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The involvement of the microbiome in health and disease is well established. Microbiome
genome-wide association studies (mGWAS) are used to elucidate the interaction of
host genetic variation with the microbiome. The emergence of this relatively new
field has been facilitated by the advent of next generation sequencing technologies
that enable the investigation of the complex interaction between host genetics and
microbial communities. In this paper, we review recent studies investigating host–
microbiome interactions using mGWAS. Additionally, we highlight the marked disparity
in the sampling population of mGWAS carried out to date and draw attention to the
critical need for inclusion of diverse populations.

Keywords: genome-wide association study, microbiome, microbiome-GWAS, host-genetic, host–microbiome
interaction

INTRODUCTION

The past two decades have seen tremendous advancement in our understanding of human genetic
variation and its implication in health and disease. This has, in part, been facilitated by extensive
scientific collaboration and the exponential increase of technical and methodological advancements
(Figure 1). Examples of notable large scale scientific collaboration include the Human Genome
Project (Sawicki et al., 1993) which published the DNA sequence of the entire human genome;
the International Haplotype Map (HapMap) Project (Thorisson et al., 2005) which cataloged the
patterns of common polymorphisms (typically minor allele frequency (MAF) larger than 1%) in the
human genome and its linkage disequilibrium (LD) structure across multiple ancestral populations.
Further, advances in genotyping made feasible, at a relatively low cost, the genotyping of hundreds
of thousands (or even millions) of common variants across the human genome. Together these
factors catapulted the genome-wide association study (GWAS) in humans (herein referred to as
“host”) population.

Genome-wide association study in host populations (hGWAS) has identified hundreds of
genetic variants associated with many complex human traits and diseases, novel biological
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mechanisms and drug targets for infectious and non-infectious
diseases (Relling and Evans, 2015). The microbiome, which is the
collection of bacteria, archea, fungi, protozoa, and viruses that
colonize our body surface and their respective genome (Blum,
2017), has shown to play a major role in human health and
disease. The success of hGWAS approach provided an optimistic
outlook for and eventual implementation to the microbiome. The
microbiome genome-wide association study (mGWAS) aims to
identify the host’s genetic polymorphisms that interact with its
microbiome. Recently, mGWASs have identified and validated
many heritable bacterial taxa, including the Christensenellaceae
and Methanogens families (Goodrich et al., 2017). Moreover,
mGWAS has linked host genotypes and identified pathways with
inter-individual variability in microbiome composition in states
of health and disease (Hall et al., 2017; Imhann et al., 2018). These
findings corroborate the common view that the microbiome
plays a significant role in a host’s traits, disease susceptibility and
resistance, and treatment response.

Even though multiple lines of evidence have indicated
significant host–microbiome interactions (Goodrich et al., 2017;
Kurilshikov et al., 2017; Weissbrod et al., 2018), the relative
strength of these interactions is unclear, with studies yielding
somewhat contrasting results (Rothschild et al., 2018). This is
perhaps unsurprising given the plasticity of the microbiome to
external factors. In light of this, a key, and yet challenging task,
is the establishment of truly causative factors in the observed
associations between the environment, host genetics and the
microbiome when investigating complex traits and diseases.
Including the various microbiome data types, that is, proteomic,
metabolomic and transcriptomic, to complement the current
mostly used genomic data may help illuminate these interactions.
However, combining complex and high dimensional data is
not straight forward, introducing yet another challenge. In
addition, as in the case of hGWAS (Peprah et al., 2015), the
existing disparity in microbiome research, in terms of genomic
diversity of the sampling population, further thwarts insights
into the complex host–microbiome–environment interaction. As
depicted in Figure 2 and elaborated in the section “disparity
in host-microbiome GWAS,” there is a striking lack of genomic
diversity of the study populations in mGWAS published to
date.

Here, we review recent studies investigating host–microbiome
interactions, through the concept of mGWAS. Then, we highlight
the marked disparity in the sampling population of mGWAS
carried out to date and draw attention to the critical need for
inclusion of non-European populations. Finally, we explore some
pertinent challenges in mGWAS.

