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Using the seminal rubber hand illusion and related paradigms, the last two decades

unveiled the multisensory mechanisms underlying the sense of limb embodiment, that

is, the cognitive integration of an artificial limb into one’s body representation. Since also

individuals with amputations can be induced to embody an artificial limb by multimodal

sensory stimulation, it can be assumed that the involved computational mechanisms

are universal and independent of the perceiver’s physical integrity. This is anything but

trivial, since experimentally induced embodiment has been related to the embodiment

of prostheses in limb amputees, representing a crucial rehabilitative goal with clinical

implications. However, until now there is no unified theoretical framework to explain limb

embodiment in structurally varying bodies. In the present work, we suggest extensions of

the existing Bayesian models on limb embodiment in normally-limbed persons in order to

apply them to the specific situation in limb amputees lacking the limb as physical effector.

We propose that adjusted weighting of included parameters of a unified modeling

framework, rather than qualitatively different model structures for normally-limbed and

amputated individuals, is capable of explaining embodiment in structurally varying bodies.

Differences in the spatial representation of the close environment (peripersonal space)

and the limb (phantom limb awareness) as well as sensorimotor learning processes

associated with limb loss and the use of prostheses might be crucial modulators

for embodiment of artificial limbs in individuals with limb amputation. We will discuss

implications of our extended Bayesian model for basic research and clinical contexts.

Keywords: bodily illusions, embodiment, structurally varying bodies, cognitive model, rubber limb illusion

1. INTRODUCTION

Setups such as the rubber limb illusion (RLI) (e.g., Botvinick and Cohen, 1998; Flögel et al.,
2016) and related paradigms (Riemer et al., 2019) have been comprehensively used to study the
embodiment of artificial limbs in normally-limbed participants. In this context, “embodiment”
refers to the cognitive integration of an external object into one’s body representation (Longo et al.,
2008; Makin et al., 2017). In the RLI, both a participant’s real but hidden limb as well as a visible
artificial counterpart are touched synchronously, inducing the perception that the artificial limb
belongs to the participant’s body. After successful RLI induction, participants tend to locate their
hidden limb closer to the rubber limb than before, a phenomenon termed “proprioceptive drift”
(e.g., Botvinick and Cohen, 1998; Longo et al., 2008), which has been interpreted as proprioceptive
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re-calibration of the body coordinates (Botvinick and Cohen,
1998). The vividness of the RLI has been found to depend on
various parameters, such as the degree of synchrony between
visual and tactile stimulation (Bekrater-Bodmann et al., 2014)
or visual features such as color and shape of the artificial limb
(Tsakiris et al., 2010; Farmer et al., 2012). Another important
factor for eliciting the RLI is whether the artificial limb is placed
in the individual’s limb-centered peripersonal space (PPS) (Lloyd,
2007), i.e., the intermediate surroundings of a limb, within the
limits of which the integration of multimodal stimuli is facilitated
(Serino, 2019). For humans, limb-centered PPS boundaries of
about 30 cm for the upper limb (Lloyd, 2007) and 70 cm for the
lower limb (Stone et al., 2018) have been reported.

Traditionally, the embodiment experiences elicited in the RLI
have been assumed to rely exclusively on bottom-up processes
(Botvinick and Cohen, 1998; Armel and Ramachandran, 2003),
emphasizing a three-way interaction between vision, touch, and
proprioception, which—in a connectionist tradition—leads to
perceivedmerging of tactile and visual inputs by distortions of the
position sense (Armel and Ramachandran, 2003). However, this
purely bottom-up perspective is not compatible with the growing
number of empirical evidence on the principles underlying
limb embodiment (Litwin, 2020), as earlier described top-down
modulating factors, e.g., the PPS, have been shown to influence
the vividness of the RLI.

