detection of molecular abnormali-

ties has brought more and more precise prediction of prognosis and

diagnosis, which can efficiently guide post-remission therapy and

personal treatment.1 The development of high-throughput screening

technologies (HTS), such as next-generation sequencing and cDNA

microarray, has identified several new mutations (including

DNMT3A, IDH1, IDH2, and TET2) in AML.2,3 However, the vast

majority of transcripts that were detected by HTS do not appear to

be protein-coding genes. This phenomenon is notable in non-coding

RNAs, which have been vividly described as the “dark matter” of

the genome.4 In some diseases there are no point mutations in the

protein-coding genes. The pathogenic mechanisms may be multifac-

torial and likely to involve genetic elements additional to small non-

coding RNAs, as seen in 13q14.3 of solid tumors and hematopoietic

malignancies. Long non-coding RNAs (lncRNAs) are probably the

chief culprits.5
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In contrast to small non-coding RNAs, what we know about

lncRNAs is confined to mRNA-like transcripts lacking significant

ORFs and over 200 nt in length. Recent studies indicate that

lncRNAs may play a key role in cancer pathways.6 In AML,

lncRNAs are important fractions of the biomarkers detected by

microarray. Its expression may discriminate acute leukemia molecu-

lar subtypes, which may provide a more precise tool to categorize

leukemia and stratify patients.7,8 Various lncRNAs were reported to

be implicated in AML. For example, lncRNA CCAT1 can regulate

microRNA-155 that can target for c-Myc, which in turn can acti-

vate CCAT1.9 The study was just a glance of the complex world

constructed by mRNA, microRNA, and lncRNA. Furthermore, Gar-

zon et al built a prognostic lncRNA score system for older patients

(>60 years) with cytogenetically normal AML.10 It is anticipated that

lncRNAs will be used in clinical diagnosis and treatment after large-

scale clinical trials and functional studies are completed in the near

future.

This study analyzed the expression profiles of lncRNAs and

mRNAs in AML vs iron deficiency anemia (IDA) controls, with a

focus on lncRNAs playing a big part in AML in the modularization

process. In particular, using public databases, we identified the clini-

cal significance of lncRNAs, and validated their expression in AML

patients by quantitative real-time PCR (qRT-PCR).

2 | MATERIALS AND METHODS

2.1 | Patients and samples

Bone marrow specimens were obtained from AML patients at the

Department of Hematology, Second Affiliated Hospital of Xi’an Jiao-

tong University, and Xi’an Jiaotong University (both Xi’an, China) in

2016. This study was approved by the Medical Ethics Committee of

the Second Affiliated Hospital of Xi’an Jiaotong University

(#2015182), and written informed consent was obtained from all

parents or guardians. Diagnosis of AML was made in accordance

with the revised French-American-British classification. One hundred

and fifty-one patients included in The Cancer Genome Atlas (TCGA),

investigated using RNA sequencing technology, were analyzed to

evaluate prognostic values of lncRNAs.11 The ID numbers of the

patients are shown in Table S1. To weaken the variation between

samples as much as possible, bone marrow samples from IDA were

used as controls, for the deficiency of bone marrow samples from

normal donors in clinic. Bone marrow mononuclear cells were iso-

lated using lymphocyte separation liquid within 8 hours after bone

marrow samples were harvested and subjected for isolation of total

cellular RNA, then stored at �80°C. Detailed information of all cases

in the study is summarized in Table S2.

2.2 | Profiling of lncRNA expression

Arraystar Human lncRNA Array version 4.0 was used to profile the

expression of lncRNAs, which was performed by KangChen Bio-tech

(Shanghai, China). Briefly, RNA samples from bone marrow

mononuclear cells were purified to remove rRNA and were amplified

and transcribed into fluorescent cRNAs along the entire length of

the transcripts without 30 bias. Then, each cRNA was hybridized to

the Arraystar Human lncRNA Array. The array was designed for the

global expression profiling of human lncRNA and protein-coding

mRNA transcripts, which can detect a total of 40 173 lncRNAs in

two tiered compilations: gold standard lncRNAs for 7506 well-anno-

tated functionally studied and experimentally supported full-length

lncRNAs, and reliable lncRNAs for 32 667 high confidence lncRNAs

as the comprehensive collection. The lncRNAs were carefully con-

structed using the most highly respected public transcriptome data-

bases (e.g. RefSeq, UCSC known genes, and Ensembl), as well as

landmark publications. The array also includes an entire collection of

20 730 protein-coding mRNAs further supported by the UniProt cat-

alog. Data were deposited in the Gene Expression Omnibus database

(www.ncbi.nlm.nih.gov/geo, accession no. GSE103828).