HUMAN VARIATION

In the realm of genetics, human variation, the variation in allele
and/or allele frequency, is inherent in all human populations and
underlies population differences in many phenotypic expressions,
including resistance and susceptibility to diseases. Genomic
variation ranges from large microscopic rearrangements such as
insertions and deletions, to smaller submicroscopic variations

such as single-nucleotide polymorphisms (SNPs) and copy
number variation (CNV). Analysis of human genomic variation
in the 1000 genomes project reported that a typical genome
contains ∼4.1–5.0 million variants, of which >99.9% are
SNPs and indels (1000 Genomes Project Consortium et al.,
2015). It is important to note, however, that despite being
rare (MAF < 0.5%), structural variants affect more bases,
have larger effect sizes (Chiang et al., 2017), and are also
thought to be potentially involved in disease pathogenesis
due to their enrichment for changes that alter protein
sequence and function (Casals and Bertranpetit, 2012; Nelson
et al., 2012). Thus, in pursuit of unraveling host genetic
variants that interact with the microbiome, knowledge of
the abundance and distribution of genetic variants along the
genome is critical for characterizing the genetic architecture
of common as well as rare traits/diseases, and discerning
functionally important variations from the myriad of genomic
polymorphisms.

With recent technological advances in genotyping arrays and
next-generation sequencing (NGS), it is becoming increasingly
feasible to conduct large-scale studies, presenting the opportunity
for discovery of both rare and common genetic variation. Deep
sequencing offers the opportunity to uncover the complete
repertoire of these variations (Marth et al., 2011). However,
performing deep sequencing on a genome-wide scale is currently
limited due to relatively high cost. To this end, whole-exome
sequencing and, particularly, genotype arrays have become
methods of choice in the geneticist’s arsenal. Intriguingly, these
studies, particularly those targeted to protein-coding genes, have
revealed the existence of multitude of variants at population
and individual level that disrupt protein-coding genes in every
human genome (Reijnders et al., 2018), some of which having
different phenotypic effects (Blauwendraat et al., 2018; Grarup
et al., 2018). These variants generally referred to as loss or gain-
of-function variants, occur at low frequency in the genome,
and have gene-disrupting ability (MacArthur and Tyler-Smith,
2010); which result in their implications for clinical interpretation
of genomic sequences (MacArthur and Tyler-Smith, 2010).
It is clear that with NGS technology, many novel genomic
variants will be unveiled which, in effect, will facilitate the
development of a comprehensive catalog of human genetic
diversity.

HUMAN MICROBIOME DIVERSITY

The human microbiome exhibits both intra- and inter-individual
variability (Lax et al., 2014; Gupta et al., 2017). Studies
on twins have shown that the microbiota of identical twins
are more similar compared to that of their siblings. Also,
siblings have a more similar microbiota than that of unrelated
individuals (Goodrich et al., 2014). Similar to genetic variation,
the human microbiome plays an important role in health and
disease (Blekhman et al., 2015; Hall et al., 2017; Gilbert et al.,
2018). The microbiome has been associated with variants in
host genes involved in immunity and metabolism (Blekhman
et al., 2015). The human immune system has a complex
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FIGURE 1 | Examples illustrating partial major technological and large-scale collaborative projects (excluding data repositories) on host and microbiome
genome-wide association studies (GWAS).

FIGURE 2 | World map showing study location for host GWAS (represented by continent) and microbiome genome-wide association studies (mGWAS) (represented
by country/study site). For host GWAS, the data reflects the state of GWAS in 2016 and the locations refers to continental regions and the proportions of host GWAS
using samples recruited from those continental regions are as indicated in the legend [data retrieved from Popejoy and Fullerton (2016)]. For mGWAS, the locations
refer to the country/study site where the individual for the study were recruited.

