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Abstract: Uncertainty relations involving incompatible observables are one of the cornerstones
of quantum mechanics. Aside from their fundamental significance, they play an important role
in practical applications, such as detection of quantum correlations and security requirements in
quantum cryptography. In continuous variable systems, the spectra of the relevant observables form a
continuum and this necessitates the coarse graining of measurements. However, these coarse-grained
observables do not necessarily obey the same uncertainty relations as the original ones, a fact that can
lead to false results when considering applications. That is, one cannot naively replace the original
observables in the uncertainty relation for the coarse-grained observables and expect consistent
results. As such, several uncertainty relations that are specifically designed for coarse-grained
observables have been developed. In recognition of the 90th anniversary of the seminal Heisenberg
uncertainty relation, celebrated last year, and all the subsequent work since then, here we give a
review of the state of the art of coarse-grained uncertainty relations in continuous variable quantum
systems, as well as their applications to fundamental quantum physics and quantum information
tasks. Our review is meant to be balanced in its content, since both theoretical considerations and
experimental perspectives are put on an equal footing.
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1. Introduction

The physics of classical waves distinguishes itself from that of a classical point particle in several
ways. Waves are spread-out packets of energy moving through a medium, while a particle is localized
and follows a well-defined trajectory. It was thus most surprising when it was discovered in the
early 20th century that quantum objects, such as electrons and atoms, could exhibit behavior that at
times was best described according to wave mechanics. Moreover, it was shown that either wave
or particle behavior could be observed depending almost entirely upon how an observer chooses to
measure the system. This complementarity of wave and particle behavior played a key role in the early
debates concerning the validity of quantum theory [1], and has been linked to several interesting and
fundamental phenomena of quantum physics [2–5]. Though several complementarity relations have
been cast in quantitative forms [6,7], perhaps complementarity is most frequently observed in terms
of quantum uncertainty relations. In words, uncertainty relations establish the fact that the intrinsic
uncertainties associated to measurement outcomes of two incompatible observations of a quantum
system can never both be arbitrarily small. We note that this type of behavior appears in classical
wave mechanics, for example in the form of time-bandwidth uncertainty relations, which are quite
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important in communications and signal processing [8]. In contrast, there is no aspect of a classical
physics that prohibits us from measuring all of the relevant properties of a classical point particle,
at least in principle.

In addition to quantum fundamentals, quantum uncertainty relations play an important role
in several interesting tasks associated to quantum information protocols, such as the detection of
quantum correlations and the security of quantum cryptography [9]. In this paper, we focus on
continuous variable (CV) quantum systems [10,11]. Though many interesting results have been
found for discrete systems, they are outside the scope of this manuscript. We refer the interested
reader to Reference [9], being a comprehensive unification and extension of two older reviews on
entropic uncertainty relations, more focused on the physical [12] and information-theoretic [13] side
respectively. However, since the coarse-grained scenario situates itself somehow in-between the
discrete and continuous description, we make a short introduction to discrete entropic uncertainty
relations before discussing their coarse-grained relatives.

In CV systems, one encounters a fundamental problem when performing measurements. That is,
the eigenspectra of the corresponding observables are infinite dimensional, and can be continuous or
discrete. Since any measurement device registers measurement outcomes with a finite precision and
within a finite range of values, the experimental assessment of CV observables can be quite different
from theory. Of course, one can consider a truncation of the relevant Hilbert space [14], as well as some
type of binning or coarse graining of the measurement outcomes. This is similar to the idea of coarse
graining that was discussed by Gibbs [15] and used by Paul and Tanya Ehrenfest [16,17] in the early
20th century to account for imprecise knowledge of dynamical variables in statistical mechanics [18].
Coarse graining has also appeared in the quantum mechanical context as an attempt to describe the
quantum-to-classical transition, where the idea is that measurement imprecision could be responsible
for the disappearance of quantum properties [19–23]. Though this is quite an intuitive notion, it was
recently shown that one can always find an uncertainty relation that is satisfied non-trivially for any
amount of coarse graining [24]. That is, quantum mechanical uncertainty is always present in this type
of “classical” limit. This motivates the formulation of coarse-grained uncertainty relations.

In addition to the necessity of coarse graining, there could be practical advantages: for tasks
such as entanglement detection, it might be interesting to perform as few measurements as possible,
advocating the use of coarse-grained measurements. However, improper handling of coarse graining
can result in false detections of entanglement [25,26], pseudo-violation of Bell’s inequalities or the
Tsirelson bound [27,28], and sacrifice security in quantum key distribution [29], for example. Thus,
the proper formulation and application of uncertainty relations for coarse-grained observables is both
interesting and necessary.

In the present contribution we review the current state of the art of uncertainty relations (URs)
for coarse-grained observables in continuous-variable quantum systems. In Section 2 we review the
concept of uncertainty of continuous variable (CV) quantum systems in more depth and introduce
several prominent URs. In Section 3 we discuss the utility of CV URs in quantum physics and quantum
information, in particular for identifying non-classical states and quantum correlations. Section 4
presents the problem of coarse graining of CVs in detail, and two coarse-graining models are provided.
The current status of URs for these coarse-graining models is reviewed in Section 5, where we present a
series of coarse-grained URs previously reported in the literature [12,24,30–32]. In addition, we extend
the validity of some of these URs to general linear combinations of canonical observables. Section 6 is
devoted to the experimental investigation and application of coarse-grained URs in quantum physics
and quantum information. Concluding remarks are provided in Section 7.

2. Uncertainty Relations

The history of uncertainty relations traces back to the early days of the formalization of quantum
theory and begins with the celebrated work by Heisenberg in 1927 [33] (see [1] for an English version).
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The work discussed what later became known as Heisenberg’s uncertainty principle. The first
mathematical formulation for this principle, in [33], essentially reads:

∆x∆p & h (1)

where ∆x and ∆p are the uncertainties of the position and linear momentum of a particle, respectively,
and h is the Planck constant. Although the existence of such a principle is ultimately due to the
non-commutativity of the position and momentum observables, it took almost 80 years for all the
physical meanings, scope and validity of this principle to be elucidated [34]. Distinct physical meanings
emerge from different definitions for “uncertainty” of position or momentum, and in each case a
proper multiplicative constant makes the lower bound sharp. All of these inequalities are known
by the generic name of Uncertainty Relations, from the beginning of this review referred to as URs.
Even though the inception of the URs was made in the context of position and momentum of a particle,
their existence can be extended to the “uncertainties” associated with any pair of non-commuting
observables in discrete or continuous variable quantum systems. Thus, generically we can define the
URs as inequalities that stem from the fact that the measured quantities involved are associated to
non-commuting observables.