In the light of recent advances in Bayesianmodeling of sensory
integration (Körding and Wolpert, 2006; Körding et al., 2007;
Berniker and Kording, 2011), the processes involved in the
RLI have been proposed to be better modeled as multisensory
combination based on probabilistic principles (Samad et al., 2015;
Schürmann et al., 2019b; Litwin, 2020; Shams and Beierholm,
2021). In this view, embodiment of an external object takes
place when multimodal sensory inputs are (falsely) interpreted
as being caused by the same external event. Bayesian modeling
has first been used by Samad et al. (2015) to predict the
strength of the RLI for the hand explaining the induction
of embodiment in a traditional bottom-up fashion. In their
model, the induction of embodiment depends on whether a
cognitive system infers common or independent causes of
visual and somatosensory signals, resulting in a re-calibration
of proprioceptive coordinates. The combination of sensory
signals would then depend on the relative probabilities of these
two posterior hypotheses derived from their prior probabilities
and likelihood of sensory signals. By empirical testing of
hypotheses deduced from their model, Samad et al. (2015)
found strong evidence for Bayesian probabilistic processing
underlying the embodiment of an artificial limb. However, a
recent article by Schubert and Endres (2021) highlighted flaws
in the unrealistic wide choice of the prior distributions of the
model. They could not recreate realistic results using their
improved prior distributions given the current model structure.
Additionally, Schürmann et al. (2019b) showed that informed
priors outperform the originally used uniform priors.

Crucially, the RLI can also be induced in individuals with
limb amputations (e.g., Ehrsson et al., 2008) which is why
this setup has been proposed to be a model for certain
processes involved in the embodiment of prostheses as well.

Successful embodiment of a prosthesis is important as the
amputation of a limb severely disrupts a person’s physical
integrity. There are preliminary reports that most individuals
with amputations can achieve embodiment of their prosthesis
(Bekrater-Bodmann, 2020) the processes of which have been
related to positive clinical outcomes (e.g., Imaizumi et al., 2016;
Bekrater-Bodmann, 2021; Bekrater-Bodmann et al., 2021). The
psychometric structure behind experimentally-induced short-
termed RLI experiences in normally-limbed participants (Longo
et al., 2008) and real-life long-termed prosthesis embodiment
in limb amputees (Bekrater-Bodmann, 2020) show substantial
qualitative similarity, which is remarkable, given the striking
differences in the participant’s physical integrity. Although
there is reason to assume that differential neurocognitive
mechanisms contribute to embodiment experiences in the RLI
and prosthesis use, with the latter probably relying on long-
term sensorimotor learning rather than short-term multimodal
sensory combination (cf., Zbinden and Ortiz-Catalan, 2021),
the psychometric similarities suggest at least partly overlapping,
potentially Bayesian processes.

However, the question arises how bodily self-experiences
in general and prosthesis embodiment in particular can be
theoretically explained in a unified fashion taking into account
and improving on the currently used Bayesian modeling
approaches. A unified modeling framework could be a step
toward prediction of factors improving embodiment of artificial
limbs and could thus improve user experience. The authors of
the present article propose a 2-fold extension of the current
modeling approaches in accordance with the upper two levels
of cognitive modeling proposed by Marr (1982), which has been
proposed in earlier research to describe the different underlying
task of modeling approaches (e.g., Schürmann and Beckerle,
2020; Shams and Beierholm, 2021). Firstly, starting on the
computational theory level, we propose to improve the current
model structure, and extend the models for structurally varying
bodies taking into account individual differences in perception
of embodiment. Secondly, on the algorithmic level, we propose
to incorporate top-down modulating factors in the priors of the
cognitive models, according to Litwin (2020).

2. LIMB EMBODIMENT IN STRUCTURALLY
VARYING BODIES

Normally-limbed and amputated individuals differ in important
representational and perceptual characteristics, which have to be
considered when cognitive modeling is applied to the processes
underlying artificial limb embodiment. Thus, limb amputees
often report the presence of a phantom limb (Kooijman et al.,
2000), i.e., the persistent perception of a body part that has
been removed. The proprioceptive presence of a phantom limb
can be made use of in the induction of embodiment: in some
individuals with amputations, tactile stimulation applied to the
residual limb can trigger a touch sensation in the phantom limb,
known as “referred sensations”, which might be a consequence
of neuroplastic changes in the somatotopic body maps in the
brain (Ramachandran et al., 1992). If the location of the elicited
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sensations in the phantom corresponds to the visual location
of touch applied to the artificial limb, embodiment experiences
can be facilitated (Ehrsson et al., 2008). Furthermore, there is
preliminary evidence that prostheses interact with the phantom
limb in terms of perceptual co-location (the phantom “occupies”
the space of the prosthesis; Giummarra et al., 2008) which might
also foster the embodiment of the prosthetic device. Postural
phantom limb disturbances, however, could interfere with the
incorporation of the artificial limb and consequently reduce
embodiment (cf., Foell et al., 2014).

