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Abstract: In high-throughput profiling studies, extensive efforts have been devoted to searching
for the biomarkers associated with the development and progression of complex diseases. The
heterogeneity of covariate effects associated with the outcomes across subjects has been noted in the
literature. In this paper, we consider a scenario where the effects of covariates change smoothly across
subjects, which are ordered by a known auxiliary variable. To this end, we develop a penalization-
based approach, which applies a penalization technique to simultaneously select important covariates
and estimate their unique effects on the outcome variables of each subject. We demonstrate that,
under the appropriate conditions, our method shows selection and estimation consistency. Additional
simulations demonstrate its superiority compared to several competing methods. Furthermore,
applying the proposed approach to two The Cancer Genome Atlas datasets leads to better prediction
performance and higher selection stability.

Keywords: heterogeneity; covariate effects; penalization; genomics

1. Introduction

The tremendous development of high-throughput sequencing techniques allows for
the generation of massive genomic data, e.g., gene expressions and Single-Nucleotide
Polymorphisms (SNPs). These data provide an unprecedented opportunity of uncover-
ing biomarkers associated with outcomes such as the development and progression of
complex diseases, e.g., cancers and type II diabetes. Numerous studies on this topic have
been hitherto carried out. However, most existing studies assume that a covariate has an
identical effect on the outcome variable for all subjects, which is often unrealistic in practice.
For example, Ford et al. [1] found that the risk of breast and ovarian cancers in BRCA2
mutation carriers increases with age. Another example is that the effects of some genes
in the nicotinic 15q25 locus on lung cancer risk are mediated by nicotine dependence [2].
These findings suggest that the effects of a specific covariate can be heterogenous and
discrepancies in covariate effects or covariate-outcome associations may arise due to the
differences in clinical characteristics and other traits that differ across subjects. As such, ig-
noring such effects, heterogeneity in genomic data analysis can result in biased estimations
and misleading inferences.

The most commonly used strategy for handling heterogeneity is subgroup analysis,
under which subjects form subgroups and each subgroup has unique covariate-outcome
associations. A number of approaches have been proposed, such as the finite mixture
model [3–5], and penalization-based approaches, such as concave fusion penalization [6,7],
and C-Lasso [8]. However, these approaches assume that the effects of covariates are the
same within each subgroup. As suggested by the literature, the covariate (e.g., genetic)
effects are typically associated with clinical measures (e.g., age and number of cigarettes
smoked per day), which are often continuous variables. As such, in some applications,
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covariate effects are more likely to vary smoothly rather than being locally constant within
each subgroup.

In this study, we focus on a scenario where the subjects can be ordered by an auxiliary
variable (see Section 2 for details). We consider a linear regression model with heteroge-
neous covariate effects by allowing the regression coefficients to vary smoothly across
subjects. We then propose a novel penalization approach to capture the smoothing changes
of coefficients. Under this approach, a “spline-lasso” penalty is imposed on the second-
order derivatives of the coefficients to encourage smoothness in coefficients’ changes.
Additionally, we introduce a penalty of the group Lasso form to accommodate the high
dimensionality of genomic data (i.e., the number of genes is larger than the sample size)
and select the relevant covariates.

Our work is related to the varying coefficient models, a kind of classical semi-
parametric model. It treats the coefficients as functions of certain characteristics, and uses
various nonparametric smoothing techniques, such as spline-based methods [9,10],
and local polynomial smoothing [11], to approximate the unknown coefficient func-
tions. For example, high-dimensional varying coefficient models proposed by
Wei et al. [12], Xue and Qu [13], Song et al. [14], Chen et al. [15], finite mixture of varying
coefficient model [16], and additive varying-coefficient model for non linear gene-environment
interactions [17]. Compared to these varying-coefficient regression approaches, the pro-
posed method has few requirements for the distribution of auxiliary variables and bet-
ter estimates the regression coefficients when auxiliary variable is unevenly distributed
(Figure 1).

Figure 1. Estimation results for a toy example with N = 200 subjects and p = 10 genes with
three important genes. The values of the gene expressions are generated from multivariate normal
distribution N(0, Σ), where Σii = 1 and Σij = 0.3|i−j|. The ticks on the x-axis represent the values of
the auxiliary variable (age).

Moreover, the proposed approach is also related to but also significantly advances
existing ones. First, it advances existing genomic marker identification studies by con-
sidering the heterogeneity of covariate effects. Second, it advances gene-environment
interaction analysis methods [18,19] by allowing more flexibility in the relationship pattern
(not limited to a given relationship) between covariate (genetic) effects and environmental
factors (auxiliary variables). Finally, the proposed approach also advances the existing
multiple changing-point regression studies [20,21] by tracking the gradually changes of
coefficients rather than the abrupt ones (Figure 1). Overall, this approach is practically
useful for analyzing genomic data and may lead to important new findings.

To further illustrate differences of the proposed method from varying-coefficient mod-
els and multiple changing-point regression methods, consider a simple simulation example
with N = 200, p = 10, and 3 significant variables. The coefficient for each variable varies
among individuals and is a function of a certain environmental factor, e.g., age. Suppose
the age is unevenly distributed among subjects, with subjects concentrated between the
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age of 25–35 and 45–55, which is indicated by denser rugs in the Figure 1. We compare
proposed method with the varying-coefficient model [12] and the change point regression
model [22]. The simulation results show that the compared method performs relatively
poorly (root mean squared errors (RMSE) = 4.853, rooted prediction error (RPE) = 1.325 for
varying-coefficient model; RMSE = 3.158, RPE = 1.242 for change point regression model),
while proposed method identifies the true coefficient pathway consistently (RMSE = 0.954,
RPE = 0.893).

The rest of this paper is organized as follows. In Section 2, we introduce the proposed
approach, present the algorithm, and discuss some theoretical properties. Simulations are
shown in Section 3. Section 4 presents the analysis of two The Cancer Genome Atlas (TCGA)
datasets. Section 5 concludes the paper. The technical details of proofs and additional
numerical results are provided in the Appendixes A–D.

2. Materials and Methods

Assume a dataset consists of N independent subjects. For subject n, let yn and
Xn = (Xn

1 , Xn
2 , . . . , Xn

p) denote the response variable and the p-dimensional vector of
genomic measurements, respectively. In our numerical study, we analyze gene expression
data. It is noted that the proposed approach can also be applied to other types of omics
measurements. Assume the data has been standardized and consider a heterogenous linear
regression model given by:

yn = Xnβn + εn, (1)

where εn’s are independent and identically distributed (i.i.d.) random errors and
βn = (βn

1 , βn
2 , . . . , βn

p)
> are the regression coefficients. Different from the standard re-

gression model, which imposes an identical β on all subjects, model (1) allows βn to be
subject-specific. Here, we consider a linear regression, which is standard to model the
relationship between covariates and outcomes. The proposed approach is applicable to
other models, for example, the AFT model. More details are provided in Appendix A. In
this paper, we focus on a scenario where the heterogeneity analysis of covariate effects
can be conducted with the aid of an auxiliary variable whose measurement is available
for N subjects. Specifically, we assume that the subjects have been sorted according to
the auxiliary variable’s values. Further, the effect of a relevant covariate on the response
variable is expected to vary smoothly across subjects. The studies reviewed in Section 1 and
other similar ones suggest that the covariate (e.g., genetic) effects are usually associated
with clinical traits. As such, we choose an auxiliary variable with known interactions with
clinical variables. Please see the examples in the data analysis section for details (Section 4).

Remark 1. In subgroup-level heterogeneity analysis, an auxiliary variable may not be needed.
However, a subject-level heterogeneity analysis is intractable without the auxiliary variable due
to non-identifiability. To date, the existing methods that can handle this type of heterogeneity,
for example, varying-coefficients and interaction analysis, all require an auxiliary variable. Note
that, in our analysis, the auxiliary variable does not need to be “precise.” Consider, for example,
a sample of size 5. Auxiliary variable A has the values 1, 3, 7, 2, and 9 for the five subjects and
auxiliary variable B has the values −0.8, 0.4, 0.5, 0.0, and 3. Although auxiliary variables A and B
do not match, the proposed method can lead to the same covariate effects when using both auxiliary
variables as an ordering index.

As previously mentioned, we propose a novel penalized estimation and denote
β j = (β1

j , . . . , βN
j )
> and β = (β>1 , β>2 , . . . , β>p )

>. Then, we define estimator β̂ as the
solution of the following optimization problem:
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β̂ = arg min
β

F(β) ≡ 1
2N

N

∑
n=1

(yn − Xnβn)2 + λ1

p

∑
j=1

ωj‖β j‖2

+λ2

p

∑
j=1

N

∑
n=1

1
2

[
(βn+1

j − βn
j )− (βn

j − βn−1
j )

]2
,

where ‖u‖2 represents the two-norm of any vector u and ωj’s are weights. λ1 ≥ 0 and
λ2 ≥ 0 are data-dependent tuning parameters. We also introduce an “expanded” measure-
ment matrix Z:

Z =


X(1)

1 X(1)
2 . . . X(1)

p
. . . . . . . . .

X(N)
1 X(N)

2 . . . X(N)
p


N×Np

.

We denote Y = (y1, y2, . . . , yn)>. Then, objective function F(β) can be rewritten in a
more compact form:

F(β) =
1

2N
‖Y− Zβ‖2

2 + λ1

p

∑
j=1

ωj‖β j‖2 +
λ2

2

p

∑
j=1
‖Aβ j‖2

2, (2)

A = {en − 2en+1 + en+2, n = 1, 2, . . . , N − 2}> with en being the N × 1 column vector,
whose nth element is 1, and the others are 0.

Rationale. In (2), the first term is the lack-of-fit measure, expressed as the sum of N
individual subjects. The first penalty is the group Lasso on β. Here the “group” refers to the
regression coefficients of N subjects for a specific covariate. This penalty accommodates the
high-dimensionality of the data and allows for the regularized estimation and selection of
relevant covariates. The “all-in-all-out” property of the group Lasso leads to a homogeneous
sparsity structure, that is, the N subjects have the same set of important covariates. To obtain
an oracle estimator, we add weight ωj to the sparsity penalty, which is determined by an
initial estimator. Assuming that initial estimator β̃ j is available, let ωj =

1
‖β̃ j‖∞

.