Nowadays, we can say that it is clear that there are three conceptually distinct types of URs [34]:
(i) URs associated with the statistics of the measurement results of non-commuting observables after
preparing the system repeatedly in the same quantum state, or statistical URs for short, (ii) the
error-disturbance URs, also known as noise-disturbance URs, for the relation of the imprecision in
the measurement of one observable and the corresponding disturbance in the other, and, (iii) the
joint measurement URs associated with the precision of the joint measurements of non-commuting
observables. The error-disturbance URs has two main contributions: one in References [35–37] that
present state-dependent error-disturbance URs and the other in References [38–40] that argue for a
state-independent characterisation of the overall performance of measuring devices as a measure of
uncertainty that satisfies an UR of the form given in Equation (1). There was a certain controversy
involving these two contributions and we recommend the work [41] that discusses the limitations of
the state-dependent error-disturbance URs. The development of joint measurement URs has an early
contribution in Reference [42] and further developments were given in References [38,43–48].

The statistical URs are also referred to in the literature as preparation URs. This is because it
is impossible to prepare a quantum system in a state for which two non-commuting observables
have sharply defined values. However, here we prefer to call them statistical URs, as they express
the limits to the amount of information that can be obtained about incompatible observables of a
quantum system when it is repeatedly measured after being prepared in the same initial state in each
round of the measurement process. We emphasize that there is not any attempt to measure the two
non-commuting observables simultaneously. In each round of the measurement process only one
observable is measured, the choice of which could be made randomly. In this sense the “uncertainties”
contained in the statistical URs are of the statistical type: the more certain the sequence of outcomes of
one observable is in a given state, then the more uncertain is the sequence of outcomes of the other
non-commuting observable(s) considered.

This review focuses on statistical URs that are valid for coarse-grained measurements in continuous
variable quantum systems, although a similar approach can be made for the other two types of URs
mentioned above. There are two types of quantum mechanical degrees of freedom: the ones that can
be described by a Hilbert space of quantum states with finite dimension and the others in which it has
infinite dimension. In particular, we are interested only in continuous variable (CV) systems where
the Hilbert space,H, of pure states, |ψ〉, has an infinite dimension. The CV systems that we consider
consist of a finite set of n bosonic modes, sometimes called ”qumodes” [10], so thatH := H1⊗ . . .⊗Hn.
Each mode is described by a pair of canonically conjugate operators, x̂j and p̂j, such that

[x̂j, p̂k] = ih̄1̂δjk. (2)
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Alternatively, each mode can be described by a pair of ladder operators, âj := (1/
√

2h̄)(x̂j + i p̂j)

and â†
j := (1/

√
2h̄)(x̂j − i p̂j), with [âj, â†

k ] = 1̂δjk. Therefore, the separable Hilbert space of each
mode,Hj, has a enumerable basis {|nj〉}nj=1,...,∞ consisting of eigenstates of the number operator, viz.
n̂j|nj〉 = nj|nj〉, evidencing the infinite dimensionality of the Hilbert space of the quantum states. In the
case of mixed states we use density operators represented by greek letters with a hat, i.e., ρ̂, σ̂ etc.

Important examples of CV systems are the motional degrees of freedom of atoms, ions and
molecules, where x̂j and p̂j are the components of the position and linear momentum of the particles
(in this case h̄ in Equation (2) is the usual reduced Planck constant, i.e., h̄ = h/2π); the quadrature
modes of the quantized electromagnetic field where x̂j and p̂j are canonically conjugate quadratures
(in this case h̄ in Equation (2) is just h̄ = 1 ) [10]; and the transverse spatial degrees of freedom of single
photons propagating in the paraxial approximation (in this case h̄ in Equation (2) is h̄ = λ/2π where λ

is the photon’s wave length [49]).
In what follows, we summarize the principal statistical URs in CV systems that have been

generalised to coarse-grained measurements. The corresponding coarse-grained URs will be presented
in Section 5.

2.1. Heisenberg (or Variance) Uncertainty Relation

Let us consider two operators:

û := dT x̂ = aTq̂ + a′Tp̂ and v̂ := d′T x̂ = bTq̂ + b′Tp̂, (3)

where T means transposition and we define the 2n-dimensional vector of operators,

x̂ := (q̂, p̂)T = (x̂1, . . . , x̂n, p̂1, . . . , p̂n)
T , (4)

as well as the arbitrary real vectors,

d = (a, a′)T = (a1, . . . , an, a′1, . . . , a′n)
T and d′ = (b, b′)T = (b1, . . . , bn, b′1, . . . , b′n)

T . (5)

The commutation relation of û and v̂ is

[û, v̂] = ih̄dTJd′1̂ =: ih̄γ1̂, (6)

where J is the 2n× 2n-dimensional matrix of the symplectic norm [50]:

J =

(
O I
−I O

)
, (7)

and the n× n matrices in the blocks are the identity matrix I and the null matrix O. In this review,
matrices of an arbitrary shape not treated as quantum-mechanical operators are denoted in bold and
without a hat.

The parameter γ in definition Equation (6) is a scalar that in some sense quantifies the
non-commutativity of û and v̂. Commutation relations such as Equation (6) are called Canonical
Commutation Relations (CCR) (sometimes the name CCR is used in the case when γ = 1, however,
as h̄γ can be interpreted as an effective Planck constant, so the name CCR here is well justified).
However, a CCR between two operators û and v̂ does not guarantee that they are necessarily
Canonically Conjugate Operators (CCOs). For this to be true we additionally need that the eigenvectors
of û and v̂ must be connected by a Fourier Transform. In such a case we call û and v̂ CCOs (also note
that when two operators like the ones defined in Equation (3) have their eigenstates connected by a
Fourier Transform, they necessary satisfy a commutation relation like in Equation (6), as can be easily
shown. However the converse is not true. Take for example the single mode operators û = x̂ and
v̂ = x̂ + p̂, which satisfy [û, v̂] = [x̂, p̂] = ih̄ but are not a Fourier pair).
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Every pair of operators, û and v̂, that obey a CCR also satisfies the statistical UR:

σ2
Pu

σ2
Pv
≥ h̄2

4
γ2, (8)

where
σ2

Pu
:= 〈û2〉 − 〈û〉2, and σ2

Pv
:= 〈v̂2〉 − 〈v̂〉2, (9)

are the variances of the marginal probability distribution functions (pdf):

Pu(u) = 〈|u〉〈u|〉, and Pv(v) = 〈|v〉〈v|〉, (10)

where we have defined
〈. . .〉 := Tr(. . . ρ̂), (11)

with ρ̂ being an arbitrary n−mode quantum state. We call the UR in Equation (8) the Heisenberg
UR, or variance-product UR. For one mode CCOs, such as û = x̂ and v̂ = p̂ (therefore γ = 1),
the Heisenberg UR in Equation (8) was first proved by Kennard in 1927 [51], inspired by the inequality
in Equation (1) of Heisenberg’s seminal paper of the same year [33]. Later, it was also proved by Weyl
in 1928 [52]. In 1929 Robertson [53] extended the Heisenberg UR for any pair of Hermitian operators Â
and B̂:

σ2
PA

σ2
PB
≥ 1

4

∣∣〈[Â, B̂]〉
∣∣2 . (12)

This result extends the Heisenberg UR in Equation (8) to û and v̂ that are not CCOs.
For every variance-product UR in Equation (12) there is an associated linear UR:

σ2
PA

+ σ2
PB
≥
∣∣〈[Â, B̂]〉

∣∣ . (13)

In fact, this UR is a consequence of Equation (12) and the trivial inequality (σPA − σPB)
2 ≥ 0, so that

σ2
PA

+ σ2
PB
≥ 2σPA σPB ≥

∣∣〈[Â, B̂]〉
∣∣ , (14)

where it also follows that the linear UR is weaker than the variance product UR. In 1930
Schrödinger [54] improved the lower bound in Equation (12), so the new stronger UR reads:

σ2
PA

σ2
PB
≥ 1

4

∣∣〈[Â, B̂]〉
∣∣2 + 1

4

∣∣〈{Â− 〈Â〉, B̂− 〈B̂〉}〉
∣∣2 , (15)

where {· · · , · · · } is the anti-commutator.
One interesting property of the Heisenberg UR in Equation (8) is that the lower bound is

independent of the quantum state ρ̂ under consideration. Another property is that it can be seen as a
bona fide condition on the covariance matrix of an n−mode quantum state ρ̂, viz the matrix of second
moments of the CCOs, contained in the vector x̂, of the state ρ̂:

V :=
〈x̂x̂T〉+ 〈x̂x̂T〉T

2
− 〈x̂〉〈x̂T〉. (16)

Indeed, in [55,56] it was shown that the bona fide condition on the covariance matrix V of a
quantum state ρ̂ is,

V +
ih̄
2

J ≥ 0, (17)
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where the inequality means that the matrix on the left hand side is positive semi-definite, viz. all of
its eigenvalues are greater or equal to zero. Applying the inequality in Equation (15) to the canonical
conjugate operators x̂ and p̂, we have,

√
det(V) =

√
σ2

Px
σ2

Pp
− 1

4
|〈{x̂− 〈x̂〉, p̂− 〈 p̂〉}〉| ≥ h̄

2
. (18)

For one mode systems, this inequality is equivalent to the bona fide condition in Equation (17).
However, for multimode systems it is not enough. For multimode systems, a way to verify the bona fide
of the covariance matrix was given in [57,58]. It was shown that testing the condition in Equation (17) is
equivalent to verify the linear UR in Equation (13) for all the operators, û and v̂, defined in Equation (3).
Therefore, using Equation (14) we can write the series of implications:

σ2
Pu

σ2
Pv
≥ h̄2

4
γ2 ⇒ σ2

Pu
+ σ2

Pv
≥ h̄|γ| ⇔ V +

ih̄
2

J ≥ 0. (19)

Thus, it is enough to verify the violation of the Heisenberg UR for some pair of operators û and
v̂ to confirm that the bona fide condition on the covariance matrix of some n−mode operator ρ̂ is
not satisfied.

2.2. Entropic URs

The use of entropy functions to quantify uncertainty of a probabilistic variable dates back to
the early work of Shannon [59]. Since then, several different entropy functions have been defined,
with distinct relations to meaningful characteristics of the probability distributions considered.
A number of these entropy functions have found use in quantum mechanics and, in particular,
in QIT [9]. Here we outline the application of these functions to uncertainty relations between
non-commuting observables.

2.2.1. Shannon-entropy UR

The UR based on the differential Shannon entropy for operators defined in Equation (3) is:

h[Pu] + h[Pv] ≥ ln(πeh̄|γ|), (20)

where Pu and Pv are the marginal pdf defined in Equation (10) and the differential Shannon entropy of
a pdf, P, is defined as [60]:

h[P] := −
∫ ∞

−∞
dy P(y) ln P(y). (21)

For û and v̂ as CCOs, this uncertainty relation was first proved in 1975 by Bialynicki-Birula
and Mycielski [61]. In their derivation the authors used the Lp-Lq norm inequality for the Fourier
transform operator obtained by Beckner [62]. Please note that in the literature this inequality is
sometimes referred to as the Babenko-Beckner inequality (Equation 1.104 from [12] provides an
extension of this inequality to the case of arbitrary mixed states, using two variants of the Minkowski
inequality), because Babenko [63] had proved it before Beckner, but only for certain combinations
of (p, q) parameters. For the sake of completeness, we should also mention that Hirschman [64]
had derived a weaker version of (20) with the constant eπ inside the logarithm replaced by 2π. The
extension of the validity for operators û and v̂ that are not CCOs was provided very recently in
References [58,65].

The Shannon-entropy UR is in general stronger than the Heisenberg UR as the former implies the
latter. This can be seen by using the inequality for a pdf P [60]:

ln
(

2πeσ2
P

)
≥ 2h[P], (22)
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where σ2 is the variance of P. Therefore, we can write the chain of inequalities:

ln(2πeσPu σPv) ≥ h[Pu] + h[Pv] ≥ ln(πeh̄|γ|), (23)

that compress the URs in Equations (8) and (20). It is clear from Equation (23) that the verification of
the Shannon-entropy UR for any pair of the operators in Equation (3) is enough to guarantee the bona
fide condition in Equation (17) [58].

When the quantum state ρ̂ is Gaussian, viz when the Wigner function of ρ̂ is a multivariate
Gaussian probability distribution [11], the marginal pdfs, Pu and Pv, are also Gaussians. Remembering
that the differential Shannon entropy of a Gaussian pdf P, with variance σ2

P, is h[P] =

(1/2) ln
(
2πeσ2

P
)

[60], we can see that Gaussian states saturate the first inequality in Equation (23).
Therefore, for Gaussian states the Heisenberg UR and the Shannon-entropy UR are completely equivalent.
As we will see in Section 5 this is not the case for the coarse-grained versions of these URs.

2.2.2. Rényi-Entropy URs

The UR based on the differential Rényi entropy for the operators defined in Equation (3) that are
CCOs is given by the inequality:

hα[Pu] + hβ[Pv] ≥ ln


 πh̄|γ|

α
1

(2−2α) β
1

(2−2β)


 , (24)

where 1/α + 1/β = 2 with 1/2 ≤ α ≤ 1 and γ = 1 since we deal with CCO operators. As before,
Pu and Pv are the marginal pdfs defined in Equation (10) and the differential Rényi entropy of order α

relevant for an arbitrary pdf, P, is defined as [60]:

hα[P] :=
1

1− α
ln
(∫ ∞

−∞
dy [P(y)]α

)
. (25)

The Rényi-entropy UR was proved recently (in 2006) by Bialynicki-Birula [31] (see also [12]) again
with the help of the powerful mathematical tools developed in [62]. Please note that in the limit α→ 1

we also have β → 1, and consequently α
1

(2−2α) β
1

(2−2β) → 1/e. Therefore, in the limit α → 1 we have
hα[Pu]→ h[Pu] and hβ[Pv]→ h[Pv], so the expression in Equation (24) reduces to the Shannon-entropy
UR in Equation (20) for γ = 1. As far as we know, in contrast to the Shannon-entropy UR, the extension
of the Rényi-entropy UR to the general case of operators that are not necessarily CCOs is still a challenge
for the future. A first attempt in this direction was provided in Reference [65], where the authors show
that the Rényi UR in Equation (24) is still valid when the eigenvectors of û and v̂ are connected by a
Fractional Fourier Transform [8], which corresponds to rotation in phase space.