Moreover, limb amputation is associated with a shrinkage in
the extent of PPS representation, with a shift of its boundaries
toward the stump (Canzoneri et al., 2013), which might explain
why prosthesis embodiment is strong for long residual limbs and
low for short ones (Bekrater-Bodmann, 2020): in short residual
limbs, the prosthesis might “stick out” of the PPS boundaries
which interferes with its embodiment (cf., Lloyd, 2007). Whether
or not phantom limb perceptions are associated with normal PPS
extent, however, remains unknown.

3. MODELS PREDICTING EMBODIMENT
FOR STRUCTURALLY VARYING BODIES

Given both the perceptual similarities and potential mechanistic
differences, i.e., integration of multimodal sensory input
vs. sensorimotor learning processes, between short-term and
long-term embodiment in normally-limbed and amputated
individuals, the combination of Bayesian and connectionist
models and the modulation of priors seem promising for
the prediction of experiences in both groups. However, it is
currently unclear how these models should be combined or
adapted. Current embodiment models do not cover structural
body varieties, e.g., limb presence or absence, since priors
do not take into account inter-individual differences in body
representation, e.g., differences in PPS extent and different
underlying mechanisms. One crucial issue could relate to
quantitatively different weighting of certain sensorimotor factors
in normally-limbed vs. amputated individuals, while the
structure of the model itself remains unaffected. This might
allow for the integration of different PPS representations in
amputated and normally-limbed bodies, as preliminary indicated
by Canzoneri et al. (2013). Samad et al. (2015) highlighted
that their proposed framework is extendable to incorporate
such additional variables by adding individual prior knowledge,
e.g., by adding tactile, proprioceptive, and visual priors and
adapting their sensitivity to the individual or a group of people.
The importance of prior knowledge is highlighted by recent
evidence suggesting that the prediction quality for behavioral
correlates of the RLI can be enhanced by entering informed priors
to the probabilistic model (Schürmann et al., 2019b). Litwin
(2020) further opts for the inclusion of individual dispersions
of coupling priors for modeling the potentially important, but
largely neglected, top-down effects. Thus, beyond bottom-up
processes, the human cognitive system seems to use prior
knowledge of cross-modal correlations, e.g., the correlation
between visual and tactile stimulation, to modulate sensory

integration in PPS (Parise et al., 2012, 2013), which might be
subject to individual sensorimotor experiences and learning. The
embodiment of an artificial limb has been linked to remapping
of PPS boundaries to the location of the artificial limb (Brozzoli
et al., 2012), suggesting that its representation is shaped by
top-down influences.

To factor in individual representational differences, we
suggest to improve the existing Bayesian models with respect
to estimation accuracy, specifications for individual users, and
online capabilities. Figure 1 provides a conceptual perspective
of an extended framework to include individual differences.
Starting from multisensory models aiming to predict the
perceived limb location, i.e., the proprioceptive drift (Samad
et al., 2015; Schürmann et al., 2019b), extending the models
with sensorimotor information in order to cover more complex
behavioral and psychological outcomes. To this end, we suggest
extending the current Bayesian model considering the upper two
levels of Marr (1982): the computational theory level, describing
what a system is doing andwhat functions are needed to complete
this goal, and the algorithmic level, outlining how the system
could be implemented (Marr, 1982; Dennett, 1987).

The goal of the proposed framework is to estimate the
embodiment of an artificial limb for an individual taking into
account structural differences of their bodies. We suggest that
this goal can be realized by combining established models
of multisensory integration with models of perception and
higher cognition, and extending the overall framework by
experience-modulated priors. These changes are indicated in the
addition of the model of cognition, the models of sensation
and perception, and the top-down modulation in Figure 1. The
added priors would not be individualized but represent general
influences of experience, i.e., irrespective of structural body
variations. Computationally, this could be covered by a top-down
modulation to predict influences of previous experiences on prior
couplings, e.g., visuo-tactile integration or sensorimotor learning,
using the implementation of learning-based models of inter- and
intramodal sensory signals (Van Dam et al., 2014; Parise, 2016;
Noel et al., 2018; Litwin, 2020; Press et al., 2020).