The main advancement is the second penalty, which has a spline form. It penalizes the
second-order derivatives (in discrete version) of coefficients βn

j to promote the smoothness
of coefficients between adjacent subjects. Note that the coefficients for any adjacent subjects
are assigned a penalty of the same magnitude regardless of the distance between subjects
measured by the auxiliary variable. Different from standard spline-lasso penalties [23],
it is imposed on the regression coefficients of different subjects. Furthermore, different
from some alternatives which promote first-order smoothness, such as the fusion Lasso [24]
and smooth Lasso [25], this penalty encourages second-order smoothness. Additionally,
the quadratic form of this penalty makes it computationally easier than the absolute-value-
form penalty, such as Lasso. It is noted that the gene-environment interaction analysis also
can capture the smooth change of covariate effects over an auxiliary variable (environmental
factor). However, the interaction analysis approach requires specifying a parametric form of
the relationship between covariate effects and auxiliary variable, which is not very flexible
in practice, in particular, for high-dimensional data.

2.1. Computation

Optimization (2) can be realized using a block coordinate descent (CD) algorithm.
For each covariate j, its measurement on the N subjects Xj = (X1

j , X2
j , . . . , XN

j )> forms
a group and corresponding coefficients β j are simultaneously updated. The algorithm
optimizes the objective function with respect to one group of coefficients and iteratively
cycles through all groups until convergence is reached. Let Z[j] = diag(X>j ) represent the
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sub-matrix of Z, corresponding to Xj, which is a diagonal matrix. We denote β
(k)
j as the

estimate of β j in the kth iteration. The proposed algorithm proceeds as follows:

1. Initialize k = 0, β(k) = 0 and set β(−1) = β(0).
2. Update k = k + 1. For j ∈ {1, 2, . . . , p}, minimize M(β j) with respect to β j, where:

M(β j) = L(β j) + λ1ωj‖β j‖2,

L(β j) =
1

2N
‖Y− Z[j]β j − ∑

m>j
Z[m]β

(k−1)
m − ∑

m<j
Z[m]β

(k)
m ‖2

2 +
λ2

2
‖Aβ j‖2

2.

This can be realized by executing the following steps:

(a) Set the step size t = 1.
Compute

D1j =
1
N

Z>[j]
(

∑
m≥j

Z[m]β
(k−1)
m + ∑

m<j
Z[m]β

(k)
m −Y

)
+ λ2 A>Aβ

(k−1)
j ,

Gj =

(
1−

tλ1ωj

‖β(k−1)
j − tD1j‖2

)
+

(β
(k−1)
j − tD1j).

Increase step size by t← 0.8t until

L(Gj) ≤ L(β
(k−1)
j ) + D>1j(Gj − β

(k−1)
j ) +

1
2t
‖Gj − β

(k−1)
j ‖2

2.

(b) Compute

v = β
(k−1)
j +

k− 2
k + 1

(β
(k−1)
j − β

(k−2)
j ), (3)

D2j =
1
N

Z>[j]
(

Z[j]v + ∑
m>j

Z[m]β
(k−1)
m + ∑

m<j
Z[m]β

(k)
m −Y

)
+ λ2 A>Av

and update the estimate of β j by

β
(k)
j ←

(
1−

tλ1ωj

‖v− tD2j‖2

)
+

(v− tD2j).

3. Repeat Step 2 until convergence is achieved. In our numerical study, the convergence

criterion is min
1≤j≤p

‖β(k)
j − β

(k−1)
j ‖2 < 10−3.

To speed up the algorithm, we add a momentum term to the last iteration of β
(k−1)
j

in (3) and determine step size t via the backtracking line search method. After the algorithm
converges, some groups of coefficients are estimated as zeros. To further improve estimation
accuracy, in practice, we can remove the covariates with zero coefficients and re-estimate
the nonzero coefficients by minimizing objective function (2) without the sparsity penalty.
The proposed approach involves two tuning parameters selected using a grid search and
the K-fold cross validation with K = 5.

Realization. To facilitate data analysis within and beyond this study, we have devel-
oped a Python code implementing the proposed approach and made it publicly available
at https://github.com/foliag/SSA (accessed on 21 March 2022). The proposed approach
is computationally affordable. As shown in Figure A1, the computational time of the
proposed approach is linear, with an increasing number of features.

2.2. Statistical Properties

Here, we establish the consistency properties of the proposed approach. We define
a new dataset (Ỹ, Z̃) by Ỹ(n+(n−2)×p) = (Y, 0)> and Z̃(n+(n−2)×p)×np = (Z,

√
Nλ2A)>,

https://github.com/foliag/SSA
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where A = A⊗ Ip×p. Then, objective function (2) can be converted to an adaptive group
Lasso form:

F(β) =
1

2N
‖Ỹ− Z̃β‖2

2 + λ1

p

∑
j=1

ωj‖β j‖2.

Let β0 = ((β0
1)
>, (β0

2)
>, . . . , (β0

p)
>)> be the true parameter values. We denote q as

the number of non-zero coefficient vectors. Without loss of generality, assume β0
j 6= 0

for 1 ≤ j ≤ q. We define two sets, E1 = {j|1 ≤ j ≤ q} and E0 = {j|q + 1 ≤ j ≤ p},
corresponding to the index of nonzero and zero coefficient vectors, respectively. Let
J = A′A and Σ = 1

N Z>Z + λ2 J. We then use τ to represent the minimal eigenvalue of
matrix Σ. The following conditions are assumed:

(C0) Errors ε1, ε2, . . . , εN are i.i.d sub-Gaussian random variables with mean zero.
That is, for certain constants 0.5 ≤ t ≤ 1 and K, C ≥ 0, the tail probabilities of εn satisfy
P(|εn| > x) ≤ Ke−Cxt

for all x ≥ 0 and n = 1, 2, . . . , N.

(C1) Let m = max
1≤j≤p,1≤n≤N

|Xn
j |. Then, m = O(1).

(C2) Let α1 = min
j∈E1

‖β0
j ‖2√
N

. Then, α1 = O(1). Moreover, there exists a constant α2 > 0

so that P(min
j∈E1
‖β̃ j‖∞ > α2)→ 1.

(C3) τ > 0 and λ2
τ → 0.

(C4) ‖Jβ0‖2 = O(
√

N).

Condition (C0) is the sub-Gaussian condition is commonly assumed in studies [26].
Condition (C1) assumes the measurement matrix is bounded. Similar conditions have been
considered by AuthMartinussen and Scheike [27] and Binkiewicz and Vogelstein [28]. Con-
dition (C2) puts a lower bound on the size of the smallest signal and assumes the initial β̃ j
is not too small for j ∈ E1. Similar conditions have been considered by Wei and Huang [29].
Condition (C3) is similar to the assumption made in Case I of Guo et al. [23], which requires
Σ to be invertible and the minimal eigenvalue τ to converge to 0 at a rate controlled by
λ2. Condition (C4) makes a weak constraint on β0, which can be satisfied when for any
nonzero coefficient vector βk (k ∈ E1) the largest gap between two adjacent components
is bounded.

Theorem 1. Assume Conditions (C0)–(C4) hold, as does event Ω =
{

maxj∈(1,2,...,p) ‖β̃ j‖∞ =

o
(

N
3
4 λ1

log N
√

log p

)}
when N does to infinity. We define ‖β0 − β̂‖2,N = ‖β0−β̂‖2√

N
. Then, with a

probability converging to one, we have

‖β0 − β̂‖2,N ≤
4λ1
√

qα−1
2 + 2λ2‖Jβ0‖2

τ
√

N
.

The proof is provided in Appendix B. If q is not too large and α2 and τ are not too

small, we may have
√

q
τα2
∼o
(

N
5
4

log N
√

log p

)
(more details below). Then, we can find a λ1 that

satisfies 1
λ1
∼o
(

N
3
4

log N
√

log p

)
and λ1∼o

(
τα2

√
N
q

)
simultaneously. It is not difficult to prove

that event Ω holds for the marginal regression estimator as the initial estimator. As a result,
under conditions (C3) and (C4), the gap between β0 and β̂ converges to 0. This theorem
thus establishes estimation consistency.

The following additional conditions are assumed:
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(C5) Initial estimators β̃ j are r-consistent for the estimation of certain ξ j:

r max
j∈E0
‖β̃ j − ξ j‖∞ = Op(1), r → ∞,

where ξ j is an unknown constant vector satisfying max
j∈E0
‖ξ j‖∞ ≤ M.

(C6) Constants {p, q, M, λ1, λ2, τ, α2} satisfy:

√
q log N

τN
5
4

+
λ1

τα2

√
q
N

+
log N

√
log(p− q)(N + qτ−1)

N
9
4 λ1

(1
r
+ M

)
→ 0,

2m2√q(λ1α−1
2
√

q + λ2‖Jβ0‖2)

τλ1
√

N3

(1
r
+ M

)
≤ 1.

Condition (C5) is similar to condition (A2) in Huang et al. [26], which ensured that
weight ωj ≈ 1

‖ξ j‖∞
is not too small for j ∈ E0. Condition (C6) restricts the numbers of covari-

ates with zero and nonzero coefficients, the penalty parameters, the minimal eigenvalue of
Σ, and the smallest nonzero coefficient. Given all conditions in Theorems 1 and 2, we may
assume λ1 = O(N−a), λ2 = O(N−b), and τ = O(Nc) for some 0 < c < b < a < 0.5; then,
the number of nonzero coefficients q can be as large as Nd for some 0 ≤ d ≤ 2(1−a+b−c)

3 .

In this case, there can be O(eN
1
2−δ

) zero coefficients, where δ is a small nonzero constant,
assuming α2 = O(N

d−1
2 ) and M = O(1).

Theorem 2. Under Conditions (C0)–(C6),

P
(
‖β̂ j‖2 6= 0, j ∈ E1, ‖β̂ j‖2 = 0, j ∈ E0

)
→ 1.

The proof is provided in Appendix C. This theorem establishes the selection consis-
tency properties of the proposed approach under a high-dimensional setting.

3. Simulation

We set p = 500. The data are generated from the following true model:

yn =
q

∑
j=1

Xn
j βn

j + εn, n = 1, 2, . . . , N, (4)

where the random errors are simulated independently from N(0, 1). We investigate nine
scenarios for the coefficients as follows:

Scenario 1. The coefficients are generated from trigonometric functions; for
n = 1, 2, . . . , N,

βn
j =


1.5sin( 20π

N un
j ) + 2.5 j = 1, . . . , q

4

1.5cos( 17π
N un

j + 0.4) + 2.5 j = q
4 + 1, . . . , q

2

1.5sin( 17π
N un

j − 1.2) + 2.5 j = q
2 + 1, . . . , 3q

4

1.5cos( 20π
N un

j − 2) + 2.5 j = 3q
4 + 1, . . . , q,

where un
j = aj +

N
10 · n, aj∼U(0, 0.5).