All of the URs mentioned in this section (this is a general pattern though) can be cast in a
general form

F(ρ̂; û, v̂; Pu, Pv) ≥ f (h̄|γ|), (26)

where F is an uncertainty functional [left hand side of inequalities Equations (8), (20) and (24) for
example] and f represents its respective lower bounds. In particular, we do not pay much attention
here to the Tsallis entropy and URs associated with it. Again such URs can be cast in the general form
stated above and their derivation is usually very similar in spirit to the case of the Rényi entropy.

In Section 3 we will summarise the relevance of the statistical UR in general and in particular
the URs in Equations (8), (20) and (24). In Section 5 we will present versions of the Heisenberg,
Shannon-entropy and Rényi-entropy URs for coarse-grained measurements.
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3. Utility of Uncertainty Relations in Quantum Physics

Uncertainty relations can be applied in several useful and interesting ways. First, they provide
a way to test if experimental results are consistent with quantum mechanics, since data from the
measurement of incompatible observables must verify any valid quantum UR. This is particularly
helpful in identifying systematic errors in the measurement process, in testing the experimental
reconstruction of density matrices, phase-space distributions (quantum state tomography), as well as
the covariance matrix [66], or any other set of moments of the CCOs of the modes.

URs can also be used to characterize non-classical states of light, such as squeezed states [67].
In this case observation of the variance σ2

Pu
≤ h̄/4 where û is a phase-space quadrature in Equation (3),

indicates noise fluctuations in this quadrature that are smaller than the vacuum state. As a consequence
of the Heisenberg UR, the noise fluctuations in the conjugate quadrature must be larger or equal to
h̄/4σ2

Pu
. In a similar fashion, in Reference [68] it was shown that violation of one out of an infinite

hierarchy of inequalities involving normally ordered quadrature moments is sufficient to demonstrate
non-classicality. We note that σ2

Pu
≤ h̄/4 corresponds to the lowest-order inequality of this set. Related

techniques have been developed based on the quantum version of Bochner’s theorem for the existence
of a positive semi-definite characteristic function [69,70]. Both of these methods have been used
experimentally in Reference [71]. More recently, these two techniques were unified into a single criteria
involving derivatives of the characteristic function [72], and put to test on a squeezed vacuum state.

To our knowledge, the first application of URs to identify quantum correlations was described in
Reference [73], in which the authors proposed a Heisenberg-like UR, similar to that in Equation (8),
to identify non-classical correlations between both the phases and intensities of the fields produced
by a non-degenerate parametric oscillator. It was shown by M. Reid [74] that these measurements
provide a method to demonstrate correlations for which the seminal Einstein-Podolsky-Rosen (EPR)
argument [75] is valid. An experiment using this UR-based method to demonstrate EPR-correlations
between light fields was realized shortly therafter [76]. It was later shown by Wiseman et al. [77,78]
that the Reid EPR-criterion was indeed a method to identify quantum states that violate a “local
hidden state” model of correlations. This type of correlation has been called “EPR-steering”, or just
“steering” [79], as this was the terminology used by Schrödinger when he discussed EPR correlations
in 1935 [80]. Since 2007, EPR-steering has been understood to make up part of a hierarchy of quantum
correlations, situated between entanglement [81,82] and Bell non-locality [83]. In addition to methods
utilizing variance-based URs [84], entropic URs, such as those in Section 2.2, can be used to identify
EPR-steering [85,86] and to quantify high-dimensional entanglement [87,88]. Some of these URs can
be used to test security in continuous variable quantum cryptography [89,90], and it has been shown
that violation of entropic EPR-steering criteria are directly related to the secret key rate in one-sided
device independent cryptography [91]. We also highlight techniques based on a matrix-of-moments
approach [92]. Continuous-variable EPR-steering has been observed in intense fields [76,93,94] as well
as photon pairs [85,95–97].

Perhaps one of the most important tasks in quantum information is identifying quantum
entanglement. In this respect, URs have also found widespread use in simple and experimentally
friendly entanglement detection methods, as we will now describe. Several early entanglement
criteria for bipartite CV systems were developed using URs [98–101]. A particularly convenient
method to construct entanglement criteria is to use the Peres-Horedecki positive partial transposition
argument [102,103] (PPT), and apply it to uncertainty relations [82,104–107]. The PPT argument is as
follows. A bipartite separable state σ̂12 can be written as [108]

σ̂12 = ∑
i

λi ρ̂1i ⊗ ρ̂2i, (27)

where ρ̂1i and ρ̂2i are bona fide density operators of subsystems 1 and 2, respectively. The transpose
of the state ρ̂2i, here denoted ρ̂T

2i, is still a positive operator, since full transposition preserves the
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eigenspectrum. Thus, partial transposition (with respect to second subsystem) of σ̂12 gives the valid
quantum state:

σ̂T2
12 = ∑

i
λi ρ̂1i ⊗ ρ̂T

2i. (28)

On the other hand, partial transposition of an entangled state $̂12, which cannot be written in the
form (27), can lead to a non-physical density matrix since partial transposition may not preserve the
positivity of the eigenspectrum. Thus, one can identify entanglement in a bipartite density operator by
calculating the partial transposition and searching for negative eigenvalues, and even quantify the
amount of entanglement via the negativity [109]. However, applications of this method in experiments
requires quantum state tomography and reconstruction of the density operator, which involves a large
number of measurements. A more experimentally friendly method to identify entanglement is to
evaluate an UR applied to the partial transposition of $̂12, which we describe in the next paragraph.
The PPT-argument is only a sufficient entanglement criteria in a general bipartition of m× (n−m)

modes, but is necessary and sufficient in the particular case of bipartitions of 1× (n− 1) modes in
CV Gaussian states [10,110]. Thus, there are no Gaussian states which are PPT entangled states in
bipartitions of the form 1× (n− 1). However, there do exist entangled CV Gaussian states that are
PPT in general bipartitions of the type m× (n−m). These are called bound entangled states [111].
In Gaussian states, this set of bound entangled states coincides with the set of all states whose
entanglement in a bipartition m × (n − m) cannot be distilled using local operations and classical
communication [112–114]. However, to our knowledge, for non-Gaussian states it is conjectured that
the set of bound entangled states in a given bipartition is only a sub-set of the set of undistillable states
in that bipartition.

For continuous variables, Simon showed that transposition is equivalent to a momentum reflection,
taking the single mode Wigner phase-space distributionW(x, p) −→ WT2(x, p) = W(x, Tp) [57],
where T is a diagonal matrix whose elements are +1 for non-transposed modes, and −1 for the
transposed ones. Thus, evaluating the “transposed” Wigner function is the same as evaluating the
original Wigner function with a sign change in the reflected p variables.