2.3 | Mapping and identification of differentially
expressed genes

We applied Agilent GeneSpring GX version 12.1 to screen out the

differentially expressed genes using the following criteria: (i) fold

change >2 for upregulation or downregulation; (ii) P-value <.05; and

(iii) false discovery rate (FDR) <0.05.

2.4 | Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes pathway analyses

Gene Ontology (GO) analysis was undertaken to facilitate the under-

standing of the unique biological significance of the genes in the dis-

tinctive or representative profiles of the differentially expressed

genes.12 Pathway analysis of differentially expressed genes was car-

ried out to find out the important pathways, based on the latest

Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The

significant GO terms and pathways were identified by Fisher’s exact

test, and FDR was utilized to correct the P-values.

2.5 | Correlation and coexpression analysis

The coexpression analysis was based on weighted correlation net-

work analysis (WGCNA), a systems biology method for constructing

relationship patterns.13 Compared to general methods, such as

Pearson’s correlation coefficient, WGCNA uses the soft threshold,

which can provide more extensive and exact correlation between

transcripts. Differentially expressed lncRNAs and mRNAs with fold

change ≥4, P < .05, and FDR <0.05 were analyzed. The value of

parameter soft threshold ≥0.98 and P-value <.05 was recommended

for the coexpression analysis. k-Core scoring was used to deter-

mine core transcripts of coexpression networks. A higher k-core

score means a more central location of a transcript within a net-

work.14 The soft threshold was adjusted to 0.8 to obtain the

lncRNA coexpressed mRNA cluster for further functional analysis

of lncRNAs.
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F IGURE 1 Volcano plots and heat map showing expression profiles of long non-coding RNAs (lncRNAs) (A) and mRNAs (B) in acute
myeloid leukemia. Left panels, plots are based on the expression values of all lncRNAs and mRNAs detected by microarray. Middle and right
panels, maps showing significantly changed lncRNAs and mRNAs with fold change ≥2.0 and ≥10.0 respectively (P < .05; false discovery rate
<0.05)

TABLE 1 Real-time quantitative PCR primer sequences used in this study

Primer name Forward (50-30) Reverse (50-30)

b-actin (H) GTGGCCGAGGACTTTGATTG CCTGTAACAACGCATCTCATATT

RP11222k16.2 CTAAACTTTTGGAGTCGCTGTG CCATTCGCCTGGACACTTAT

AC092580.4 GACCAAAGAGAAACAAGAAAAGC CAAGAGAGACAGATCGTCCACG

linc00944 CCCGGAAACATCATCTCATT GAGTTACAGGGACCGAAGCA

linc00899 CCCAACAGGAAGGTCTGGT TCAGTGCTGGGTCATTCTTG

RP1-109B7.5 CACTCGACACAGGACAGCAG CAGCTTAACTCCTCCCATGC

RP11-305O6.3 TGCTTAACCCTCCCTCAGTG GTGAGGAACGAGGAGGAGTG
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2.6 | Gene Ontology annotations of lncRNA-
correlated mRNAs

The lncRNA coexpressed mRNAs, calculated by WGCNA, were ana-

lyzed by DAVID tools for GO analysis. Fisher’s exact test was applied

to identify the significant GO terms, and FDR was utilized to correct

the P-values.

2.7 | Validation of lncRNAs by qRT-PCR

Expression of six lncRNAs was validated by qRT-PCR. The cDNA was

synthesized by reverse transcription using a PrimeScript RT reagent

kit with random primers according to the manufacturer’s protocols

(TaKaRa). Then, qRT-PCR was carried out using SYBR Premix Ex Taq

II (Tli RNaseH Plus; TaKaRa). Primers for RP11-222k16.2,

AC092580.4, LINC00944, LINC00899, RP1-109B7.5, RP11-305O.6,

and b-actin were synthesized by Invitrogen (Shanghai, China). All

qRT-PCR primer sequences are shown in Table 1.