Scenario 2. The coefficients are generated from exponential functions:
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βn
j =


4exp(−un

j ) + 1 j = 1, . . . , q
4

4exp(−0.9un
j ) + 1 j = q

4 + 1, . . . , q
2

4exp(−0.8un
j ) + 1 j = q

2 + 1, . . . , 3q
4

4exp(−0.7un
j ) + 1 j = 3q

4 + 1, . . . , q,

where un
j = aj +

N
100 · n, aj∼U(0, 0.2).

Scenario 3. The coefficients are generated from logarithmic functions:

βn
j =


0.5ln(un

j )
3 + 1 j = 1, . . . , q

4

0.5ln(un
j )

2.9 + 1 j = q
4 + 1, . . . , q

2

0.5ln(un
j )

2.7 + 1 j = q
2 + 1, . . . , 3q

4

0.5ln(un
j )

2.5 + 1 j = 3q
4 + 1, . . . , q,

where un
j = aj +

N
20 · n, aj∼U(0.7, 0.9).

Scenario 4. The coefficients are generated from linear functions:

βn
j =


0.16un

j + 2 j = 1, . . . , q
4

0.15un
j + 2 j = q

4 + 1, . . . , q
2

0.14un
j + 2 j = q

2 + 1, . . . , 3q
4

0.13un
j + 2 j = 3q

4 + 1, . . . , q,

where un
j = aj +

N
10 · n, aj∼U(0, 1).

Scenario 5. The coefficients are constants:

βn
j =

{
3aj + 2 j = 1, . . . , q

2

2aj + 2 j = q
2 + 1, . . . , q,

where aj∼U(0, 1).

Scenario 6. The coefficients are generated from the four above (trigonometric, expo-
nential, logarithmic and linear) functions, respectively. Each function generates an
equal number of coefficients.

Scenario 7. The coefficients are generated from the four above functions, where 40%
and 35% of the coefficients are generated from the trigonometric and linear functions,
respectively, and 10% and 15% of the coefficients are generated from the exponential
and logarithmic functions, respectively.

Scenario 8. The coefficients are generated from the four functions. The trigonometric,
exponential, logarithmic, and linear functions generate 35%, 15%, 20%, and 30% of the
coefficients, respectively.

Scenario 9. The coefficients are generated as in Scenario 5. We select 40% of the
coefficients and, for each function, add random perturbations on their values in one or
two ranges, where each range includes 20 consecutive subjects.

In Scenarios 1–5, the q coefficients are generated from the same function, whereas
from different functions in Scenarios 6–9. The coefficients in Scenario 5 are constants, that
is, there is no heterogeneity in covariate effects. Some of coefficients in Scenario 9 do not
change smoothly across subjects, but have a few discontinuous areas. Figure A2 presents
q = 20 nonzero coefficients as a function of N = 200 subjects under nine scenarios. In the
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first eight scenarios, the p covariates are generated from a multivariate normal distribution
with marginal mean 0 and variance 1. We consider an auto-regressive correlation structure,
where covariates j and k have the correlation coefficient ρ|j−k| with ρ = 0.3 and 0.8, corre-
sponding to the weak and strong correlations, respectively. In Scenario 9, the p covariates
are generated independently from a uniform distribution on (−1, 1). It is noted that the
aforementioned nonlinear functions of regression coefficients are widely used in simulation
studies of varying-coefficient models for genomic data [30,31].

We consider two versions of the proposed approach. One uses the “standard” Lasso to
obtain the initial estimator of coefficients (New-Lasso) and the other uses marginal regres-
sion (New-Mar). Both estimators are homogeneous, that is, the coefficients are the same for
all subjects. To better gauge the proposed approach, we compare it with three alternatives:
(a) Lasso, which directly applies the Lasso method to the entire dataset but does not account
for the heterogeneity of coefficients across different subjects; (b) AdLasso, which is the
group adaptive Lasso in the varying-coefficient model [12]; and (c) IVIS, which uses the
independent screening technique for fitting the varying-coefficient model [14]. The last two
methods focus on variable selection and the estimation of the varying-coefficient model in
high-dimensional settings, where each nonzero coefficient is assumed a smooth function of
a known auxiliary variable.

For the proposed approach and its alternatives, we evaluate the variable selection
performance by TP (number of true positives) and FP (number of false positives). Estimation
and prediction are also evaluated. Specifically, estimation is measured by RMSE (root mean

squared errors), defined as

√
1
p

p
∑

j=1
‖β j − β̂ j‖2, and prediction is measured by RPE (root

prediction errors), defined as

√
1
N

N
∑

n=1
(yn − Xn β̂n)2.

Table 1 summarizes the simulation results over 100 replications for settings with N = 200,
q = 20, and ρ = 0.3. The rest of the results are presented in Tables A1–A3. Across the
simulation spectrum, the proposed approach has superior performance in terms of variable
selection, as it can identify more important variables while having a low number of false
positives. For example, in Scenario 1, N = 200 and ρ = 0.3 (Table 1), New-Lasso has (TP,
FP) = (18.44, 0.16), while Lasso has (TP, FP) = (14.56, 0.30), AdLasso (TP, FP) = (16.64,0.70),
and IVIS (TP, FP) = (13.76, 3.28). Consider another example, Scenario 9, N = 200 and q = 20
(Table 1). For the identification of important variables, the four approaches have the TP
values 18.30 (New-Lasso), 15.40 (Lasso), 15.74 (AdLasso), and 14.24 (IVIS), and FP values
0.00 (New-Lasso), 2.60 (Lasso), 0.40 (AdLasso), and 4.64 (IVIS), suggesting the proposed
approach is robust to perturbations. In most scenarios, New-Lasso outperforms New-Mar
when covariates are weakly correlated (ρ = 0.3), but performs worse than New-Mar when
covariates are strongly correlated (ρ = 0.8). These results stem from the fact that Lasso
is not good at dealing with highly correlated covariates. In practice, we can select one of
them according to the correlations among covariates. Examples are provided in Section 4.
Lasso identifies a reasonable number of important variables but with higher false positive
than the proposed approach. AdLasso shows a good performance in variable selection,
but inferior to that of the proposed approach under most simulation settings. IVIS has the
worst performance among the five approaches.

In the evaluation of estimation, the proposed approach again has a favorable perfor-
mance. We plot the estimated nonzero coefficients as a function of subjects and 95% point-
wise confidence intervals (Figure A3). In Scenario 6 with N = 200, q = 20, and ρ = 0.3,
the estimated coefficients are close to the true ones, and the confidence intervals contain
the true coefficients for most subjects. However, the estimation results become worse for
the coefficients of the first and last few subjects. This is because the information available
to estimate these coefficients is less than that on the intermediate coefficients. This problem
can be alleviated by increasing the sample size (Figure A4). Additionally, the proposed
approach outperforms the alternatives in terms of prediction under most scenarios.
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Overall, simulation suggests favorable performance of the proposed approach. It is
interesting to note that it has satisfactory performance even under the no heterogeneity
scenario (Scenario 5). Thus, it provides a safe choice for practical data analysis where the
degree of heterogeneity in covariate effects is unknown. The other simulation settings have
similar results. However, due to space constraints, we do not describe them here.

Table 1. Simulation results for N = 200, p = 500, q = 20, and ρ = 0.3. Each cell shows the mean (sd).
The bold represents the best value.

Scenario Method TP FP RMSE RPE

1

Lasso 14.57 (1.39) 0.30 (0.67) 6.56 (0.69) 12.92 (1.80)
AdLasso 16.64 (1.22) 0.71 (0.95) 4.69 (0.34) 8.41 (0.47)

IVIS 13.76 (1.31) 3.29 (0.66) 5.91 (0.74) 11.17 (0.84)
New-Lasso 18.45 (1.36) 0.17 (0.03) 2.34 (0.21) 1.92 (0.29)
New-Mar 16.14 (2.16) 1.84 (0.53) 3.98 (0.43) 3.52 (0.38)

2

Lasso 14.43 (1.45) 0.00 (0.00) 6.30 (0.86) 12.38 (2.12)
AdLasso 17.50 (0.86) 0.69 (0.84) 4.74 (0.48) 8.54 (0.62)

IVIS 14.20 (0.92) 3.10 (0.88) 5.85 (0.66) 10.23 (0.90)
New-Lasso 19.76 (0.44) 0.00 (0.00) 0.98 (0.20) 1.02 (0.32)
New-Mar 18.03 (1.88) 2.40 (0.42) 2.82 (0.53) 2.34 (0.40)

3

Lasso 14.35 (1.76) 0.15 (0.37) 7.24 (0.90) 13.70 (2.42)
AdLasso 16.90 (1.27) 0.30 (0.53) 5.44 (0.66) 9.64 (0.91)

IVIS 14.99 (0.89) 3.58 (0.91) 6.32 (0.71) 11.37 (0.96)
New-Lasso 19.81 (0.41) 0.00 (0.00) 1.02 (0.21) 1.02 (0.39)
New-Mar 18.11 (1.02) 4.44 (0.31) 3.74 (0.42) 2.80 (0.58)

4

Lasso 17.57 (1.73) 0.10 (0.31) 7.08 (0.95) 12.90 (2.00)
AdLasso 17.34 (1.15) 0.16 (0.46) 5.77 (0.55) 10.35 (0.75)

IVIS 15.28 (0.81) 4.58 (1.65) 6.11 (0.62) 12.78 (0.82)
New-Lasso 20.00 (0.00) 0.00 (0.00) 0.54 (0.06) 0.68 (0.04)
New-Mar 19.14 (1.18) 9.24 (2.59) 2.38 (0.59) 1.56 (0.22)

5

Lasso 20.00 (0.00) 0.10 (0.31) 0.43 (0.06) 0.82 (0.09)
AdLasso 16.74 (1.23) 0.70 (0.64) 6.04 (0.40) 8.36 (0.50)

IVIS 15.62 (0.88) 3.38 (0.96) 5.93 (0.56) 10.14 (0.63)
New-Lasso 20.00 (0.00) 0.00 (0.00) 0.54 (0.07) 0.70 (0.04)
New-Mar 18.30 (1.34) 4.40 (0.74) 2.58 (0.37) 2.04 (0.26)

6

Lasso 15.56 (2.46) 0.24 (0.91) 6.42 (1.04) 11.98 (2.22)
AdLasso 16.64 (1.19) 0.18 (0.44) 5.21 (0.47) 9.41 (0.74)

IVIS 14.37 (1.02) 3.16 (1.05) 6.01 (0.69) 10.79 (0.95)
New-Lasso 19.65 (0.59) 0.00 (0.00) 1.16 (0.25) 1.08 (0.24)
New-Mar 18.14 (1.53) 4.24 (1.77) 3.12 (0.49) 2.46 (0.35)

7

Lasso 14.64 (2.48) 0.16 (0.49) 6.68 (0.92) 12.58 (2.03)
AdLasso 16.05 (1.43) 0.10 (0.36) 5.33 (0.49) 9.58 (0.65)