For simplicity, we consider now the particular example of global operators of a bipartite state:

û± = û1 ± û2, (29)

and
v̂± = v̂1 ± v̂2. (30)

We note that operators with the same sign satisfy the commutation relations [û±, v̂±] = 2ih̄γ ,
so that these non-commuting operators after being an input to the uncertainty functionals fulfill the
UR of the aforementioned form [note the factor of 2 in the argument of f (·)]

F($̂12; û±, v̂±; Pu± , Pv±) ≥ f (2h̄|γ|). (31)

Using the transformation of the Wigner function under partial transposition described above,
one can evaluate the uncertainty functional of the partially transposed state $̂T2

12 via measurements on
the actual state $12 using the relation

F($T2
12 ; û±, v̂±; Pu± , Pv±) = F($12; û±, v̂∓; Pu± , Pv∓), (32)

which can be lower than f (2h̄|γ|) since the operators with different signs do commute. This possibility,
when experimentally confirmed, indicates that $T2

12 is not a bona fide density operator, and thus the
bipartite quantum state $12 is entangled.

Building on this general reasoning (PPT argument applied to an UR) several entanglement
criteria have been developed. A comprehensive list of the criteria contains those based on the
variances [115,116] and higher-order moments [117,118], Shannon entropy [105], Rényi entropy [106],
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characteristic function [119] as well as the triple product variance relation [120]. Particularly powerful
is the formalism developed by Shchukin and Vogel, which provides an infinite set of inequalities
involving moments of the bipartite state [121], such that violation of a single inequality indicates
entanglement. We note that some of these criteria can be applicable to any non-commuting global
operators. Uncertainty-based approaches (using the PPT method directly or not) have been developed
for multipartite systems [122,123], and a general framework to construct entanglement criteria
for multipartite systems based on the ”PPT+UR” interrelation was presented in Reference [107].
The Shchukin-Vogel hierarchy of moment inequalities has also been applied to the multipartite
case [124].

The PPT+UR approach has been used to identify continous variable entanglement experimentally
in several systems, including entangled fields from parametric oscillators and amplifiers [94,125,126] as
well as spatially entangled photon pairs produced from parametric down conversion [96,120,127], and
time/frequency entangled photon pairs [128,129]. A higher-order inequality in the Shchukin-Vogel
criteria [121] has been used to observe genuine non-Gaussian entanglement [130].

4. Realistic Coarse-Grained Measurements of Continuous Distributions

Coarse graining of observables with continuous spectra is a consequence of any realistic
measurement process. In the laboratory, an experimentalist is given the task of designing projective
measurements in order to recover information about probability densities of a continuous variable
quantum system. Naturally, only partial information about the underlying continuous structure of the
infinite-dimensional physical system is retrieved in a laboratory experiment. Whichever measurement
design is chosen, the experimentalist is faced with two main difficulties, namely the finite detector range
and finite measurement resolution, related to the size of the total region of possible detection events and
the precision in which events are registered, respectively. The detector range problem [25,29] results
from the finite amount of resource available to the experimentalist. For instance, consider a position
discriminator based on a multi-element detector array. The array has a spatial reach (in a single spatial
dimension) that increases linearly with the number of detectors. In a similar fashion, the sampling time
of a single element detector used in raster scanning mode increases linearly with the chosen detection
range. Continuous variables such as the position are also inevitably affected by the inherent finite
resolution of the measurement apparatus [32], such as the size of each individual detector in the array,
or the pixel size of a camera. Altogether, the finite detector range and measurement resolution restrict
the capability to probe the detection position, limiting the experimentalist to a coarse-grained sample of
the underlying CV degree of freedom.

The constraints imposed by the finite spatial reach and resolution of the measurement
apparatus are then important features that must be considered in the experiment design. Ideally,
the experimentalist would chose measurement settings producing the finest coarse-grained sample
possible. As a trade-off, the increased resolution entails the sampling of a greater number of pixels
(if the range of detection is preserved), increasing the amount of resources used in data acquisition and
analysis. The compromise between the used resource and chosen resolution depends on the specific
design and measurement technique. A single raster scanning detector is inherently inefficient and leads
to acquisition times that grow with the number of scanned outcomes. On the other hand, the acquisition
time is dramatically reduced by the use of multi-element detector arrays [131–134]. Other techniques
such as position-to-time multiplexing [135,136] allow the sampling of multiple position outcomes with
single element detectors, but at the expense of an increased dead-time between consecutive detections.
We have exemplified the finite detector range and finite measurement resolution problems in terms of
a detector that registers the position of a particle. However, similar considerations are valid for any
detection system that registers a digitalized value of a continuous physical parameter.

Under constraints of resource utilisation—such as the number of detectors and/or sampling
time—the experimentalist needs to set the number of possible detection outcomes for their
coarse-grained measurements. Therefore, a natural question that arises regards the coarse-graining
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design allowing the extraction of the desired information. Naively, one might think that usual
quantum mechanical features learnt from physics textbooks would be directly observable from the
coarse-grained distributions obtained in the laboratory. The most prominent counter-example is
the experimental observation of the Heisenberg UR in Equation (8). As shown in Reference [32],
coarse-grained distributions of conjugate continuous variables do not necessarily satisfy the well
known UR valid for continuous distributions. In order to accurately inspect the uncertainty product
of the measured distributions in accordance with the Heisenberg UR, the latter must be modified to
account for the detection resolution of the measurement apparatus. Another important quantum
mechanical feature that one usually fails to observe from standard coarse-grained distributions
is the mutual unbiasedness [137] relation between measurement outcomes of the incompatible
observables. That is, eigenstates of-say-the coarse-grained position operator do not necessarily present
a uniform distribution of outcomes for coarse-grained momentum measurements. In addition, some
authors [138–141] have demonstrated that one can define functions of incompatible observables that
indeed commute. Interestingly, it was shown in Reference [142] that one can indeed enjoy full quantum
mechanical unbiasedness using a specific periodic coarse-graining design rather than the standard one.
Other practical issues regarding false positives in entanglement detection [26,29] and cryptographic
security [25,29] must also be reconsidered when one deals with realistic coarse-grained distributions.

In this section, we will introduce the projective measurement operators both for the standard and
the periodic models of coarse graining. Practical features such as measurement resolution, detector
range and positioning degrees of freedom in the measurement design will be discussed. We will also
briefly discuss relations of mutual unbiasedness between coarse-grained measurement outcomes in
domains of incompatibles observables. A detailed discussion of uncertainty relations for coarse-grained
distributions will be presented in the next section.