bidirectional relationship with the microbiome. It has been
shown that the microbiome is associated with the variability
of the immune responses and these responses may also be

involved in modifying the microbiome itself (Belkaid and
Hand, 2014; Schirmer et al., 2016; Takiishi et al., 2017).
Furthermore, human genetic polymorphisms at various loci are
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hypothesized to interact with each other and with an individual’s
microbiome to impact disease (Blekhman et al., 2015; Hall
et al., 2017). In particular, mutations in host genes can influence
its interaction with the compositional and functional diversity
of the microbiome, potentially modulating an individual’s
susceptibility to disease (Sandoval-Motta et al., 2017b). In healthy
individuals, the microbiome composition is balanced (Rajilic-
Stojanovic et al., 2009; Lloyd-Price et al., 2016), and imbalance
is now known to be associated with clinical conditions such as
diabetes, and inflammatory bowel disease (van Tongeren et al.,
2005; Upadhyaya and Banerjee, 2015). Besides host genetics,
other factors have been associated with microbial community
composition including diet and antibiotic consumption. Many
studies have reported that both long- and short-term diet can
influence the microbiome composition (Wu et al., 2011; Conlon
and Bird, 2014). For example, high-carbohydrate diets have been
associated with prevalence of Prevotella, while Bacteroides are
associated with high-fat and high-protein diets (Singh et al.,
2017). Additionally, consumption of antibiotics may shift the
microbiome composition to a temporally quasi-stable state. This
state can be either capable of reverting back to the initial state,
or to an alternative irreversible post-antibiotic dysbiosis state
(Lozupone et al., 2012). This dysbiosis state is characterized by
a loss of taxonomic and functional diversity, which may shift the
host’s metabolic capacity and reduce the colonization resistance
against invading pathogens (Langdon et al., 2016; Lange et al.,
2016).

HOST AND MICROBIOME GWAS

Host Genome-Wide Association Studies
Genome-wide association study aims to determine the link
between genotypic and phenotypic variabilities. This is achieved
by obtaining genome-wide genotypic data and phenotypic
measurements from a number of subjects, and comparing the
frequency of these variants across phenotypic values. GWAS
has undoubtedly had successes, identifying thousands of genetic
variants associated with hundreds of traits (Visscher et al.,
2017), providing valuable insights into the genetic basis of many
common traits. Due to LD, any identified associated variant is not
necessarily causal as it may simply be “tagging” the causal variant.
In addition, most genomic variants are located outside protein-
coding regions and are of unknown biological functions (Yang
et al., 2017). Consequently, for most traits, little is known about
the biological mechanism underlying the associations detected by
GWAS.

A critical step toward the elucidation of the underlying
biological mechanism is to discern the causal variants.
Pinpointing the putative causal variant is, however, challenging
for several reasons, including the fact that: (i) most risk regions
encompass and implicate multiple variants in the case of complex
traits, which without the functional information of the variants,
makes it extremely difficult to pinpoint the true causative variant,
and (ii) risk variants may reside outside risk regions, and their
effects are propagated through regulatory elements (Lin et al.,
2016). To this end, several post-GWAS approaches have been

introduced (Wang et al., 2010), driven by the need to leverage
GWAS summary statistics to account for polygenicity at the
SNP, gene or pathway levels to determine the functional role of
the identified variants, uncover their biological mode of action
and illuminate their regulatory mechanism (Chen et al., 2015;
Chimusa et al., 2015).

Also pertinent to host GWAS is the “missing heritability”
problem, which describes the observation that the proportion
of heritability explained by the GWAS-associated variants is
much less than calculated from familial studies. The reasons
for this are still unknown and remains controversial (Marian,
2012; Zaitlen and Kraft, 2012; Sandoval-Motta et al., 2017b),
with possible reasons being cited to include epistasis, epigenetics,
small effect sizes of the variants, poor coverage of genetic
variations on genotyping platforms (Hou and Zhao, 2013).
Meanwhile, some researchers have attributed this discrepancy
to the fact that GWAS only accounts for genetic variation
in human cells and does not consider the effects of the
microbiome on phenotype (Marian, 2012; Sandoval-Motta et al.,
2017a,b). In light of this, incorporating the microbiome into
host GWAS has been hypothesized to significantly reduce
the missing heritability gap for microbiome-associated traits
(Sandoval-Motta et al., 2017b). However, given that it is not
yet known why microbiome is more similar in monozygotic
than in dizygotic twins, incorporating other potential sources of
variability such as diet, behavior – which are usually assumed
to be homogenous across the subjects - may help to explain the
missing heritability.