IVIS 15.05 (1.14) 2.94 (0.83) 5.98 (0.68) 11.16 (0.88)
New-Lasso 19.77 (0.55) 0.00 (0.00) 1.02 (0.22) 1.00 (0.35)
New-Mar 17.65 (1.57) 4.04 (1.88) 3.38 (0.34) 2.72 (0.25)

8

Lasso 16.50 (2.44) 0.50 (0.41) 6.08 (1.17) 11.04 (2.41)
AdLasso 16.06 (1.46) 0.12 (0.33) 5.38 (0.46) 9.63 (0.69)

IVIS 14.70 (1.19) 3.32 (1.12) 6.19 (0.73) 11.24 (1.04)
New-Lasso 19.50 (0.69) 0.00 (0.00) 1.36 (0.33) 1.24 (0.25)
New-Mar 17.63 (1.63) 3.40 (0.30) 3.50 (0.33) 2.84 (0.33)

9

Lasso 15.41 (2.03) 2.60 (1.41) 6.72 (1.10) 5.66 (1.02)
AdLasso 15.74 (1.57) 0.41 (0.62) 7.62 (0.32) 9.38 (0.52)

IVIS 14.24 (1.32) 4.63 (1.39) 7.43 (1.07) 11.02 (1.19)
New-Lasso 18.30 (1.49) 0.00 (0.00) 2.52 (0.11) 1.56 (0.59)
New-Mar 14.45 (2.01) 10.00 (2.97) 5.52 (0.92) 2.58(0.68)
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4. Data Analysis

Here, we apply the proposed approach to two TCGA datasets. As a cancer genomics
program initiated by the National Institute of Health (NIH), TCGA publishes high quality
clinical and genetic data. In our analysis, the data are downloaded from the cBioPortal
website (http://www.cbioportal.org/, accessed on 16 January 2021) via the cgdrs package.

4.1. SKCM Data

Cutaneous melanoma (SKCM) is a cancer of the skin cells called melanocytes, leading
to the majority of deaths from skin cancers. In our analysis, we are interested in the regula-
tion of Breslow thickness, a measure of the size of melanoma growth, by gene expressions.
We use age as the auxiliary variable, which is correlated with the melanoma development
and progression [32]. After removing missing values from the Breslow thickness and age,
a total of 228 patients are included in analysis. The median age is 58 (range: 18–90 years)
and the median Breslow thickness is 2.45 (range: 0.28–75). All patients are sorted by age
in ascending order. There are some patients that have the same age, but there are only a
few (2–8) patients with the same age. The analysis results show that the orders of patients
within each age have little impact on the identification of important genes and the effect
estimation. Consequently, in the analysis, we sort the patients with the same age randomly.
A total of 20,531 RNAseq gene expression measurements are available. More specifically,
the processed level-3 gene expression data is used. Please refer to literature [33] for de-
tailed information on generation and processing of gene expression data. To improve the
reliability of the results, we conduct a marginal screening to screen out irrelevant genes and
include 400 genes with lowest p-values in the downstream analysis. The gene expressions
are assumed to connect with the response variable via a linear model.

The average correlation coefficient of 400 genes is 0.07, which is close to the 0.06 from
the above simulation studies with ρ = 0.3. As such, we adopt the New-Lasso method,
which identifies 6 important genes. Figure 2 shows the estimated coefficients for the
6 genes. The changes in the effects of genes across patients are prominent, which suggests
that the heterogenous model is more appropriate for this dataset. We observe different
change patterns for the effects of the 6 genes. Specifically, genes AOC4P and EDNRB first
increase then decrease; genes CRELD2 and TRIM64 show an increase then remain steady,
while gene SERPINA3 demonstrate the opposite pattern, and effect of gene OR10GB has
a bowl-shaped pattern. The literature suggests that the identified genes are biologically
meaningful. For example, gene EDNRB provides instructions for making a protein called
endothelia receptor type B. Inherited variations in this gene may be associated with an
increased risk of melanomas [34]. Recent studies revealed that gene AOC4P plays critical
roles at multiple levels in diverse physiological and pathological processes [35]. Some of
changes in metastatic melanomas were identified in gene SERPINA3 encoding proteins
involved in the regulation of the extracellular matrix [36]. A high SERPINA3 expression
correlates with shorter disease survival [37,38], suggesting the SERPINA3 expression can
be used as a prognostic marker in melanoma.

We also apply the alternatives described above. The comparative results are provided
in Table A4. The different methods identify different sets of genes. Based on real data,
the true set of important genes is unknown and, thus, it is difficult to directly evaluate
the identification and estimation accuracy. To verify the results, we now evaluate pre-
diction and stability. Specifically, the dataset is split into a training set and a testing set
of sizes 2:1. The regression coefficients are estimated using the training set and used to
make predictions for the subjects in the testing set. We repeat the process 50 times and
calculate the average root prediction errors (RPEs) to be 0.775 (New-Lasso), 1.072 (Lasso),
1.036 (AdLasso), and 1.393 (IVIS). The proposed approach has the best prediction perfor-
mance. Moreover, for the proposed approach, we compare the RPEs of training sets and
that of testing sets, and no significant differences are found (p-value > 0.5), suggesting that
the proposed approach does not produce obvious over-fitting. Additionally, we compute
the observed occurrence index (OOI) values to evaluate the stability of the identification

http://www.cbioportal.org/
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results. Figure A6 shows the OOIs of all methods. The proposed approach significantly
outperforms the alternatives in terms of identification stability.

Figure 2. Analysis of the SKCM data using the proposed approach: estimated coefficients of the 6
genes for all subjects. The x-axis represents the subjects, and the y-axis represents the coefficient
values.

4.2. LUAD Data

Lung adenocarcinoma (LUAD) is a form of non-small cell lung cancer, being the
most common type of lung cancer. In our analysis, survival time is the response variable.
There are a total of 231 patients, sorted by their forced expiratory volume in one second
(FEV1), an important measure of lung function. The median follow-up time is 20 (range:
0.13–232 months) and the median FEV1 is 83 (range: 1.95–156). A total of 18, 325 RNAseq
gene expressions are initially available for the analysis. Using the same marginal screening
process as described above, the number of gene expressions is reduced to 400.

We adopt the accelerated failure time (AFT) model for the analysis of these censored
survival data. The estimation procedure described above can be directly applied to the
AFT model (see Appendix C). Because the genes have an average correlation coefficient
(0.16) higher than that in the simulation studies with ρ = 0.8 (≈0.13), the New-Mar method
is used here. The proposed method identifies 7 genes. The estimated coefficients of the
7 genes are presented in Figure A5.

Extant studies provide biological evidence for the association of identified genes with
lung cancer. For example, AGTR1, the gene encoding angiotensin II receptor type I, has
been extensively studied in human cancers [39] and has shown a strong influence on
tumor growth, angiogenesis, inflammation and immunity [40]. Guo et al. [41] shows that
methylation profiles of AGTR1 could be an effective methylation-based assay for non-small
cell lung cancer diagnosis.

Data are also analyzed using the alternative methods. The summary comparison
results (Table A4) again suggest that different methods produce different results. With
censored survival data, we use the log-rank statistics to measure prediction performance.
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The higher log-rank statistics indicate better prediction performance and the proposed
approach has an average log-rank statistic of 11.67, compared with 4.43 for Lasso, 5.81 for
AdLasso and 3.08 for IVIS. The OOI results are also presented in Figure A6. The proposed
approach has again the highest OOI among all methods.

4.3. Simulation on SKCM Dataset

It has been recognized in some studies that simulated data may be “simpler” than real
data. Here, we conduct an additional set of simulation based on the SKCM data analyzed
above. Specifically, the observed gene expression data and the estimated coefficients in
Section 4.1 are used in simulation. The simulation results are summarized in Table A5. It is
observed that the proposed method maintains a relative edge over the alternatives, which
justifies the effectiveness of the proposed method.

5. Discussion

The mature application of the high-throughput technology has produced a large
amount of genomic data. With the rapid development of precision medicine, the hetero-
geneity effect of covariates has received increasing attention in disease genomic studies.
However, most existing studies focus on the subgroup-specific effects, meaning the effects
are the same within each subgroup, thus neglecting the possible varying effects within a
subgroup. In this paper, we consider that the effects of covariates change smoothly across
subjects. We thus propose a novel penalization-based estimation method, which combines
a group-lasso penalty and a spline-lasso penalty based on subgroup-based studies by
capturing the varying effects within each subgroup. It also advances the existing varying-
coefficient studies by lowering the requirements for the distribution of the auxiliary variable.
We show that, under the appropriate conditions, the proposed approach can correctly select
important covariates with a probability converging to one and estimates the coefficients con-
sistently. Simulations demonstrated a satisfactory practical performance and data analysis
led to sensible findings, significantly different from those using alternative methods.

WIth the proposed regression model, it is impossible to estimate directly the subject-
specific covariate effects due to the non-identifiability problem. This is resolved by intro-
ducing an auxiliary variable, which can have a biological interpretation. As such, it would
be of interest to develop other frameworks that can differentiate between heterogeneous
covariate effects in the (partial) absence of auxiliary variable. Additionally, the data analysis
results also warrant further investigation.
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Appendix A. Estimation under the Accelerated Failure Time Model

The AFT model is an alternative to the commonly used Cox model in survival analysis,
and regresses the logarithm of the survival time over the covariates. Consider a sample
set {(Xn, Yn) : Xn ∈ Rp, Yn ∈ R} of size N, where Xn = (Xn

1 , . . . , Xn
p) denotes the p-

dimensional covariates. Under the right-censoring situation, we obtain Yn = min{Tn, Cn},
where Tn and Cn denote the survival time and censoring time of the nth subject, respectively.
Assume N subjects have been sorted by a known biomarker. We specify the following
AFT model:

log(Tn) =
p

∑
j=1

Xn
j βn

j + εn, n = 1, 2, . . . , N,

where εn is the random error with mean zero.
Unknown coefficients β j = (β1

j , . . . , βN
j )
> can be estimated by the weighted least

squares method [42], where the weight is defined as a Kaplan-Meier weight. Let Y[1] ≤
Y[2] ≤ . . . Y[n] be the order statistics of Yn, n = 1, 2, . . . , N, and δ[n] the associated indicator
function. The Kaplan-Meier weight can be computed as:

w1 = δ[1]

N
wn = δ[n]

N−n+1 ∏n−1
i=1 (

N−i
N−i+1 )

δ[i] , n = 2, . . . , N.

The weighted least-square loss function becomes:

L(β) =
N

∑
n=1

wn(log Y[n] −
p

∑
j=1

X[n]
j β

[n]
j )2,

where X[n] is the vector of the covariates associated with Y[n] and β
[n]
j ’s are the correspond-

ing coefficients.