2.8 | Statistical analysis

Statistically significant differences between groups were estimated by

the Mann-Whitney U-test for the expression of lncRNAs using SPSS

23.0 (IBM, SPSS, Chicago, IL, USA); P < .05 was considered statistically

significant. Correlation of transcripts were evaluated using Pearson’s

correlation. The Kaplan-Meier survival curves were used to show the

differences in patients’ overall survival (OS) between the high expres-

sion group and low expression group, and the statistical significance

F IGURE 2 Identification of differentially expressed long non-coding RNAs (lncRNAs) in acute myeloid leukemia (AML). A, Circos plot
showing lncRNAs and mRNAs on human chromosomes. From the outside in, the first layer of the Circos plot is a chromosome map of the
human genome, black and white bars are chromosome cytobands, and red bars represent centromeres. The transcripts, of which the k-score in
the coexpression network is >7, are labeled in the second circle. All differentially expressed lncRNAs and mRNAs are marked in red and blue,
respectively, in the third layer. The fourth and fifth layers represent the mean expression values of significantly differentially changed lncRNAs
and mRNAs in AML and Control groups. The sixth circle shows the fold change of all differentially expressed lncRNAs and mRNAs with fold
change ≥2.0, P < .05, and false discovery rate <0.05. The innermost circle indicates the k-score of the labeled transcripts. The network in the
center of the plot represents the core network; red lines indicate the linked transcripts in the same chromosome, blue in different
chromosomes. B, Types and counts of differently regulated lncRNAs classified into six categories according to the genomic loci of their
neighboring genes. The two correlation types of intergenic and natural antisense lncRNAs with their associated genes are also shown. C, Venn
diagram presents overlapping relationships, and the numbers indicate lncRNA counts

FENG ET AL. | 343



344 | FENG ET AL.



was obtained using the two-sided log-rank test. Cox regression was

used to analyze the significance of lncRNAs for OS more deeply.

3 | RESULTS

3.1 | Differentially expressed lncRNAs and mRNAs
in AML

Volcano plots were used for assessing gene expression variation

between AML and IDA patient groups. In total, 3564 lncRNAs dis-

played differential expression in AML, including 1872 upregulated

lncRNAs and 1692 downregulated lncRNAs. Of 3106 mRNAs that

showed differential expression, 1084 were upregulated and 2022

were downregulated. Among them, 37 lncRNAs and 42 mRNAs were

significantly upregulated, and 112 lncRNAs and 317 mRNAs were

significantly downregulated >10-fold in AML. Hierarchical clustering

analysis showed systematic variations in the expression of lncRNAs

and mRNAs among samples. The data suggested that the expression

of lncRNAs and mRNAs in AML differ from those in IDA controls

(Figure 1).

These lncRNAs and mRNAs are widely distributed in all chromo-

somes covering chromosome X and Y. The transcripts located in

chromosome Y are excluded to eliminate gender’s effect (Figure 2A).

The well-annotated lncRNAs (totally 1216) were classified into six

categories: 14.1% were intronic antisense, 5.8% were intron sense-

overlapping, 5.5% were bidirectional, and 1.1% were exon sense-

overlapping. There are overlaps between these four categories

(Figure 2B). Intergenic and natural antisense lncRNAs constitute the

largest number in all differentially expressed lncRNAs, and comprised

54.5% and 19.0%, respectively, in this study. We also noted that,

among the 1498 and 231 pair relationships, 57.9% of intergenic

lncRNAs and 76.6% of natural antisense were positively correlated

with their neighboring genes (Figure 2C).

3.2 | Functional analysis of differentially expressed
genes

Until now, the functions of most lncRNAs have not been well anno-

tated. Therefore, by analyzing differentially expressed mRNAs, we

can forecast the role that lncRNAs play in AML. The GO and KEGG

pathway analyses of differentially expressed mRNAs could provide a

clue about the AML disease process. We utilized all differentially

expressed mRNAs for the GO analysis and found that the most

enriched GO targeted by upregulated and downregulated transcripts

were involved in anterior/posterior pattern specification, immune

system processes, and immune response (Figure 3A). In the KEGG

pathway analysis, the down- and upregulated mRNAs were found to

be mostly enriched in hematopoietic cell lineage and glycerophos-

pholipid metabolism, respectively (Figure 3B). Many genes involved

in hematopoietic cell differentiation were dysregulated (Figure 3C). A

pathway network was constructed using 20 of the most significantly

enriched pathways to illustrate the critical pathways in the process

of AML. The hematopoietic cell lineage pathway and cell adhesion

molecules pathway were considered to be the most central functions

in the net because the exchanges with other pathways strongly

depended on their existence (Figure 3D).