On the algorithmic level, we propose to extend the
approaches and mechanisms in the submodels of sensation
and perception, cognition, and top-down modulation, see
algorithmic approaches in Figure 1. The model of cognition
adds psychometric measures of embodiment, e.g., perceived
agency and body ownership, in order to include individual
perceptual outcomes in addition to the proprioceptive measures.
To include more individualized information in the model of
sensation and perception, Bayesian and connectionist methods
as well as predictive coding are promising for the perceptual
submodels, e.g., by adding sensorimotor learning, (Thomas and
McClelland, 2008; Clark, 2013; Samad et al., 2015; Schürmann
et al., 2019a,b). The top-down connection between the model
of cognition, and the model of sensation and perception is
adding experience-modulated priors (cf., Ingram et al., 2017),
incorporating recent evidence for top-down modulation of
adaptive sensory representations in the brain (Makino et al.,
2016). We propose adding a top-down modulation of priors
to incorporate information about individual PPS, visuo-tactile
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FIGURE 1 | The proposed cognitive modeling framework suggests a conceptual structure representing embodiment mechanisms on the computational level.

Submodels (pink boxes) are connected by information flows (blue arrows). The submodels contain suggestions for algorithmic approaches to realize the functions

represented in the purple ellipses. Among those, mechanisms that appear important for long-term differences in embodiment, i.e., sensorimotor learning in individuals

with amputations, are outlined. The framework further suggests how to model the integration of visuo-tactile with proprioceptive information. Bottom-up information is

used as input for the model of cognition from the perceived stimulation as well as from prior knowledge. The prior knowledge is modulated using top-down

information from earlier experiences.

weighting, sensorimotor learning and prior knowledge of cross-
modal correlations, indicated by the ellipses in the submodel of
sensation and perception in Figure 1. This pathway could be
realized in a connectionist fashion, e.g., by the implementation of
artificial neural networks (Quinlan, 2003; Zhong, 2015). Artificial
neural networks, as well as network architecture in the brain
(Graham, 1982), use feedback information to update the weights
of the connections between neurons. This process makes them
adaptable to individual differences, while alsomodeling processes
that are valid on group level. These approaches appear to be
particularly promising for limb amputees who are characterized
by high variability in sensorimotor experiences related to the use
of prostheses.

To ensure accurate models for structurally varying bodies,
the suggested algorithmic model adaptations should be
performed iteratively using human-in-the-loop experiments
with individuals with structurally varying bodies, e.g., people
with/without amputation, to verify and adapt the implemented
models and priors. We postulate that the overall cognitive
modeling framework should be generally applicable to
structurally varying bodies at computational level. The methods
selected on algorithmic level might be identical, but should vary
in the parameterization that represents individual effects, e.g.,
artificial neural network weights.

4. CONCLUSION

Both the similarities and the differences of limb embodiment
in individuals with structurally varying bodies show a need
for an extension of currently used cognitive models for
normally-limbed people. These models should be adapted to
consider individual limb differences by incorporating further
parameters such as the peripersonal space and adapting the
weighting of included parameters iteratively to the individual.
Such extensions could not only help to explain and predict

embodiment of prostheses but also highlight individual factors
that facilitate or hinder embodiment of rehabilitative devices

in general.
The current research points toward prior sensorimotor

experiences and the peripersonal space extent taking influence on

the embodiment of (artificial) limbs. Thus, we advocate to create
a cognitive modeling framework that extends current approaches

with top-down modulations to represent individual structural
and other representational differences and make algorithmic
suggestions to realize its implementation, e.g., using artificial
neural networks or cognitive architectures.

Furthermore, modeling embodiment for both individuals
with and without amputation will enable the characterization
of the variability (or invariability) of different parameters of
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the model, e.g., the sensitivity of priors or the importance of
used prior knowledge in cognitive architectures or artificial
neural networks. In other words, the comparison of the
models’ dynamics for structurally varying bodies will reveal
to which degree the bodily self is subject to plastic adaptions
in response to structural alterations of the physical body. To
accurately model the variability in the processes involved in limb
embodiment, experiments with participants with and without
amputations will be needed before adapting the models to inform
theoretical considerations. Supported by neuropsychological
research, the proposed modeling approaches might foster our
understanding of the mechanisms underlying limb embodiment
and the predictive power of cognitive models, which might

in turn be used to improve the design and control of
assistive devices.
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