Appendix B

Proof of Theorem 1. From the definition of β̂:

1
2N
‖Ỹ− Z̃β̂‖2

2 + λ1

p

∑
j=1

1
‖β̃ j‖∞

‖β̂ j‖2 ≤
1

2N
‖Ỹ− Z̃β0‖2

2 + λ1

p

∑
j=1

1
‖β̃ j‖∞

‖β0
j ‖2. (A1)

Let ε̃ = (ε>, (−
√

Nλ2Aβ0)>)> with ε = (ε1, . . . , εN)>. From (A1),

1
2N
‖Z̃β0 − Z̃β̂‖2

2 ≤ λ1

p

∑
j=1

ωj(‖β0
j ‖2 − ‖β̂ j‖2) +

1
N

ε̃>Z̃(β̂− β0). (A2)

From the Cauchy-Schwartz inequality, we have:

1
N

ε̃>Z̃(β̂− β0) ≤ 1
N

ε>Z(β̂− β0) + λ2‖Jβ0‖2‖β0 − β̂‖2

≤ 1
N

m‖ε||2
p

∑
j=1
‖β0

j − β̂ j‖2 + λ2‖Jβ0‖2‖β0 − β̂‖2.
(A3)

We define κp = max
1≤j≤p

‖β̃ j‖∞. Under event Ω, by Lemma 1 in Huang et al. [26], for any

1 ≤ j ≤ p, we have:

P(
1
N

m‖ε‖2 >
λ1

‖β̃ j‖∞
) ≤ exp

−[κpm log N
√

log p

N
3
4 λ1

]2
→ 0. (A4)
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As a result, from (A2):

1
2N
‖Z̃β0 − Z̃β̂‖2

2 ≤ λ1

p

∑
j=1

ωj(‖β0
j ‖2 − ‖β̂ j‖2) + λ1

p

∑
j=1

ωj‖β0
j − β̂ j‖2 + λ2‖Jβ0‖2‖β0 − β̂‖2

≤ 2λ1

q

∑
j=1

ωj‖β0
j − β̂ j‖2 + λ2‖Jβ0‖2‖β0 − β̂‖2

≤ 2λ1
√

qα−1
2 ‖β

0 − β̂‖2 + λ2‖Jβ0‖2‖β0 − β̂‖2.

(A5)

According to condition (C2), we finally obtain:

‖β0 − β̂‖2,N ≤
4λ1
√

qα−1
2 + 2λ2‖Jβ0‖2

τ
√

N
. (A6)

This completes the proof of Theorem 1.

Appendix C

Proof of Theorem 2. Consider the Karush-Kuhn-Tucker (KKT) condition:

− 1
N

Z j(Y− Zβ̂) + λ2 A>Aβ̂ j + λ1ωj
β̂ j

‖β̂ j‖2
= 0, if ‖β̂ j‖ 6= 0 (A7)

− λ1ωjeN ≤
1
N

Z j(Y− Zβ̂) ≤ λ1ωjeN , if ‖β̂ j‖ = 0 (A8)

where eN is a N × 1 vector whose elements are all 1s. We define Z∗ =
√

N( 1
N Z>Z + λ2 J)

1
2

and Y∗ = Z∗−1Z>Y. Therefore, β̂ is also the minimizer of the following objective function:

1
2N
‖Y∗ − Z∗β||22 + λ1

p

∑
j=1

ωj‖β j‖2. (A9)

As a result, if ‖β̂ j‖2 6= 0 for j ∈ E1, then, by the KKT condition:

− 1
N

Z∗>E1
(Y∗E1 − Z∗E1 β̂E1) = −WE1 , (A10)

where WE1 =
(

W>1 , · · · , W>q
)>

is a N × q vector with Wj =
λ1ωj

‖β̂ j‖2
β̂ j. Since

Z∗β0 − E(Y∗) = Z∗−1Z∗2β0 − Z∗−1Z>Zβ0

= Z∗−1(Z∗2 − Z>Z)β0

= Z∗−1(Nλ2 J)β0,

(A11)

we have
Z∗>E1

Y∗E1 = Z∗E1E(Y∗E1) + Z∗E1

[
Y∗E1 − E(Y∗E1)

]
= Z∗2

E1
β0
E1
− Nλ2 JE1

β0
E1
+ Z>E1

Y− E(Z>E1
Y)

= NΣE1E1 β0
E1
− Nλ2 JE1

β0
E1
+ Z>E1

ε.

(A12)

Let û = β̂− β0 and S = Z>ε/
√

N. As a result, if there exists û so that:

ΣE1E1 ûE1 −
1√
N

SE1 = −WE1 − λ2 JE1
β0
E1

(A13)

‖ûj‖2 ≤ ‖β0
j ‖2, for j ∈ E1 (A14)
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and
‖ 1

N
Z>j (Y− ZE1 β̂E1)‖2 <

√
Nλ1ωj, for j ∈ E0. (A15)

Then, we have ‖β̂ j‖2 = 0 for j ∈ E0, and ‖β̂ j‖2 6= 0 for j ∈ E1. From (A3),

ûE1 −
1√
N

Σ−1
E1E1

SE1 = −Σ−1
E1E1

WE1 − λ2Σ−1
E1E1

JE1
β0
E1

. (A16)

Then,

Y− ZE1 β̂E1 = ε− ZE1(β̂E1 − β0
E1
)

= ε− 1
N

ZE1 Σ−1
E1E1

Z>E1
ε + ZE1 Σ−1

E1E1
WE1 + λ2ZE1 Σ−1

E1E1
JE1

β0
E1

.
(A17)

We define H = I − 1
N ZE1 Σ−1

E1E1
Z>E1

. Then, from (A3)–(A5), if

‖( 1√
N

Σ−1
E1E1

SE1 − Σ−1
E1E1

(WE1 + λ2 JE1
β0
E1
))j‖2 ≤ ‖β0

j ‖2, ∀j ∈ E1

‖ 1
N

Z>j
[

Hε + ZE1 Σ−1
E1E1

(WE1 + λ2 JE1
β0
E1
)
]
‖2 <

√
Nλ1ωj, ∀j ∈ E0

are satisfied, we have ‖β̂ j‖2 = 0 for j ∈ E0 and ‖β̂ j‖2 6= 0 for j ∈ E1. We define the
events as:

D1 =

{
1
N
‖(Σ−1

E1E1
Z>E1

ε)j‖2 >
‖β0

j ‖2

2
, ∃k ∈ E1

}
,

D2 =

{
‖[Σ−1
E1E1

(WE1 + λ2 JE1
β0
E1
)]j‖2 >

‖β0
j ‖2

2
, ∃k ∈ E1

}
,

D3 =

{
1√
N
‖Z j Hε‖2 >

Nλ1ωj

2
, ∃k ∈ E0

}
,

and

D4 =

{
1
N
‖Z jZE1 Σ−1

E1E1
(WE1 + λ2 JE1

β0
E1
)‖2 >

√
Nλ1ωj

2
, ∃k ∈ E0

}
.

Then, we have:

P(‖β̂ j‖2 6= 0, j ∈ E0 or ‖β̂ j‖2 = 0, j /∈ E0) ≤ P(D1) + P(D2) + P(D3) + P(D4).

First, we consider P(D1). Because ‖ZE1‖2 = ‖Z>E1
‖2 = supX∈RN

||Z>E1 X||2
||X||2

≤ m
√

q,
then, for any j ∈ E1,

‖(Σ−1
E1E1

Z>E1
ε)j‖2 ≤ ‖Σ−1

E1E1
Z>E1

ε‖2 ≤ ‖Σ−1
E1E1
‖2‖Z>E1

ε‖2 ≤
m
√

q‖ε‖2

τ
. (A18)
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From condition (C6) and Lemma 1 in Huang et al. [26], we have

P(D1) ≤ P
(

1√
N
‖Σ−1
E1E1

Z>E1
ε‖2 >

Nα1

2

)
≤ exp

(
−
[

τα1N
5
4

2m
√

q log N

]2)
→ 0. (A19)

For D2, we define R = {‖β̃ j‖∞ ≥ α2, j ∈ E1}. Then,

P(D2) = P(D2
⋂

R) + P(D2
⋂

Rc) ≤ P(D2
⋂

R) + P(Rc). (A20)

From condition (C2), P(Rc)→ 0. Then, we only need to prove P(D2
⋂

R)→ 0. Since
Σ−1
E1E1

is invertible, we can prove that for any j ∈ E1,

‖(Σ−1
E1E1

(WE1 + λ2 JE1
β0
E1
))j‖2 ≤ ‖Σ−1

E1E1
(WE1 + λ2 JE1

β0
E1
)‖2

≤ ‖Σ−1
E1E1

WE1‖2 + ‖Σ−1
E1E1

λ2 JE1
β0
E1
‖2

≤
λ1
√

qα−1
2 + λ2‖Jβ0‖2

τ
.

From Condition (C6), we have

2‖(Σ−1
E1E1

(WE1 + λ2 JE1
β0
E1
))j‖2√

Nα1
≤ 2λ1

τα1α2

√
q
N

+
2λ2‖Jβ0‖
τα1
√

N
→ 0. (A21)

Therefore, P(D2
⋂

R) = 0.
Next, we consider P(D3). Similarly to above, we define E = {||β̃ j||∞ < 1

r + M, j ∈
E0}

⋂
R. Then,

P(D3) = P(D3
⋂

E) + P(D3
⋂

Ec) ≤ P(D3
⋂

E) + P(Ec).

Under Conditions (C2) and (C5), we know P(Ec)→ 0 and, thus, only need to prove
that P(D3

⋂
E)→ 0. Since ΣE1E1 is invertible, we have, for any j ∈ E0,

‖Z j Hε‖2 ≤ m(‖ε‖2 +
m2q‖ε‖2

τN
).

Then,

P(D3
⋂

E) ≤ P

(
2√
N
‖Z jHε‖2 >

Nλ1
1
r + M

, j ∈ E0

)

≤ P

(
1√
N
‖ε‖2 >

Nλ1

2( 1
r + M)(m + m3q

τN )

)

≤ (p− q)q∗N
([ N

5
4 λ1

2( 1
r + M)(m + m3q

τN )

]2)
,

(A22)

where function q∗N(·) is the same as q∗n(·) in Lemma 1 of Huang et al. [26]. Therefore,
from Lemma 1 of Huang et al. [26] and Condition (C6), P(D3

⋂
E)→ 0.
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Finally, we consider D4. To prove P(D4)→ 0, we only need to prove P(D4
⋂

E)→ 0.
Since ΣE1E1 is invertible, we can prove that, for any j ∈ E0,

1
N
‖Z jZE1 Σ−1

E1E1
(WE1 − λ2 JE1

β0
E1
)‖2 ≤

m2√q
τN

(λ1α−1
2
√

q + λ2‖Jβ0‖2). (A23)

Under Condition (C6),

2
N ‖Z jZE1 ΣE1E1WE1‖2√

Nλ1ωj
≤

2m2√q(λ1α−1
2
√

q + λ2‖Jβ0‖2)

τ
√

N3λ1
(

1
r
+ M) ≤ 1. (A24)

Namely, P(D4
⋂

E)→ 0. This completes the proof of Theorem 2.