To further investigate the function of genes at the protein level,

and to reveal the core mRNAs in the cellular process of AML, a bio-

logical database, Search Tool for the Retrieval of Interacting Genes/

Proteins (STRING) was used to filter functional genes, thus providing an

intuitive network for annotating structural and functional properties

of proteins.15 The highest confidence score (0.9) was adopted to eval-

uate the protein interactions for the differentially expressed genes.

The network contains 1000 nodes and 636 edges (Figure 4A). The k-

score was used to assess the importance of genes, and the 30 highest

k-score genes constitute two important subnetworks (Figure 4B). The

networks are enriched in the G-protein-coupled receptor signaling

pathway and T-cell receptor signaling pathway (Figure 4C).

3.3 | Long non-coding RNA/mRNA coexpression
network in AML

Transcriptome regulation involves a huge network, among which

many transcripts form a complex web to function. Coexpression net-

works facilitate the intricate network based on gene screening meth-

ods that can be used to identify candidate biomarkers or therapeutic

targets. The coexpression network comprised 676 network nodes

and 1283 connections, and several prominent subnetworks were

formed. The most crucial subnetwork was constructed by the tran-

scripts with a high k-score, which would be the core regulatory mod-

ules of the entire coexpression network (Figure 5). What is more,

the transcripts in this subnetwork are widely distributed in all chro-

mosomes, indicating the widely interconnected regulation network

between lncRNAs and mRNAs (Figure 2A).This subnetwork includes

four lncRNAs, RP11-222K16.2, G005087, G044640, and

ANKRD36BP2, constituting probably the core of the network.

3.4 | Coexpression and GO annotations to predict
the probable functions of lncRNAs

It is well known that lncRNAs could regulate the expression of

neighboring coding genes by cis-pattern, and affect distant genes

F IGURE 3 Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of mRNAs in acute myeloid
leukemia. A, GO annotations of up- and down regulated mRNAs with top 10 enrichment scores of biological processes. B, KEGG pathway
enrichment analysis of up- and downregulated mRNAs with top 10 enrichment scores. C, KEGG pathway annotations of the hematopoietic cell
lineage pathway. Yellow marked nodes are associated with downregulated genes; green nodes have no significance. D, Interaction and
overlapping of associated molecules among significant pathways. Hexagons represent the most significantly enriched pathways; ellipses
indicate mRNAs that act as the link hinge between the pathways. Different colors of mRNA nodes represent the absolute value of fold change
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by trans-pattern, even in different chromosomes.16,17 We con-

structed mRNA functional modules to clarify the biological role of

differently expressed lncRNAs. The mRNAs coexpressed with

lncRNA were annotated by GO terms. The enriched GO terms

(P < .05) could reflect the function of lncRNAs. The analysis flow

chart of RP11-222K16.2 is shown as an example (Figure 6A,B). To
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confirm the correlation, the multi-experiment matrix was applied to

obtain more correlated mRNAs, if the lncRNAs were included in

the database.18 Then, by their connections with mRNAs, lncRNAs

were functionally annotated. We analyzed all the lncRNAs with a

fold change >10 and constructed three separate networks to show

the connections of lncRNAs with GO annotations. The core biolog-

ical process GO terms of each separate system were: GO:

0002250, adaptive immune response; GO: 0009952, anterior/pos-

terior pattern formation; and GO: 0015671, oxygen transport.

Referring to the results of GO annotations for differentially

expressed mRNAs, the core GO terms for lncRNAs correctly

reflect the biological process of AML.