Microbiome Genome-Wide Association
Studies: Approaches and Applications
The microbes that inhabit the human body exist in a synergistic
relationship with the human host, performing several important
roles in metabolism, detoxification, homoeostasis, immunity
and epithelial development (Tremaroli and Bäckhed, 2012;
Belkaid and Hand, 2014). The human microbiome composition
varies widely across different body sites and shows some
stability at adulthood for the predominant bacterial communities
(Blekhman et al., 2015; Lloyd-Price et al., 2016). Host–
microbiome interactions soon establish an equilibrium, which
determines the state of health of an individual (Tremaroli and
Bäckhed, 2012; Blekhman et al., 2015). Thus, understanding
the interactions of both the microbiome and host genetics
may provide more insights on disease diagnosis, treatment,
and prevention. A number of studies have linked the human
microbiome at the various body sites to the development of a
wide range of complex traits and diseases, including weight gain,
obesity, inflammatory bowel disease, diabetes, cardiovascular
disease, cancer, major depression, autism spectrum disorder, and
asthma (Kostic et al., 2014; Jiang et al., 2015; Hall et al., 2017;
Allali et al., 2018; Qiao et al., 2018). These phenotypic expressions
are related to the changes in the overall taxonomic composition,
as well as presence or absence of specific bacterial.

Owing to the role played by the microbiome in the
pathogenesis of many diseases, there has been a surge of interest
in understanding host DNA sequence variations that modulate
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the human microbiome (Marchesi et al., 2016). Early insights
into interaction between host genome and microbiome were
obtained from animal based studies (Blekhman et al., 2015; Wang
et al., 2016). For example, Rawls et al. (2006) showed that the
observed difference between the microbiotas of zebrafish and
mice is due to the underlying host genetics. Host genetic loci
that shape diversity in skin microbiota and confer susceptibility
to disease in mice were also identified (Srinivas et al., 2013). In
humans, studies involving monozygotic and dizygotic twins have
shown that the abundance of certain microbial taxa are more
correlated amongst monozygotic than with dizygotic twin pairs
indicating that host genetic factors are involved in modulating gut
microbiome composition across human populations (Goodrich
et al., 2014; Xie et al., 2016).

The observations above motivated the advent of microbiome
genome-wide association study (mGWAS). Using microbiome
attributes (such as alpha diversity, beta diversity or relative
abundance of bacterial taxa) as the response variable and host’s
genotype data as the explanatory variable. mGWAS measures and
analyses DNA sequence variations across the host’s genome in
order to identify genetic factors that modulate the composition
and functional diversity of the microbiome. To date, studies
published on mGWAS have raised interest and provided new
insights (Blekhman et al., 2015; Davenport et al., 2015; Hua
et al., 2015; Bonder et al., 2016; Goodrich et al., 2016; Turpin
et al., 2016; Wang et al., 2016; Igartua et al., 2017; Rühlemann
et al., 2018; Rothschild et al., 2018). The three first studies
using mGWAS were conducted on a relatively small sample size.
Blekhman et al. conducted the first mGWAS in 93 individuals
using human microbiome data and host genetic information
gleaned from the Human Microbiome Project (Gilbert et al.,
2010); microbiome data and host DNA were from 15 body
sites (Blekhman et al., 2015). The authors identified significant
associations between several host genes and pathways with
microbiome composition. Following this work, Davenport et al.
(2015) reported the second mGWAS which investigated host
genetic effects on the gut microbiome of 127 Hutteries (North
America) and found host SNPs are associated with the abundance
of several bacterial taxa. In the third study, Hua et al. have
developed the microbiome-GWAS tool that has been tested
on 16S rRNA microbiome data from 147 non-malignant lung
tissue samples (Yu et al., 2016) to establish the microbiome
composition in terms of cancer risk SNPs. The authors found
significant associations between six previously established lung
cancer risk SNPs and microbiome composition. Subsequent
studies have used larger samples of ∼300–2000 individuals
and have reported significant (Bonder et al., 2016; Goodrich
et al., 2016; Turpin et al., 2016; Wang et al., 2016). However,
Kolde et al. (2018) did not identify significant associations in
their untargeted genome-wide analysis in contrast with the
findings of Belkhman et al. who used the same cohort and
have reported 83 significant associations. Kolde et al. (2018)
have reported that the main reason for this difference is the
choice of significance thresholds; they used a more stringent
Bonferroni correction while Belkhman et al. used false discovery
rate (FDR) multiple hypothesis test correction. Additionally, a
recent study of 1046 healthy Israeli individuals, with several