Remark A1. We show that the marginal regression estimator satisfies Condition (C5) under
some assumptions and can thus be used as the initial estimator. With the standardization of
X = (X1, X2, . . . , Xp), the estimated marginal regression coefficient becomes:

β̃k =
∑N

n=1 Xn
k yn

∑N
n=1(Xn

k )
2
=

q

∑
j=1

(
∑N

n=1 Xn
k Xn

j β0n
j

N

)
+

X>k ε

N
. (A25)

We define

ξk =
q

∑
j=1

(
∑N

n=1 Xn
k Xn

j β0n
j

N

)
. (A26)

For k ∈ E1, we restrict ξk = O(N
d−1

2 ), where 0 ≤ d ≤ 1
3 , so that the non-zero

coefficients’ signals are bounded away from zero at certain rates.
Similarly to the “partial orthogonality” condition in Huang et al. [26], we assume

that the correlation between the covariates with zero coefficients and those with nonzero
coefficients (multiplying the corresponding coefficient) is not large, that is,

1
N
|

N

∑
n=1

Xn
k (Xn

j β0n
j )| = 1

N
|X>k f j(Xj)| ≤ ρN , k ∈ E0, j ∈ E1.

For k ∈ E0, we have |ξk| ≤ qρN . Assume

ρN <
τλ1
√

N3

2m2
√

q3(λ1α−1
2
√

q + λ2‖Jβ0‖2)
.

From Condition (C6), qρN < 1. From Lemma 1 in Huang et al. [26], for any ε > 0,
if r = o

( √
N

log p log N

)
, we have:

P
(

r max
1≤j≤p

|β̃ j − ξ j| > ε

)
= P

(
r max

1≤j≤p

X>j ε

N
> ε

)
≤ pq∗

( √
Nε

r log N

)
= o(1). (A27)

When p = O(eN
1
2−δ

) with 0 < δ < 0.5, r can be set as O( Nδ−c

log N ) for a small c > 0.
Therefore, the marginal regression estimator satisfies Condition (C5).
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Appendix D. More Tables and Figures

Table A1. Simulation results for N = 200, p = 500, q = 20, and ρ = 0.8. Each cell shows the mean (sd).
The bold represents the best value.

Scenario Method TP FP RMSE RPE

1

Lasso 13.61 (2.37) 0.20 (0.41) 5.87 (0.50) 14.08 (2.48)
AdLasso 16.23 (1.54) 0.26 (0.83) 5.05 (0.46) 10.10 (0.39)

IVIS 12.85 (1.43) 2.88 (1.37) 5.98 (1.02) 11.72 (0.92)
New-Lasso 15.56 (1.39) 0.00 (0.00) 4.48 (0.82) 2.66 (0.54)
New-Mar 20.00 (0.00) 0.56 (0.19) 1.12 (0.17) 0.82 (0.04)

2

Lasso 11.50 (1.67) 0.41 (0.82) 6.72 (0.45) 18.20 (1.97)
AdLasso 16.90 (1.06) 0.11 (0.31) 5.20 (0.44) 10.38 (0.44)

IVIS 12.89 (1.13) 3.03 (0.86) 6.04 (0.78) 11.95 (0.96)
New-Lasso 15.37 (1.53) 0.16 (0.07) 4.90 (0.95) 2.94 (0.64)
New-Mar 20.00 (0.00) 0.70 (0.16) 0.84 (0.10) 0.72 (0.05)

3

Lasso 12.90 (2.9) 0.10 (0.31) 7.32 (0.80) 18.60 (3.54)
AdLasso 16.80 (1.32) 0.07 (0.25) 5.55 (0.69) 11.16 (0.54)

IVIS 13.33 (0.96) 2.92 (1.01) 6.55 (1.15) 12.65 (1.24)
New-Lasso 15.61 (1.73) 0.04 (0.02) 5.56 (1.17) 3.10 (0.69)
New-Mar 20.00 (0.00) 0.56 (0.15) 0.96 (0.14) 0.76 (0.05)

4

Lasso 14.03 (2.27) 0.20 (0.05) 7.56 (0.82) 18.54 (3.21)
AdLasso 17.34 (1.49) 0.13 (0.51) 6.02 (0.85) 12.29 (0.48)

IVIS 14.35 (0.93) 3.75 (0.92) 6.47 (0.73) 12.43 (0.97)
New-Lasso 16.90 (1.45) 0.08 (0.01) 5.26 (1.39) 2.86 (0.80)
New-Mar 20.00 (0.00) 0.84 (0.75) 0.92 (0.10) 0.70 (0.04)

5

Lasso 20.00 (0.00) 1.02 (0.27) 0.50 (0.10) 0.69 (0.07)
AdLasso 17.08 (1.37) 0.07 (0.24) 5.36 (0.67) 11.13 (0.49)

IVIS 13.54 (0.81) 3.24 (0.90) 6.07 (0.69) 11.06 (0.7)
New-Lasso 19.87 (0.37) 0.00 (0.00) 1.02 (0.49) 0.79 (0.14)
New-Mar 20.00 (0.00) 0.84 (0.23) 0.90 (0.12) 0.72 (0.03)

6

Lasso 15.23 (2.65) 0.33 (0.80) 6.18 (0.78) 13.52 (2.50)
AdLasso 17.09 (1.14) 0.06 (0.24) 5.39 (0.49) 11.03 (0.44)

IVIS 13.40 (1.05) 3.04 (0.97) 6.05 (0.89) 12.21 (0.9)
New-Lasso 17.00 (1.75) 0.00 (0.00) 4.36 (1.43) 2.02 (0.68)
New-Mar 20.00 (0.00) 1.44 (0.33) 1.16 (0.14) 0.74 (0.05)

7

Lasso 16.25 (2.29) 0.37 (0.81) 5.90 (0.77) 11.86 (2.23)
AdLasso 17.28 (1.11) 0.13 (0.46) 5.30 (0.61) 10.99 (0.41)

IVIS 13.76 (0.99) 2.82 (1.15) 5.97 (0.86) 12.22 (0.92)
New-Lasso 16.90 (1.07) 0.00 (0.00) 4.38 (0.85) 2.02 (0.38)
New-Mar 19.95 (0.22) 1.10 (0.21) 1.22 (0.40) 0.80 (0.14)

8

Lasso 16.15 (2.18) 0.16 (0.37) 5.80 (0.93) 11.80 (2.11)
AdLasso 16.75 (1.79) 0.10 (0.36) 6.08 (0.46) 10.08 (0.39)

IVIS 13.03 (1.22) 3.20 (1.21) 6.11 (0.92) 12.39 (1.1)
New-Lasso 16.70 (2.03) 0.00 (0.00) 4.50 (1.63) 2.06 (0.78)
New-Mar 19.90 (0.31) 0.96 (0.15) 1.36 (0.59) 0.84 (0.25)
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Table A2. Simulation results for N = 500, p = 500, q = 40, and ρ = 0.3. Each cell shows the mean (sd).
The bold represents the best value.

Scenario Method TP FP RMSE RPE

1

Lasso 36.85 (0.37) 0.60 (0.67) 9.20 (0.45) 10.78 (0.74)
AdLasso 36.00 (1.58) 0.14 (0.45) 10.21 (0.61) 12.01 (0.76)

IVIS 32.92 (1.63) 6.51 (1.77) 12.66 (1.32) 14.36 (1.05)
New-Lasso 39.71 (0.66) 0.08 (0.10) 1.78 (0.24) 0.86 (0.14)
New-Mar 35.64 (2.60) 1.20 (0.28) 6.32 (1.12) 3.46 (0.56)

2

Lasso 35.70 (1.69) 0.92 (0.83) 8.53 (0.48) 10.14 (0.42)
AdLasso 35.91 (2.16) 0.84 (1.02) 8.58 (0.57) 9.48 (0.64)

IVIS 33.56 (1.04) 6.94 (0.95) 11.25 (1.23) 14.74 (0.95)
New-Lasso 38.04 (1.50) 0.63 (0.10) 3.76 (0.45) 1.38 (0.46)
New-Mar 35.83 (2.09) 1.83 (0.29) 5.92 (0.36) 2.24 (0.38)

3

Lasso 34.47 (2.26) 0.00 (0.00) 17.78 (1.89) 21.82 (2.38)
AdLasso 36.64 (1.38) 0.04 (0.20) 10.18 (0.62) 7.62 (0.47)

IVIS 33.08 (1.03) 8.25 (2.34) 12.07 (1.84) 16.28 (1.12)
New-Lasso 40.00 (0.00) 0.00 (0.00) 1.26 (0.08) 0.60 (0.02)
New-Mar 36.51 (0.83) 3.40 (0.95) 4.62 (1.10) 2.20 (0.74)

4

Lasso 31.35 (3.91) 0.20 (0.52) 30.34 (2.06) 37.18 (2.82)
AdLasso 36.24 (1.41) 0.10 (0.31) 12.03 (0.73) 17.19 (0.83)

IVIS 34.27 (2.45) 9.76 (2.22) 14.49 (2.31) 19.24 (2.69)
New-Lasso 39.96 (0.22) 0.69 (0.10) 1.42 (0.27) 0.68 (0.18)
New-Mar 37.40 (0.68) 5.60 (0.54) 6.48 (0.31) 1.16 (0.33)

5

Lasso 40.00 (0.00) 0.70 (0.88) 0.79 (0.10) 1.30 (0.09)
AdLasso 35.67 (1.75) 0.12 (0.39) 13.88 (0.59) 12.16 (0.75)

IVIS 34.97 (1.2) 5.29 (1.65) 14.69 (1.44) 16.20 (1.26)
New-Lasso 40.00 (0.00) 0.00 (0.00) 1.04 (0.06) 0.58 (0.03)
New-Mar 37.54 (1.90) 2.41 (0.98) 5.46 (1.50) 2.16 (0.16)

6

Lasso 34.64 (1.35) 0.74 (0.90) 12.08 (0.70) 13.94 (1.11)
AdLasso 35.58 (0.88) 0.08 (0.27) 7.78 (0.50) 8.43 (0.51)