3.5 | Survival analysis using TCGA for lncRNAs

After the systemic analysis of lncRNA and mRNA expression profil-

ing, we obtained the core lncRNAs from the coexpression network

and the GO annotations enrichment map. Through analysis of the

TCGA dataset, which provides extensive genetic studies of human

gene expression and specific disease associations, we found several

F IGURE 5 Coexpression networks constructed by weighted correlation network analysis. Circle, mRNA; diamond, long non-coding RNA;
line, correlative relationship. Different sizes and colors represent the corresponding k-core scoring; we highlighted the highest k-core
subnetwork

F IGURE 4 Protein-protein interaction networks by Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). A, STRING software
constructed the differentially expressed mRNAs (fold change ≥2, P < .05, and false discovery rate [FDR] < 0.05) network based on protein-
protein interactions. A confidence score that calculated for all protein interactions based on experimentally and computationally interaction
was set as the highest (>0.9). B, Thirty top k-score genes involved in the network. C, Thirty top k-score genes constitute the two core
subnetworks. Yellow, those enriched in T-cell receptor signaling pathway (FDR = 1.20E-07); gray, enriched in the G-protein-coupled receptor
signaling pathway (FDR = 1.97E-07)
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lncRNAs that are involved the prognosis of AML patients. Of 151

patients in the AML dataset, 130 had full transcript sequencing and

survival time data. Hundred and forty seven lncRNAs in our microar-

ray had fold change >10 or belonged to the core of the coexpression

network, and 44 of these 147 lncRNAs had the expression profiling

in the TCGA dataset. Based on the median value of lncRNA expres-

sion, patients were divided into high expression and low expression

groups for each lncRNA. The Kaplan-Meier survival curves of 130

patients with AML showed that expression of eight lncRNAs was

correlated with OS (Figure 7A). Among the eight lncRNAs, lncRNA

RP11-222k16.2 is the core of the coexpression network, and

lncRNA HOXB-AS3 has been reported to be upregulated in NPM1-

mutated AML.19 In order to find independent factors for patients’

OS, a multivariate regression analysis was further carried out on the

expression levels of eight lncRNAs with OS, and other individual

clinical features were also considered. The results showed RP11-

222k16.2, LINC00899 and RP11-305O.6 were significant to inde-

pendently predict patients’ OS (P < .05). The significant factors are

summarized in Table 2. All 130 patients were assigned to a high-

risk group or a low-risk group using the median risk score as the

cut-off point. The Kaplan-Meier analysis showed that there are sig-

nificant differences in patients’ OS between high-risk and low-risk

F IGURE 6 Gene Ontology (GO) annotations for long non-coding RNAs (lncRNAs) in in acute myeloid leukemia. A, mRNAs that coexpressed
with lncRNA RP11-222K16.2. Weighted correlation network analysis based on Pearson’s correlation was used to estimate the correlation
coefficient between the lncRNA and coding genes, and the soft threshold was set at 0.8. B, GO annotations enriched in the lncRNA RP11-
222K16.2 coexpressed mRNA cluster (P-value <.05, false discovery rate [FDR] <0.05). C, GO annotations enrichment maps for lncRNAs with
fold change >10, P-value <0.05, FDR <0.05, and GO terms with P-value <.05. Different colors represent how many other nodes that the
lncRNA/GO term is linked with. Red lines represent the relationship is confirmed by the multi-experiment matrix database
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groups (P < .001, log-rank test; Figure 7B). Patients in the high-risk

group had significantly shorter mean OS (569.7 days) than those in

the low-risk group (1448.5 days). In conclusion, the three lncRNAs

not only expressed abnormally in AML, but also had important clin-

ical significance. Further functional studies for these lncRNAs would

be valuable.

3.6 | Validation of dysregulated lncRNAs in AML vs
IDA controls

To validate the microarray data, we used qRT-PCR to detect lncRNA

expression. RP11-222k16.2 and AC092580.4 that belonged to the

core of the coexpression network and had the highest GO

F IGURE 7 Expression of eight long non-coding RNAs (from The Cancer Genome Atlas [TCGA]) correlates with survival in acute myeloid
leukemia. A, Kaplan-Meier survival curves of 130 patients with acute myeloid leukemia. The median value of expression was set as the cut-off
point. B, Kaplan-Meier analysis for overall survival of patients with high-risk or low-risk scores in the TCGA dataset. C, Risk score distribution
and survival status of the risk score model in 130 patients of TCGA dataset
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annotation enrichment (Figures 5 and 6C) were confirmed in bone

marrow from 82 AML patients (51 newly diagnosed, 8 relapses, and

23 complete response) and 17 IDA patients. LINC00944,

LINC00899, RP6-109B7.5, and RP11-305O.6 were detected in 22

newly diagnosed AML and 10 IDA cases. Through our confirmation,

lncRNA RP11-222K16.2, AC092580.4, LINC00944, and RP11-

305O.6 had different expressions in AML and IDA, but LINC00944

lost significance. Furthermore, RP11-222K16.2 and AC092580.4 had

validated difference in newly diagnosed and recurrent AML between

complete response patients (Figure 8).