4.1. Coarse-Graining Models

A laboratory experiment necessarily yields a discrete, finite set of measurement outcomes of
any observable in any physical system. This is also the case for an experiment probing a continuous
degree of freedom, û, for which measurement outcomes {uk} labeled by the discrete integer index
k ∈ Z relate to the underlying continuous real variable u ∈ R corresponding to the eigenspectra
of û. In the most general scenario, a coarse-graining model is obtained from an arbitrary partition
of the set of real numbers R, in intervals Rk with uk ∈ Rk. The orthogonality of the measurement
outcomes requires the subsets to be mutually disjoint: Rk ∩ Rk′ = ∅, ∀ k 6= k′. Even though the
continuous variable can be formally discretised into an infinite number of outcomes (with k an
unbounded integer), the experiment can only probe a finite range of the continuous variable. Thus,
the detection range, Rrange, can be formally defined by the union of the disjoint subsets associated
with the probed outcomes:

∪
k
Rk = Rrange ⊂ R. (33)

This relation limits the set of possible values of k to a finite subset of integers Zk ⊂ Z. Due to
the finite range, Rrange, of the measurement process it is important to secure under reasonable
experimental conditions that the underlying probability density is supported within the chosen
range of detection [25,29]. Mathematically, a faithful coarse-grained measurement design should
ensure that ∫

Rrange
Pu(u)du ≈ 1, (34)

where Pu is the marginal pdf defined in Equation (10).
The probability p(u)

k that the outcome uk is produced writes as an integral of the marginal
probability density, Pu, for the continuous variable:

p(u)
k =

∫

Rk

Pu(u)du, (35)
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where the integration is performed in the intervalRk. Due to the faithful coarse-grained condition in
Equation (34) we have

∑
k∈Zk

p(u)
k ≈ 1. (36)

We can define projective operators associated with the coarse-grained measurements:

Ĉ(u)
k =

∫

Rk

|u〉〈u|du, (37)

so that the probabilities (35) can be written as

p(u)
k = Tr(ρ̂Ĉ(u)

k ), (38)

with Pu(u) = 〈u|ρ̂|u〉. In order to study mutual unbiasedness and uncertainty relations, we shall
later in this and the following sections define coarse-grained operators like those in Equation (37)
for conjugate variables of the quantum state, such as the position and the linear momentum of a
quantum particle.

4.1.1. Standard Coarse Graining

The standard model of coarse graining describes, for example, the typical projective measurements
performed with an array of adjacent, rectangular detectors. A conventional example of such an
apparatus is the image sensor of a digital camera, for which the pixel size stands for the detection
resolution whereas the length of the full sensor embodies the range of detection. In the current
analysis, we shall consider a linear detector array along a single spatial dimension rather than the
two-dimensional area of a typical image sensor, as illustrated in Figure 1. The coarse-graining interval
representing the detection window of the k-th pixel of the linear array is then:

Rk :=
(

ucen + (k− 1
2
)∆, ucen + (k +

1
2
)∆
]

, (39)

where ∆ is the detector or pixel size—also commonly referred to as the coarse-graining width or the
bin width. Using the definition Equation (39), the discretised outcomes uk represent the u value of the
center of the corresponding bin:

uk = ucen + k∆. (40)

Multi-element detector 
array

Detection range

Figure 1. Multi-element detector array illustrating the standard coarse-graining geometry.

The parameter ucen sets the position of the central bin of the array, whose outcome label is k = 0,
yielding u0 = ucen. To illustrate the effect of the coarse-graining design on measured distributions, we
plot in Figure 2 coarse-grained distributions (blue bars) obtained using 3 different resolutions: ∆ = 2
(left colum), ∆ = 1 (central column) and ∆ = 1/2 (right column). For each resolution, we plot two
distinct distributions obtained using ucen = 0 (top row) and ucen = ∆/2 (bottom row). In other words,
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the coarse-graining bins of the distributions plotted at the bottom part of the figure are displaced by
half a “pixel” in relation to the distributions at the top. Clearly, the distribution obtained using a fixed
resolution is not unique, but the effect of small displacements (smaller than the bin width) gets less
important as the resolution is increased. For comparison, the generating continuous distribution is
plotted in red.

-10 -8 -6 -4 -2 0 2 4 6 8 10 -10 -8 -6 -4 -2 0 2 4 6 8 10 -10 -8 -6 -4 -2 0 2 4 6 8 10

-10 -8 -6 -4 -2 0 2 4 6 8 10 -10 -8 -6 -4 -2 0 2 4 6 8 10 -10 -8 -6 -4 -2 0 2 4 6 8 10

(a)

(d) (e) (f)

(b) (c)

Figure 2. Coarse-grained distributions (blue bars) according to the standard model. The red solid line
indicates the underlying continuous distribution used to generate the discretised versions. The used
resolution ∆ and positioning degree of freedom ucen is indicated beside each distribution. For each
resolution, two distinct distributions are shown, each of which associated with a different positioning
of the coarse-graining bins.

We shall now use this model for standard coarse graining to explicitly define the discretised
counterparts of the position and momentum operators given in Equation (3).

û∆ = ∑
k

ukĈ(u)
k , (41a)

v̂δ = ∑
l

vlĈ
(v)
l , (41b)

where the projector Ĉk is defined in Equation (37) (with Ĉ(v)
l having an equivalent definition for v̂

measurements), and we used ∆ (δ) as the detection resolution for û (v̂) measurements. According
to the definition in Equation (35), as a result of the the coarse-grained measurement of û and v̂ we
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obtain the discrete probabilities, p(u)
∆,k and p(v)

δ,l .The discrete variances associate with these discrete
probabilities are:

σ2
P(u)

∆
= ∑

k
u2

k p(u)
∆,k −

(
∑
k

uk p(u)
∆,k

)2

, (42a)

σ2
P(v)

δ

= ∑
l

v2
l p(v)

δ,l −
(

∑
l

vl p(v)
δ,l

)2

, (42b)

where we define the set of discrete probabilities:

P(u)
∆ := {p(u)

∆,k} and P(v)
δ := {p(v)

δ,k }. (43)

One can see from the definitions (42) that if the bin widths ∆ and δ are such that p(u)
∆,k and p(v)

δ,l are
sufficiently close to unity for some value of k and l, we have σ2

P(u)
∆

, σ2
P(v)

δ

−→ 0. Thus, naive application

of any of the variance-based URs given in Section 2.1 would indicate a false violation of a UR. It has
been shown in Reference [32] that the same argument applies to discretized versions of entropic URs,
such as those of Section 2.2. Thus, proper treatment of standard coarse-grained measurements is
essential in order to take advantage of the practical application of URs in QIT and quantum physics in
general. In Section 5 we show how this can be done.

4.1.2. Periodic Coarse Graining

A distinct model of coarse graining discussed in the literature [142,143] is refereed to as periodic
coarse graining (PCG). In this model, the partition of the whole set of real numbers R is performed in
a periodic manner, leading to a finite number d of subsets Rk, with k = 0, · · · , d− 1. The resulting
discretization utilizes the index k as a direct label for the detection outcomes, in a similar fashion to
what is usually defined for finite-dimensional quantum systems. The subsetsRk are defined as [142]:

Rk := {u ∈ R | ucen + ksu 6 u(mod Tu) < ucen + (k + 1)su} , (44)

where su plays the role of a bin width similar to the resolution ∆ used for the standard coarse
graining. In the definition Equation (44), bins of size su are arranged periodically with the parameter
Tu representing the period, as illustrated in Figure 3 for the particular design using d = Tu/su = 5
detection outcomes. It is important to notice that this coarse graining design do not distinguish
detections in distinct bins associated with the same detection outcome k (ranging from 0 to 4 in
Figure 3). For example, a detection within any bin colored in red in (44) would lead to the same
detection outcome k = 1.