IVIS 33.80 (1.59) 7.66 (2.80) 11.47 (1.70) 15.37 (1.06)
New-Lasso 37.54 (1.39) 0.10 (0.27) 5.16 (0.84) 2.92 (0.44)
New-Mar 33.89 (2.19) 6.10 (2.78) 9.66 (2.17) 3.34 (0.77)

7

Lasso 34.70 (2.13) 0.91 (1.02) 13.26 (0.82) 15.32 (1.36)
AdLasso 35.64 (0.56) 0.08 (0.27) 7.79 (0.48) 8.31 (0.46)

IVIS 33.09 (1.7) 7.72 (2.13) 11.28 (1.90) 14.02 (1.18)
New-Lasso 37.36 (1.73) 0.12 (0.31) 5.72 (0.50) 2.64 (0.31)
New-Mar 33.40 (2.11) 6.32 (2.86) 10.02 (1.03) 3.56 (0.44)

8

Lasso 34.30 (2.18) 0.88 (0.73) 13.20 (0.73) 14.38 (1.18)
AdLasso 35.45 (0.73) 0.20 (0.40) 7.72 (0.54) 8.25 (0.48)

IVIS 34.38 (1.79) 7.04 (1.09) 11.43 (1.70) 14.37 (2.21)
New-Lasso 37.71 (1.54) 0.00 (0.00) 5.22 (0.62) 3.04 (0.41)
New-Mar 32.03 (2.35) 5.84 (2.41) 9.88 (1.76) 3.74 (0.99)

9

Lasso 28.83 (3.54) 0.40 (0.68) 15.42 (1.68) 14.12 (1.12)
AdLasso 35.34 (1.58) 0.20 (0.48) 21.36 (0.52) 12.02 (0.75)

IVIS 33.11 (1.20) 6.42 (1.54) 16.94 (2.01) 15.97 (1.95)
New-Lasso 37.56 (1.19) 0.94 (0.29) 4.46 (1.10) 1.31 (0.28)
New-Mar 24.82 (2.88) 9.55 (0.80) 12.50 (1.56) 3.88 (0.73)
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Table A3. Simulation results for N = 200, p = 500, q = 40, and ρ = 0.8. Each cell shows the mean (sd).
The bold represents the best value.

Scenario Method TP FP RMSE RPE

1

Lasso 31.56 (2.17) 0.36 (0.33) 13.40 (0.67) 18.82 (1.86)
AdLasso 32.52 (1.54) 0.14 (0.40) 9.66 (0.75) 13.28 (0.49)

IVIS 29.46 (0.87) 6.32 (1.21) 13.22 (0.76) 20.86 (0.85)
New-Lasso 32.96 (2.21) 0.00 (0.00) 11.4 (1.40) 3.58 (0.61)
New-Mar 39.84 (0.37) 0.44 (0.09) 2.16 (0.40) 0.70 (0.10)

2

Lasso 30.60 (2.44) 0.07 (0.31) 11.76 (0.45) 20.90 (2.16)
AdLasso 31.06 (2.20) 0.02 (0.14) 8.60 (0.69) 10.08 (0.53)

IVIS 30.46 (1.68) 5.31 (0.91) 13.22 (0.85) 21.86 (0.98)
New-Lasso 31.80 (1.94) 0.00 (0.00) 11.76 (1.14) 4.18 (0.65)
New-Mar 39.60 (0.68) 0.23 (0.15) 2.58 (0.47) 0.78 (0.18)

3

Lasso 34.30 (2.88) 0.10 (0.30) 19.28 (1.83) 24.90 (2.63)
AdLasso 32.04 (1.40) 0.00 (0.00) 13.20 (1.43) 17.40 (0.81)

IVIS 31.86 (1.49) 7.37 (1.36) 14.38 (1.28) 25.43 (1.3)
New-Lasso 33.20 (2.17) 0.03 (0.02) 12.92 (3.07) 3.76 (0.77)
New-Mar 40.00 (0.00) 0.60 (0.08) 2.12 (0.17) 0.66 (0.03)

4

Lasso 32.85 (3.45) 0.20 (0.41) 31.06 (1.42) 38.52 (3.74)
AdLasso 33.34 (0.82) 0.15 (0.55) 16.36 (1.55) 18.56 (0.83)

IVIS 31.15 (1.57) 8.13 (1.44) 19.42 (1.93) 28.65 (2.23)
New-Lasso 32.90 (2.47) 0.96 (0.12) 23.28 (3.47) 5.54 (1.04)
New-Mar 40.00 (0.00) 0.90 (0.19) 1.76 (0.13) 0.60 (0.03)

5

Lasso 40.00 (0.00) 1.44 (0.74) 0.69 (0.08) 1.01 (0.03)
AdLasso 33.53 (1.54) 0.18 (0.44) 12.34 (0.76) 13.28 (0.49)

IVIS 30.48 (1.38) 6.44 (0.93) 16.01 (2.53) 21.08 (1.54)
New-Lasso 40.00 (0.00) 0.00 (0.00) 1.66 (0.13) 0.64 (0.06)
New-Mar 40.00 (0.00) 0.84 (0.10) 1.72 (0.15) 0.62 (0.02)

6

Lasso 30.81 (2.35) 0.22 (0.57) 16.80 (1.59) 22.90 (2.74)
AdLasso 33.82 (2.08) 0.08 (0.34) 13.78 (1.24) 19.28 (0.81)

IVIS 30.42 (2.02) 6.24 (0.97) 15.49 (1.86) 21.18 (1.14)
New-Lasso 32.40 (2.09) 0.00 (0.00) 11.06 (2.49) 3.18 (0.90)
New-Mar 39.80 (0.41) 1.76 (0.27) 2.48 (1.22) 0.72 (0.21)

7

Lasso 31.40 (2.35) 0.31 (0.32) 18.38 (1.02) 23.54 (2.13)
AdLasso 34.45 (1.81) 0.10 (0.42) 13.32 (1.21) 18.16 (0.65)

IVIS 31.65 (2.31) 5.43 (1.24) 15.13 (1.35) 22.11 (1.47)
New-Lasso 32.71 (1.69) 0.04 (0.02) 12.90 (2.15) 3.62 (0.66)
New-Mar 39.65 (0.67) 1.57 (0.39) 3.06 (1.03) 0.88 (0.16)

8

Lasso 30.50 (1.99) 0.40 (0.41) 17.48 (1.18) 22.74 (2.19)
AdLasso 32.04 (1.86) 0.12 (0.39) 13.04 (1.12) 17.84 (0.79)

IVIS 30.96 (2.58) 6.68 (1.75) 15.22 (2.55) 23.64 (3.41)
New-Lasso 32.23 (1.80) 0.00 (0.00) 12.70 (2.05) 3.64 (0.80)
New-Mar 39.51 (0.61) 1.85 (0.29) 3.48 (0.68) 0.96 (0.22)

Table A4. Data analysis: comparison of variable selection results. Each cell shows the number of
overlapping identifications.

New Lasso AdLasso IVIS

SKCM Dat
New 6 6 4 3
Lasso 38 12 6

AdLasso 25 5
IVIS 21

LUAD data
New 7 3 4 3
Lasso 29 8 5

AdLasso 27 4
IVIS 25
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Table A5. Simulation results for SKCM dataset. Each cell shows the mean (sd). The bold represents
the best value.

Method TP FP RMSE RPE

Lasso 1.70 (1.09) 6.60 (2.12) 1.37 (0.05) 1.30 (0.04)
AdLasso 2.60 (0.70) 4.40 (2.37) 1.35 (0.09) 1.18 (0.11)

IVIS 1.88 (0.69) 11.47 (2.30) 1.66 (0.07) 1.26 (0.13)
New-Lasso 3.43 (0.53) 3.25 (2.43) 1.22 (0.11) 0.95 (0.05)
New-Mar 2.96 (0.89) 8.20 (2.09) 1.36 (0.15) 1.04 (0.06)

Figure A1. Simulation results: computation time of the proposed approach as a function of the
number of features p for five replicates under Scenario 6 with N = 200, q = 20, ρ = 0.3. The red
dots represents the computation time under corresponding variable dimension, and the blue line
represents the fitted value.

Figure A2. Nonzero coefficients of all subjects under Scenarios 1–9. The x-axis represents the subjects,
and the y-axis represents the coefficient values.
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Figure A3. Estimated coefficients under Scenario 5 with N = 200, q = 20, and ρ = 0.3. The blue lines
represent the true coefficients, the orange ones the coefficients estimated by New-Lasso, and the
shadowed areas the 95% confidence intervals. The x-axis represents the subjects, and the y-axis
represents the coefficient values.
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Figure A4. Estimated coefficients under Scenario 5 with N = 500, q = 40, and ρ = 0.8. The blue
lines represent the true coefficients, the orange ones the coefficients estimated by New-Mar, and the
shadowed areas the 95% confidence intervals. The x-axis represents the subjects, and the y-axis
represents the coefficient values.
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Figure A5. Analysis of LUAD data using the proposed approach: estimated coefficients of the 7 genes
for all subjects. The x-axis represents the subjects, and the y-axis represents the coefficient values.

Figure A6. OOIs in the data analysis. Top: SKCM, bottom: LUAD.



Genes 2022, 13, 702 26 of 27

References
1. Ford, D.; Easton, D.F.; Stratton, M.; Narod, S.; Goldgar, D.; Devilee, P.; Bishop, D.T.; Weber, B.; Lenoir, G.; Chang-Claude, J.; et al.

Genetic Heterogeneity and Penetrance Analysis of the BRCA1 and BRCA2 Genes in Breast Cancer Families. Am. J. Hum. Genet.
1998, 62, 676–689. [CrossRef] [PubMed]

2. Galvan, A.; Dragani, T.A. Nicotine dependence may link the 15q25 locus to lung cancer risk. Carcinogenesis 2010, 31, 331–333.
[CrossRef] [PubMed]

3. Shen, J.; He, X. Inference for Subgroup Analysis with a Structured Logistic-Normal Mixture Model. J. Am. Stat. Assoc. 2015,
110, 303–312. [CrossRef]

4. Lloyd-Jones, R.; Nguyen, D.; McLachlan, J. A globally convergent algorithm for lasso-penalized mixture of linear regression
models. Comput. Stat. Data Anal. 2018, 119, 19–38. [CrossRef]

5. Huynh, Y.; Chamroukhi, F. Estimation and Feature Selection in Mixtures of Generalized Linear Experts Models. arXiv 2019,
arXiv:1907.06994.

6. Ma, S.; Huang, J. A Concave Pairwise Fusion Approach to Subgroup Analysis. J. Am. Stat. Assoc. 2015, 112, 410–423. [CrossRef]
7. Ma, S.; Huang, J.; Zhang, Z.; Liu, M. Exploration of Heterogeneous Treatment Effects via Concave Fusion. Int. J. Biostat. 2019, 16 .