different ancestral origins and who share a relatively common
environment, did not find any significant associations between
(Rothschild et al., 2018). The results of the above studies
suggest that some bacterial taxa are heritable but the results
of one study cannot be replicated except for the bacterial
taxa Bifidobacterium which were found to be significantly
associated with the lactase LCT gene locus (Blekhman et al.,
2015; Bonder et al., 2016; Goodrich et al., 2016; Rothschild
et al., 2018). Table 1 summarizes the mGWAS carried out to
date.

mGWAS Approaches and Tools
There are many microbiome attributes that may be leveraged
as phenotypes for a mGWAS. First, alpha diversity, that is,
the diversity of species within community samples (Wilson
and Shmida, 1984) may be used as phenotype and an
association performed against host genotypes. Second, beta
diversity, that is, the diversity between community samples
(Wilson and Shmida, 1984), defined using phylogeny-informed
or taxa abundance-informed pairwise distance measures, may
be used as phenotype. It is important to note, however,
that because the microbiota functions as a community, cross-
sample analysis using beta diversity measure is more robust
compared to alpha diversity (Hua et al., 2016). Third, the
relative abundance of each taxon at a given taxonomic level
(species, genus, family, order, class, and phylum) may be
used as phenotype, and analysis performed to assess the
association of each SNP with the taxon. Alternatively, with
shotgun metagenomic sequencing that, unlike the 16S rRNA
approach, provides functional information, bacterial pathways
may be used as trait for mGWAS. The varied and peculiar
features of microbiome phenotypes, particularly, the high
dimension (Section “Challenges Underpinning mGWAS”) limit
the application of some host GWAS tools. Nonetheless, host
GWAS (Zhou and Stephens, 2012) and (Lippert et al., 2011) have
been applied in mGWAS using taxonomic abundance as bacterial
phenotype; albeit, it cannot be used for association testing with
microbiome distance metrics.

To this end, microbiome-specific tool and method have
recently been developed: microbiomeGWAS (Hua et al., 2015),
and microbiome-association index (Rothschild et al., 2018).
microbiomeGWAS uses standard linear regression with beta
diversity metrics and corrects for skewness and kurtosis. It
identifies host genetic variants associated with microbiome beta
diversity by testing both SNP-microbiome and SNP-environment
interactions. Because the statistical power of these distance-
based measures depends on the choice of the distance metric,
this tool was subsequently improved to accommodate multiple
distance matrices. Meanwhile, microbiome-association index
(b2) has been specifically developed to quantify the overall
association of microbiome to host’s phenotype, incorporating
the contribution of host genetics. Using this association index,
a measure similar to narrow sense heritability in hGWAS, the
authors showed that several host phenotypes, including body
mass index, fasting glucose levels, glycaemic status, and lactose
consumption, exhibited substantial b2 values in the range of
22–36%. In addition, different statistical methods have been
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used in mGWAS such as the ordination and permutation-based
envfit, ordi2step, snpStats, and Spearman’s correlation statistical
methods (Table 1).