Figure 3. Periodic coarse-graining design with d = Tu/su = 5 detection outcomes. The parameter Tu

is the periodicity in which bins of size su are arranged.

An interesting feature of the PCG model is that the number of detection outcomes is utterly
adjustable by the choice of the parameters Tu and su, regardless of the chosen detection range.
For instance, doubling the range of detection allows one to design PCG measurement using twice
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as much periods in its design, while maintaining the same number d = Tu/su of detection outcomes.
As with the standard model, the reference coordinate ucen sets the center of the detection range also
for the PCG design. Using the subset definition given in Equation (44), we can explicitly write the
projector operators, Equation (37), for the PCG model as

Π̂(u)
k =

∫

Rk

|u〉〈u|du = ∑
n∈Z

∫ ucen+(k+1)su+nTu

ucen+ksu+nTu
|u〉〈u|du, (45)

where we extend the sum in n over Z without loss of generality, assuming that Equation (34) is satisfied.
Analogously, we also define the PCG projective operators over the conjugate variable v:

Π̂(v)
l =

∫

Rl

|v〉〈v|dv = ∑
n∈Z

∫ vcen+(l+1)sv+nTv

vcen+lsv+nTv
|v〉〈v|dv, (46)

where we define sv and Tv as the bin width and periodicity used in the PCG measurements of v.

4.2. Mutual Unbiasedness in Coarse-Grained Measurements

If a quantum system , with finite dimension, is described as an eigenstate of a given observable,
the measurement outcomes of complementary observables are completely unbiased: each one of them
occurring with equal probability, 1/d, where d is the dimension of the quantum system’s Hilbert
space. This unbiasedness relation is an important feature of quantum mechanics with no classical
counterpart, and is usually cast in terms of the basis vectors constituting the eigenstates of two (or more)
complementary observables. To be more precise, two orthonormal bases {|ak〉} and {|bl〉} are said to
be mutually unbiased if and only if |〈ak|bl〉|2 = 1/d for all k, l = 0, · · · , d− 1 [137]. The observation of
unbiased measurement outcomes is customary in experiments with finite dimensional quantum
systems. Not only routine, measurements in mutually unbiased bases (MUB) constitute a key
procedure in several quantum information processing tasks, such as verification of cryptographic
security [9], certification of quantum randomness [144], detection of quantum correlations [145–147]
and tomographic reconstruction of quantum states [148,149].

Mutual unbiasedness is also extendable to continuous variables quantum systems [150], for which
bases {|u〉} and {|v〉} such [û, v̂] = ih̄γ, satisfy |〈u|v〉|2 = 1/(2πh̄|γ|), i.e., the overlap of the basis
vectors |u〉 and |v〉 is independent (no bias) of their eigenvalues, u and v (note, however, that even
though û and v̂ are mutually unbiased observables, this does not imply that they are complementary,
as would be the case for operators in a discrete quantum system [151]. In continuous variable quantum
mechanics, mutual unbiasedness does not imply that û and v̂ are maximally incompatible [152]. In this
case, complementary observables are typically defined as CCOs, that is, forming a Fourier transform
pair). For CV systems, nevertheless, this relation is rather a theoretical definition than an experimentally
observable fact, since the experimentalist has neither the capability to prepare nor to measure the
(infinitely squeezed) eigenstates of the û and v̂. Instead, both the preparation and measurement
procedures are limited to the finite resolution of the experimental apparatus. As discussed previously
in this section, measurements of a CV degree of freedom render discretized, coarse-grained outcomes
whose probabilities, Equation (35), are provided by a coarse-graining model described by the projective
operators given in Equation (37). These coarse-grained probabilities obtained experimentally do not in
general preserve the mutual unbiasedness complied by the underlying continuous variables.

To elaborate the issue, let us consider sets of projectors {Ĉ(u)
k } and {Ĉ(v)

l } defining coarse-graining
measurements in the complementary domains u and v of a continuous variable quantum system ρ̂.
We assume measurement designs providing a number d of outcomes in each domain. In this scenario,
the requirement for mutual unbiasedness is thus that the coarse-grained probabilities for measurements
of one variable are evenly spread between all discretized outcomes whenever the quantum state
is localized with respect to the coarse graining applied to its conjugate variable (and vice-versa).
The subtlety in this requirement is the (infinite) degeneracy of normalizable quantum states that can
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be localized with respect to the chosen coarse graining. To emphasize this degeneracy, we refer to
the outcome probabilities, Equation (35), with explicit dependency on the quantum state in order to
mathematically phrase the condition for mutual unbiasedness in coarse-grained CV: the outcomes
of {Ĉ(u)

k } and {Ĉ(v)
l } are mutually unbiased if for all quantum states ρ̂ and k0, l0 = 0, · · · , d− 1 we

have [142]:
p(u)

k (ρ̂) = δk0k ⇒ p(v)
l (ρ̂) = d−1, (47a)

p(v)
l (ρ̂) = δl0l ⇒ p(u)

k (ρ̂) = d−1, (47b)

where, again, we stress that p(u)
k (ρ̂) = Tr(ρ̂Ĉ(u)

k ) and p(v)
l (ρ̂) = Tr(ρ̂Ĉ(v)

l ), as in Equation (35).
Having formulated the conditions for mutual unbiasedness, Equation (47), it is easy to perceive

that the adjacent, rectangular subsets defining the standard coarse graining [Equation (39)] will not
lead to unbiased measurement outcomes. Any CV distribution localized in a single coarse-graining bin
(for example in the u variable) generates a probability density that decays in the Fourier domain (the v
variable) along the adjacent bins within the detection range. This decay generates a non constante
coarse-grained distribution that, by definition, is biased. Furthermore, the number d of detection
outcomes in the standard design depends directly on the selected detection range, as well as on the
chosen resolution. As a consequence, even though a particular localized distribution could lead to
approximately unbiased coarse-grained outcomes in the Fourier domain, an extended detection range
would increase the number of outcomes, thus spoiling the unbiasedness.