[CrossRef]
8. Su, L.; Shi, Z.; Phillips, P. Identifying Latent Structures in Panel Data. Econometrica 2016, 84, 2215–2264. [CrossRef]
9. Chiang, C.; Rice, J.; Wu, C. Smoothing spline estimation for varying coefficient models with repeatedly measured dependent

variables. J. Am. Stat. Assoc. 2001, 96, 309–376. [CrossRef]
10. Huang, J.; Wu, C.; Zhou, L. Polynomial spline estimation and inference for varying coefficient models with longitudinal data.

Stat. Sin. 2004, 14, 763–788.
11. Wang, H.; Xia, Y. Shrinkage Estimation of the Varying Coefficient Model. J. Am. Stat. Assoc. 2009, 104, 747–757. [CrossRef]
12. Wei, F.; Huang, J.; Li, H. Variable selection in high-dimensional varying-coefficient models. Stat. Sin. 2011, 21, 1515–1540.

[CrossRef] [PubMed]
13. Xue, L.; Qu, A. Variable Selection in High-dimensional Varying-coefficient Models with Global Optimality. J. Mach. Learn. Res.

2012, 13, 1973–1998.
14. Song, R.; Yi, F.; Zou, H. On varying-coefficient independence screening for high-dimensional varying-coefficient models. Stat. Sin.

2014, 24, 1735–1752. [CrossRef] [PubMed]
15. Chen, Y.; Bai, Y.; Fung, W. Structural identification and variable selection in high-dimensional varying-coefficient models. J.

Nonparametric Stat. 2017, 29, 258–279. [CrossRef]
16. Ye, M.; Lu, Z.; Li, Y.; Song, X. Finite mixture of varying coefficient model: Estimation and component selection. J. Multivar. Anal.

2019, 171, 452–474. [CrossRef]
17. Wu, C.; Zhong, P.S.; Cui, Y. Additive varying-coefficient model for nonlinear gene-environment interactions. Stat. Appl. Genet.

Mol. Biol. 2017, 17, 2119–2126. [CrossRef]
18. Wu, C.; Shi, X.; Cui, Y.; Ma, S. A penalized robust semiparametric approach for gene-environment interactions. Stat. Med. 2015,

34, 4016–4030. [CrossRef]
19. Wu, M.; Zhang, Q.; Ma, S. Structured gene-environment interaction analysis. Biometrics 2020, 76, 23–25. [CrossRef]
20. Zhang, B.; Geng, J.; Lai, L. Multiple Change-Points Estimation in Linear Regression Models via Sparse Group Lasso. IEEE Trans.

Signal Process. 2015, 63, 2209–2224. [CrossRef]
21. Kaul, A.; Jandhyala, V.; Fotopoulos, S. Detection and estimation of parameters in high dimensional multiple change point

regression models via `1/`0 regularization and discrete optimization. IEEE Trans. Signal Process. 2019, arXiv:1906.04396.
22. Lee, S.; Seo, M.; Shin, Y. The lasso for high dimensional regression with a possible change point. J. R. Stat. Soc. 2016, 78, 193–210.

[CrossRef] [PubMed]
23. Guo, J.; Hu, J.; Jing, B.Y.; Zhang, Z. Spline-Lasso in High-Dimensional Linear Regression. J. Am. Stat. Assoc. 2016, 111, 288–297.

[CrossRef]
24. Tibshirani, R.; Saunders, M.; Rosset, S.; Zhu, J.; Knight, K. Sparsity and Smoothness via the Fused Lasso. J. R. Stat. Soc. B 2010,

67, 91–108. [CrossRef]
25. Mohamed, H.; Geer, S. The Smooth-Lasso and other `1 + `2-penalized methods. Electron. J. Stat. 2011, 5, 1184–1226.
26. Huang, J.; Ma, S.; Zhang, C. Adaptive LASSO for sparse high-dimensional regression. Stat. Sin. 2008, 18, 1603–1618.
27. Martinussen, T.; Scheike, T. Covariate Selection for the Semiparametric Additive Risk Model. Scand. J. Stat. 2009, 36, 602–619.

[CrossRef]
28. Binkiewicz, N.; Vogelstein, J. Covariate-assisted spectral clustering. Biometrika 2017, 104, 361–377. [CrossRef]
29. Wei, F.; Huang, J. Consistent Group Selection in High-Dimensional Linear Regression. Bernoulli 2010, 16, 1369–1384. [CrossRef]
30. Shao, F.; Li, J.; Ma, S.; Lee, M.L.T. Semiparametric varying-coefficient model for interval censored data with a cured proportion.

Stat. Med. 2014, 33, 1700–1712. [CrossRef]
31. Mu, Y.; Li, J.; Ma, S. Sparse boosting for high-dimensional survival data with varying coefficients. Stat. Med. 2017, 37, 789–800.
32. Song, R.; Yi, F.; Zou, H. Correlation Between Prognostic Factors and Increasing Age in Melanoma. Ann. Surg. Oncol. 2004,

11, 259–264.
33. Molony, C.; Sieberts, S.K.; Schadt, E.E. Processing Large-Scale, High-Dimension Genetic and Gene Expression Data; Springer Press:

Berlin/Heidelberg, Germany, 2009; pp. 307–330.

http://doi.org/10.1086/301749
http://www.ncbi.nlm.nih.gov/pubmed/9497246
http://dx.doi.org/10.1093/carcin/bgp282
http://www.ncbi.nlm.nih.gov/pubmed/19910382
http://dx.doi.org/10.1080/01621459.2014.894763
http://dx.doi.org/10.1016/j.csda.2017.09.003
http://dx.doi.org/10.1080/01621459.2016.1148039
http://dx.doi.org/10.1515/ijb-2018-0026
http://dx.doi.org/10.3982/ECTA12560
http://dx.doi.org/10.1198/016214501753168280
http://dx.doi.org/10.1198/jasa.2009.0138
http://dx.doi.org/10.5705/ss.2009.316
http://www.ncbi.nlm.nih.gov/pubmed/24478564
http://dx.doi.org/10.5705/ss.2012.299
http://www.ncbi.nlm.nih.gov/pubmed/25484548
http://dx.doi.org/10.1080/10485252.2017.1303057
http://dx.doi.org/10.1016/j.jmva.2019.01.013
http://dx.doi.org/10.1515/sagmb-2017-0008
http://dx.doi.org/10.1002/sim.6609
http://dx.doi.org/10.1111/biom.13139
http://dx.doi.org/10.1109/TSP.2015.2411220
http://dx.doi.org/10.1111/rssb.12108
http://www.ncbi.nlm.nih.gov/pubmed/27656104
http://dx.doi.org/10.1080/01621459.2015.1005839
http://dx.doi.org/10.1111/j.1467-9868.2005.00490.x
http://dx.doi.org/10.1111/j.1467-9469.2009.00650.x
http://dx.doi.org/10.1093/biomet/asx008
http://dx.doi.org/10.3150/10-BEJ252
http://dx.doi.org/10.1002/sim.6054


Genes 2022, 13, 702 27 of 27

34. Ronit, L. Endothelin receptor B is required for the expansion of melanocyte precursors and malignant melanoma. Int. J. Dev. Biol.
2005, 49, 173–180.

35. Shi, X.; Nie, F.; Wang, Z.; Sun, M. Pseudogene-expressed RNAs: A new frontier in cancers. Tumor Biol. 2016, 37, 1471–1478.
[CrossRef]

36. Cheng, Y.; Lu, J.; Chen, G.; Ardekani, G.S.; Rotte, A.; Martinka, M.; Xu, X.; McElwee, K.J.; Zhang, G.; Zhou, Y. Stage-specific
prognostic biomarkers in melanoma. Oncotarget 2015, 6, 4180–4189. [CrossRef]

37. Wang, Y.; Jiang, H.; Dai, D.; Su, M.; Martinka, M.; Brasher, P.; Zhang, Y.; McLean, D.; Zhang, J.; Ip, W.; et al. Alpha 1
antichymotrypsin is aberrantly expressed during melanoma progression and predicts poor survival for patients with metastatic.
Pigment. Cell Melanoma Res. 2010, 23, 575–578. [CrossRef]

38. Zhou, J.; Cheng, Y.; Tang, L.; Martinka, M.; Kalia, S. Up-regulation of SERPINA3 correlates with high mortality of melanoma
patients and increased migration and invasion of cancer cells. Oncotarget 2017, 8, 18712–18725. [CrossRef]

39. Foy, J.P.; Pickering, C.R.; Papadimitrakopoulou, V.A.; Jelinek, J.; Lin, S.H.; William, W.N.; Frederick, M.J.; Wang, J.; Lang, W.;
Feng, L.; et al. New DNA methylation markers and global DNA hypomethylation are associated with oral cancer development.
Cancer Prev. Res. 2015, 8, 1027–1035. [CrossRef]

40. Ma, Y.; Xia, Z.; Ye, C.; Lu, C.; Zhou, S.; Pan, J.; Liu, C.; Zhang, J.; Liu, T.; Hu, T.; et al. AGTR1 promotes lymph node metastasis in
breast cancer by upregulating CXCR4/SDF-1α and inducing cell migration and invasion. Aging 2019, 11, 3969–3992. [CrossRef]

41. Guo, S.; Yan, F.; Xu, J.; Bao, Y.; Zhu, J.; Wang, X.; Wu, J.; Li, Y.; Pu, W.; Liu, Y.; et al. Identification and validation of the methylation
biomarkers of non-small cell lung cancer. Clin. Epigenetics 2015, 7 . [CrossRef]

42. Wei, L. The accelerated failure time model: A useful alternative to the cox regression model in survival analysis. Stat. Med. 1992,
11, 1871–1879. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s13277-015-4482-z
http://dx.doi.org/10.18632/oncotarget.2907
http://dx.doi.org/10.1111/j.1755-148X.2010.00715.x
http://dx.doi.org/10.18632/oncotarget.9409
http://dx.doi.org/10.1158/1940-6207.CAPR-14-0179
http://dx.doi.org/10.18632/aging.102032
http://dx.doi.org/10.1186/s13148-014-0035-3
http://dx.doi.org/10.1002/sim.4780111409
http://www.ncbi.nlm.nih.gov/pubmed/1480879

	Introduction
	blackMaterials and Methods
	Computation
	Statistical Properties

	Simulation
	Data Analysis
	SKCM Data
	LUAD Data
	Simulation on SKCM Dataset

	Discussion
	Estimation under the Accelerated Failure Time Model
	
	
	More Tables and Figures
	References