DISPARITY IN HOST AND MICROBIOME
GWAS

Despite the meteoric rise in GWASs over the last few years, the
number of studies inclusive of genetically diverse populations
is disproportionately low. A 2015 assessment of the number
of NIH-funded GWAS focused on or utilizing non-European
populations revealed great disparity; for example, of the 4,942
publications, African American, Hispanic, and Jewish ancestry
constituted only ∼3%, <1%, and <1%, respectively, of the
sampling study population (Peprah et al., 2015). A recent
analysis of a curated database of genomic variants associated with
various traits/diseases, provided by the National Human Genome
Research Institute (NHGRI) and the European Bioinformatics
Institute (EMBL-EBI), revealed a bias in genomic diversity
and disproportionate representation (in terms of ancestry,
and physical and social environments of the study subjects)
in published GWAS (Hindorff et al., 2018). As of August
2016, non-European ancestry represented only 19% of all
individuals in GWAS. This becomes a pertinent issue given the
observation that non-European individuals contribute a larger
number of genotype-phenotype associations (Morales et al., 2018;
Hindorff et al., 2018), and studies in other (non-European)
population groups continue to identify novel genetic variants.
This disparity in population representation is not confined
to host GWAS. Although a relatively young field, mGWAS
carried out since its inception in 2015, show marked disparity
in terms of genetic diversity and population representation. As
depicted in Figure 2, most studies involved individuals from
North America and Europe. With mGWAS findings differing
markedly across all these studies, better inclusivity of diverse
populations will illuminate any underlying interactions since it
is possible that the interaction of host genetic variant(s) with
the microbiome may be population-, environment-, or even
individual-specific owing to other yet-unknown clinical and
environmental factors.

From a statistical genetics perspective, while the inclusion
of non-European populations, in particular the African
population, is a critical step toward discovery of important
host–genetic interactions in traits/diseases, the implementation
requires methodological and technological refinement. It is
well known that variants associated with diseases found in
populations of European descent do not always replicate in
non-European, particularly African populations (Peprah et al.,
2015). This discrepancy across populations are due to several
possible reasons including differences in allelic architecture,
LD, and environmental factors across populations (Popejoy and
Fullerton, 2016; Bentley et al., 2017). Thus, there is a need to
design appropriate novel statistical models that are tailored to
leverage the characteristics of non-European subjects. Moreover,
most of the current technologies for mining genetic data, for
example genotyping arrays, have been designed for populations
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of European descent with long-range patterns of LD (Peprah
et al., 2015; Popejoy and Fullerton, 2016) or nearly homogeneous
environments.

CHALLENGES UNDERPINNING mGWAS

Microbiome genome-wide association studies findings have
provided unprecedented views into the association of human
host genes with microbes or microbial genes. However, there are
several key challenges which also present new opportunities that
need to be tackled if we are to assemble a global understanding of
host-genetic association with the microbiome.

Demographic and Environmental Factors
The human microbiome is sensitive to a wide range of
demographic and environmental factors. Factors as diverse as
gender (Foster et al., 2017), age (Mäkivuokko et al., 2010),
and geography (Yatsunenko et al., 2012) have all been shown
to influence the composition and functional diversity of the
microbiome. These factors can introduce sampling artifacts or
biases in mGWAS which can reduce statistical power. Therefore,
the statistical models need to adjust for, the effect of these
factors. This is particularly important if such factors do not have
interaction effect with the genetic variants. Accounting for these
factors remains a fundamental challenge for mGWAS. Although
it is nearly impractical to adjust for all these factors in a typical
setting, it is imperative that enumerable factors be considered
as covariates in downstream analyses. Adjustment for potential
endogenous and exogenous sources of variability will be key
aspects for providing reliable and replicable results.