3.7 | Long non-coding RNA RP11-222K16.2
involved in the immune system through cis-regulated
Eomes

As mentioned, RP11-222K16.2 was the core lncRNA in the coex-

pression network. The GO annotations showed that it was involved

in the immune system. What is more, its expression level was corre-

lated with AML patients’ OS. To understand how lncRNA RP11-

222k16.2 functions in AML, we had the deeper insight into the AML

transcripts’ sequencing data from the TCGA. We calculated the

Spearman’s correlation of lncRNA RP11-222k16.2 with approxi-

mately 37 100 transcripts in 151 AML patients. Eomes is the mRNA

with the highest correlation with lncRNA RP11-222K16.2, and this

gene is located downstream of the lncRNA within 10K (Figure 9A,B);

pan-cancer data from the chip-base database strengthened the cor-

relation (Figure 9C).20 Based on Flank 10K theory,21 we supposed

that this lncRNA might regulate Eomes expression by cis-pattern.

For further study, 506 mRNAs, whose Spearman’s correlation with

the lncRNA RP11-222K16.2 were >0.4, were analyzed by Gene Set

Enrichment Analysis. An enrichment map was constructed using

gene sets with P-value <.05 (Figure 9D,E).22 The gene sets involved

in immune system development, regulation of leukocyte differentia-

tion, regulation of cell-cell adherence, and KEGG pathways in cancer

were significantly downregulated in the AML group. The top-scoring

gene in the immune system development category was Eomes. This

gene was differentially expressed in our microarray data, and the

analysis by string software showed that it was the core mRNA in

AML (Figure 4B). Eomes is a master regulator of CD8 T-cell function,

and a transcription factor that is critical for terminal natural killer

(NK) cell differentiation.23,24 A recent study noted the NK cells from

leukemic mice and humans with AML showed lower level of Eomes,

which at least partly led to the blocking of NK cell differentiation,

and then it enabled AML to evade mature NK cell surveillance.25

Based on these results, we predicted that, through the lncRNA-

mediated dysregulation of Eomes, blocking of NK cell differentiation

occurs, promoting the immunized evasion of AML. Additional studies

are underway to probe into this additional mechanism of immune

escape in cancer.

4 | DISCUSSION

It is well known that the mutation of genes and chromosomes con-

tribute to the pathogenesis of leukemia.25 However, lncRNAs, the

rising stars in biology, have just begun to be understood, and the

majority of them have not yet been researched. To provide some

insights into the biological functions of lncRNAs in the pathogenesis

of AML, we undertook a comprehensive analysis of lncRNA and

mRNA profiling data from AML and IDA patients, together with data

from a public database. We identified the core lncRNAs and their

functional annotations, and validated their expression by qRT-PCR.

Overall, our work uncovered an interlaced transcripts network that is

involved in AML development, in which lncRNAs play an indispens-

able role.

We explored the expression patterns of transcripts between

AML patients and IDA controls’ bone marrow. Microarray data iden-

tified vast lncRNAs and mRNAs, supporting an extensive involve-

ment of lncRNAs in AML. There were two important concepts that

ran throughout our studies to handle the mass data. First, we simpli-

fied the complex transcript network by modularization. The GO and

KEGG pathway analyses divided mRNAs into several functional mod-

ules, which are related to immunity, hematopoiesis, and cancer, indi-

cating the validity of the microarray. STRING and WGCNA were used

to construct coexpressed networks from the public and our microar-

ray data, respectively, and then the networks were facilitated into

several subnetworks through the k-score method. In the same way,

lncRNAs were attributed their correlated functional mRNA modules

through the coexpressed network and GO annotations. Overall,

modularization contributes to simplifying the intricate network into

modules, which were like “big genes”. Second, the AML dataset from

TABLE 2 Multivariable Cox regression analysis of eight long non-
coding RNAs and other individual clinical features