The Complexity of Microbiome Data
Pertinent to mGWAS, the complexity of microbiome data in
terms of dimension, phenotype and correlation structure presents
a challenge in the development of robust association frameworks.
Microbiome data is highly dimensional, often consisting of
hundreds of bacterial taxa. When searching for genetic variants
associated with a bacterial trait, multiple tests are carried out,
each time testing the null hypothesis of no difference in genotype
distribution. With many taxa, this leads to not only high
computational cost, but increases in the number of statistical
tests. This requires correction for multiple testing to control
for the occurrence of false positives. The correction (commonly
genome-wide significance, permutation tests, FDR or Bonferroni
correction), however, introduces yet another challenge – a
potential reduction in statistical power – especially when an
underpowered adjustment procedure or an inappropriate error
rate is used. The inherent strengths and limitations of each
of these correction methods influence association results. For
example, (Blekhman et al., 2015) and (Kolde et al., 2018),
using FDR and Bonferroni corrections, respectively, obtained
contrasting results using the same research cohort. The current
solution to circumvent the issue of multiple testing is to focus
on only a subset of taxa or variants. For example, (Davenport
et al., 2015) reduced the number of bacterial taxa by removing all
taxa highly correlated with taxa at the same or lower taxonomic

FIGURE 3 | Possible direction of host–microbiome–environment interactions
in the context of host phenotypes. (A) First possibility is that host-genetic
polymorphism with or without the environmental effects will influence host
phenotype independently of host–microbiome interactions. (B) Second
possibility is that host genetic polymorphisms do not directly determine
phenotype, but rather, host–microbiome interactions and environmental
factors modulate the microbiome, which, in turn shapes the host phenotype.
(C) Third possibility is that host genetic variation and microbiome changes,
both influenced by environmental factors, affect host gene regulation which
will control the host’s phenotype. (D) Fourth possibility that is the
microbiome–environment interactions will directly affect host phenotype
independently of host genetic.

level. Meanwhile, in another study by Bonder et al. (2016), the
authors performed a targeted association analysis focusing only
on SNPs in genes related to immunity and metabolism. While
robust in detecting true associations, using only a selection of taxa
leads to incomplete representation of microbiome composition
and, consequently, limits the opportunity to discover novel
associations. This issue is critical as there may be specific rare
taxa that can interact with the host genetics. Likewise, although
powerful at dissecting association at a biologically plausible
region of interest, reducing the number of host genes variants
examined can result in exclusion of relevant genes from the
analysis.

In addition, the genetic architecture, the landscape of
contributions of host genetics to a given microbiome phenotype,
is at best poorly understood although studies of host–genetic
interactions with microbiome suggests polygenicity. Moreover,
the reported percentage of microbiome variation explained by
the associated alleles are generally very small (for example 0.65–
0.97% in Wang et al., 2016), and thus unable to explain much of
the variability in microbiome phenotype. Given this effect size,
large sample sizes will be required to detect modestly associated
variants. Meanwhile, the high level of trait collinearity coupled
with complex correlation structure (Kurilshikov et al., 2017)
also make it challenging for statistical methods. Even though
parametric linear models remain the cornerstone for genetic
association studies and have played pivotal role in mGWAS
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FIGURE 4 | Illustrative representation of possible host and microbiome GWAS approaches. For mGWAS, different microbiome omic data could be individually or
jointly regressed with host genomic data. Results from mGWAS and hGWAS will clarify on host-microbiome associations, effect of host-microbiome associations on
the phenotype, and provide insight into biological system by giving a better view of the interaction networks that underlie expression of host phenotypes.

carried out to date, they are limited to detecting non-linear
interaction patterns. In particular, when modeling complex
structures such as varying effect and non-linear interactions,
the exponential rise in the number of parameters increases
computational cost and reduces statistical power (Moore et al.,
2010). Moreover, linear models generally treat interaction effects
as factors with independent marginal effects; a strategy that
lowers its power in the presence of interaction effects (Millstein
et al., 2006). Given these limitations, there is a need to develop
mGWAS-adapted statistical methods to complement existing
linear models.

Replicability of Results
Besides the challenges toward achieving reliable results,
replication of mGWAS results has been poor. The first mGWAS,
(Blekhman et al., 2015), using 93 individuals and bacterial
taxa as phenotypes, detected 83 associations between genetic
polymorphisms in host coding genes and the abundance
of specific bacterial taxa. Of note, was the association of
immune-related genes, HLA-DRA and TLR1, with abundance
of Selenomonas and Lautropia, respectively, and the strong
link between SNPs in the lactase persistence gene, LCT, and
abundance of Bifidobacterium. In subsequent studies, for
example, (Davenport et al., 2015; Bonder et al., 2016; Goodrich
et al., 2016), many immune and metabolism-related host genes
were found to be significantly associated with abundance of

bacterial taxa and beta diversity measures. However, there was
little congruence between the results across these studies. This
can possibly be attributed to factors including differences in
statistical methods, multiple-testing corrections, lifestyle, diet,
demographic and environmental conditions of the samples.
Nonetheless, the enrichment of microbiome-associated variants
with immunity and metabolism related genes, and the generally
small effect size, the percentage of microbiome variation
explained by the genes, (<1%) remain the most consistent.
This suggests that a large proportion of heritability for most
bacterial traits may be accounted for by many small effect genetic
polymorphisms in immunity and metabolism-encoding genes.
A corollary is that bacterial traits likely have an infinitesimal
genetic architecture, requiring meta-analyses to detect the
associated variants. A combination of larger sample sizes, unified
robust analysis methods, and inter-cohort analyses facilitated
by collaborations such as MiBioGen consortium (Wang et al.,
2018) are crucial for both the attainment of power to detect
small to moderate host genetic effects on microbiome traits and
replicability of findings.

CONCLUSION AND PERSPECTIVES

Discovery of the role of the microbiome in normalcy and
disease status spurred efforts to elucidate the interaction of
host genetic variation with the microbiome, leading to the
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development of mGWAS. Initial foray into mGWAS has led
to the discovery of host genetic variants that contribute to
variability in compositional and functionality diversity of the
microbiome. Despite the significant strides made in this field,
further developments are still needed to elucidate the extent,
direction, and mechanism of host-microbiome association and
how this association ultimately impact on host’s phenotypic
expression (Figure 3).

Moving forward, the importance of sufficient sample sizes
cannot be overstated. This will require a collaborative approach,
pooling samples from across different geographic regions of
the world to generate sufficiently powered studies for discovery
and replication. In doing so, the trade-off between sample size
and between-sample heterogeneity must be carefully assessed,
given the myriad of factors that can reduce the association
power of mGWAS. Otherwise, a wide between-sample differences
resulting from temporal and spatial heterogeneities will reduce
the power to detect true association. In addition to sample size,
maximizing bacterial trait information will potentially increase
detection power. Current mGWAS has focused on independent
analysis of various bacterial traits. This is probably due to the
current lack of known software applications that can enable a
joint analysis of microbial taxa/pathway and microbial diversity.
Given the relative etiological similarity of these traits, it is
likely that such joint multiple phenotype analysis will maximize
discovery power.

In addition, even though mGWAS to date have primarily
focused on the genomic level, regressing host’s genetic variation
with microbiome’s transcriptomic, metabolomic, and proteomic
data types or integrating them in a joint host genotype-
microbiome association analysis (Figure 4) will be an exciting
venture. mGWAS using these multi-level data types can
potentially yield insights into whether host–microbiome
interactions are, if any, universal or more pronounced to a
specific microbial attribute; facilitating identification of particular
host genetic polymorphisms that interacts with the microbiome
on a molecular level. This is crucial if mGWAS results are to have
any utility at level of understanding host’s clinical and biological
states.

Furthermore, the integration of environmental factors in
mGWAS will lead to an exciting starting point and perspective
for a more comprehensive and robust analysis of host-
microbiome interaction in more powered studies. However,
the current challenges include difficulty of adjusting for
potential environmental factors, complexity of microbiome
data, and lack of robust and unified analytical frameworks
to handle the diverse and peculiar properties of microbial
attributes as quantitative traits. Together, addressing these
challenges coupled with increased sample size, independent
replication, and meta-analysis in multiple populations will
provide a more complete understanding of human variation
and microbial diversity in connection with health and
disease.
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