Hazard
ratio Coefficient Wald P-value

Variables in the equation

RP11-222K16.2 0.562 �0.577 3.915 .048

LINC00899 1.811 0.594 4.973 .026

RP11-3050.6 0.464 �0.767 7.487 .006

Age 1.027 0.027 10.230 .001

Cytogenetics risk

category

1.632 0.490 5.620 .018

White blood cell 1.007 0.007 4.164 .041

Variables not in the equation

LINC00944 — — 0.971 .324

RP1-90G24.11 — — 0.294 .587

CTB-83J4.1 — — 0.387 .534

HOXB-AS3 — — 0.121 .728

RP6-109B7.5 — — 0.954 .329

Gender — — 1.526 .217

Bone blast cell — — 0.361 .548

Blast cell — — 2.830 .092

The backward step (likelihood ratio) method was used. Variables are sum-

marized. —, not available.
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TCGA was applied to analyze the clinical significance of lncRNAs

from the modules. Eight lncRNAs might have prognostic application

in AML. Among them, RP11-222K16.2 gained our attention as it

belonged to the most important subnetwork, and its expression is

associated with patients’ OS. Further analysis of public data showed

that the lncRNA may regulate Eomes to block NK cell differentiation,

leading to the immunized evasion of AML. Finally, three lncRNAs,

RP11-222K16.2, AC092580.4, and RP11-305O.6, were confirmed as

significantly differentially expressed in AML patients and IDA con-

trols by qRT-PCR.

Our work clearly indicated an important role for lncRNAs in AML.

However, many lncRNAs were excluded as they failed to be allocated

to functional modules and have not been included in public data. It

was difficult to originally understand the functions and targets of

these lncRNAs, which may also play a key role in AML. In addition,

our analysis showed that lncRNA RP11-222K16.2 was highly corre-

lated with Eomes, its neighboring gene. The lncRNA may be directly

or indirectly correlated with Eomes and there may be additional tran-

scripts involved in the lncRNA-associated biological process. The

lncRNA’s biological functions need to be validated further.

The last decades witnessed the discovery of biological functions

for non-coding RNA, which triggered the recognition that RNA is

not only a simple hinge of the central dogma but also directly takes

part in the regulation of biological networks.6,26 With the develop-

ment of next-generation sequencing, especially in terms of depth

and scale, significant data has been accumulated. We have to recog-

nize the system is so complex that it is beyond the initial recogni-

tion. Fortunately, the progress of methodology simplifies the

networks. Through modularization, thousands of transcripts can be

facilitated into several “big genes,” and then the core lncRNAs of

each module can be researched in details. Moreover, the active

application of accumulated public data will help us to make the func-

tions of lncRNAs more clear. Hopefully, this study can provide a ref-

erence for the broad analysis of HTS data.

F IGURE 8 Expression of RP11-222K16.2, AC092580.4, RP11-305O.6, and LINC00944 in samples from patients with newly diagnosed
acute myeloid leukemia (AML), disease relapse (R), or complete response (CR), and iron deficiency anemia (IDA) controls. RP11-222K16.2 and
AC092580.4 were significantly downregulated in newly diagnosed and relapsed AML. RP11-305O.6 was significantly upregulated in newly
diagnosed AML. LINC00944 was downregulated in newly diagnosed AML, but lost its significance
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F IGURE 9 Functional analysis of long non-coding RNA (lncRNA) RP11-222K16.2 in acute myeloid leukemia (AML). A, Schematic
representation of the composition of the Eomes gene and the RP11-222K16.2 loci on human chromosome 3p24.1. B, Pearson’s correlation of
the lncRNA RP11-222k16.2 with Eomes in the AML dataset from The Cancer Genome Atlas (TCGA). C, Pearson’s correlation of the lncRNA
RP11-222k16.2 with Eomes in 10 cancers from TCGA. Data were acquired from the CHIP-BASE database. The size of the points represents the
number of patients included in the dataset. D, E, Gene Set Enrichment Analysis (D) and map (E) for all protein-coding genes with Spearman
correlations >0.4 with lncRNA RP11-222K16.2
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