It is thus evident that in order to retrieve unbiased outcomes from coarse-grained measurement,
a more contrived coarse-graining design is needed. As it turns out, it was shown in Reference [142] that
the PCG design exactly fulfils the requirements for unbiased measurements of finite cardinality stated in
Equation (47). A relation between the periodicities Tu and Tv used in the PCG of the conjugate variables
u and v was analytically derived as a single condition for unbiased coarse-grained measurements:

TuTv

2πh̄
=

d
m

, m ∈ N s.t. ∀n=1,··· ,d−1
mn
d

/∈ N. (48)

The unbiasedness condition stated in Equation (48) establishes infinite possibilities for the pair of
periodicities Tu and Tv that can be used to design the mutually unbiased pair of PCG measurements
defined in Equations (45) and (46), respectively. For instance, the simplest and most important
case is the condition with m = 1, since it is valid for all d and provides the best trade-off between
experimentally accessible periodicities: TuTv = (2πh̄)d. Conditions with m > 1 are also possible but
are not general since they depend on the chosen number of outcomes d [142]. For example, for d = 4,
valid conditions are found using m(mod d) = 1, 3 whereas for d = 5, valid conditions are found using
m(mod d) = 1, 2, 3, 4. Importantly, the case with m(mod d) = 0 is always excluded, since in this case
the PCG projectors describe commuting sets,

[
Π̂(u)

k , Π̂(v)
l

]
= 0, ∀ k, l [138–140]. In other words a joint

eigenstate of the product Π̂(u)
k Π̂(v)

l existis for all k and l whenever TuTv = 2πh̄/c with c ∈ N [153]. It is
also interesting to note that using the periodicity definition from the PCG design (T = ds), it is possible
to write the unbiasedness condition given in Equation (48) in alternative, equivalent ways:

(a) TuTv =
2πh̄
m

d, (b) Tusv =
2πh̄
m

, (c) suTv =
2πh̄
m

, (d) susv =
2πh̄
m

1
d

. (49)

Finally, in Reference [143] these results were generalized for PCG measurements applied to
an arbitrary pair of phase space variables other than the conjugate pair formed by position and
momentum. What is more, a triple of unbiased PCG measurements was also shown to exist for rotated
phase space variables, along the same lines as the demonstration of a MUB triple in the continuous
regime done in Reference [150]. Experimental demonstrations of unbiased PCG measurements were
also carried out in References [142,143], both of them utilizing the transverse spatial variables of a
paraxial light field.
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5. UR for Coarse-Grained Observables

A kind of a paradigm shift in the theory of uncertainty relations was brought by the observation
that everything can be efficiently characterized solely by means of probability distributions. As a
result, tools known from information theory, such as information entropy, Fisher information and
other measures, came into play. Additionally, the notion of uncertainty for discrete systems could
better be captured that way. Since products of variances calculated for observables such as the spin
are bounded in a state-dependent manner (so that the ultimate lower bound typically assumes the
trivial value of 0), information entropies provide an attractive alternative [154]. Written already in the
Rényi form,

Hα [P] =
1

1− α
ln ∑

k
[pk]

α, (50)

the above equation is a discrete counterpart of Equation (25), which corresponds to the discrete
counterpart of Equation (21) when α = 1.

In the finite-dimensional case given by an arbitrary state ρ̂ acting on a d-dimensional Hilbert
spaceH, and a pair of non-degenerate, non-commuting observables, Â and B̂, one usually defines the
probabilities associated to projective measurements:

p(A)
i = 〈ai| ρ̂ |ai〉 , p(B)

j =
〈
bj
∣∣ ρ̂
∣∣bj
〉

, (51)

where |ai〉 and
∣∣bj
〉
, i, j = 1, . . . , d are the eigenstates of the operators associated with both observables.

Disctrete entropic URs for the above probability distributions are of the general form

Hα

[
P(A)

]
+ Hβ

[
P(B)

]
≥ Bαβ (U) , (52)

with U ∈ U (d) being a unitary matrix with matrix elements Uij =
〈

ai
∣∣bj
〉
. We denote P(A) := {p(A)

i }
and P(B) := {p(B)

j } again with i, j = 1, . . . , d.
The first entropic uncertainty relation for discrete variables comes from Deutsch [154], who for

α = 1 = β found the lower bound BD
11 = −2 ln C, with C = (1 +

√
c1) /2 and c1 = maxi,j

∣∣Uij
∣∣2.

A substantially more renowned Maassen–Uffink (MU) bound [155] derived in 1988, is BMU
αβ = − ln c1.

This bound is however valid only for the conjugate parameters 1/α+ 1/β = 2. Very recently, a plethora
of new results [41,156–163] improving the celebrated MU bound has been obtained. In particular,
an approach based on the notion of majorization (suitable from the perspective of resource theories
and quantum thermodynamics [164]) provides a significant qualitative novelty [156,157,159,163],
which will also be touched upon in this section.

In this review we are concerned with the case in which continuous probability distributions Pu (u)
and Pv (v) are replaced (viz. they were measured this way) by their discrete counterparts (k, l ∈ Z).
According to the discussion in Section 4 we can use the definitions in Equations (35) and (39), and the
condition in Equation (33), to write the discrete probabilities:

p(u)
∆,k =

∫ (k+1/2)∆

(k−1/2)∆
dy Pu (y) , p(v)

δ,l =
∫ (l+1/2)δ

(l−1/2)δ
dy Pv (y) , (53)

with k ∈ Zk ⊂ Z. In the following we describe a series of URs for these discrete probabilities that are
known as coarse-grained URs, derived in [24,30–32]. These are the coarse-grained counterpart of the
Heisenberg, Shannon entropy and Rényi entropy URs in Equations (8), (20) and (24) respectively. Here,
we will closely follow the treatment in [24,32]; however, before we start we give a short historical
overview and discuss a path towards extensions going beyond CCOs.

The idea that generic quantum uncertainty could be quantified by the sum of Shannon entropies
evaluated for discretized position and momentum probability distributions for the first time appeared
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in the contribution by Partovi [165]. He also derived the first coarse-grained UR which in the form
is reminiscent to the Deutsch bound for finite-dimensional systems [154] (please note that both
papers [154,165] have been published in 1983; however, Partovi in his first sentence refers to a
”recent letter” by Deutsch). Both bounds [154,165] were obtained by means of a direct optimization,
independently applied to every logarithmic contribution. Symmetry in developments of the URs
for finite-dimensional and coarse-grained systems happened to be much deeper as the second
coarse-grained result, by Bialynicki-Birula [30], is a counterpart of the MU bound [155]. The former
result is an application of the continuous variant of the Shannon entropy UR (so the Lp-Lq norm
inequality by Beckner [62]) supported by the Jensen inequality for convex functions, while the MU
bound is a direct consequence of the Riesz theorem for the lp-lq norms. Please note that relatively often,
integration limits in (53) were chosen as ”from k∆ to (k + 1)∆” and ”from lδ to (l + 1)δ”; however
this choice causes a formal pathology in the limit of infinite coarse graining [166]. Thus, sticking to
terminology of Equation (39), in theory it is better to avoid borderline settings for the position of the
central bin, i.e., ucen = ∆/2.

To briefly report later developments, one shall mention that Partovi reconsidered the problem he
had posed several years ago, pioneering applications of majorizaiton techniques [167]. Also Schürmann
and Hoffmann [168] discussed the Shannon entropy UR from the perspective of the integral equation
associated to it, while the first author conjectured an improvement (later mentioned in detail) which
agrees with his numerical tests [169]. Finally, we mention (without details) an erroneous improvement
of [31] by Wilk and Wlodarczyk [170,171], mainly devoted to the case of the Tsallis entropy.

Although originally the URs were derived for CCOs, û and v̂, here we show which of the URs
in [24,32] can be valid also for operators û and v̂ that are arbitrary linear combinations of all positions
and momenta of the n−bosonic modes like the ones defined in Equation (3), viz. operators that
are not necessarily CCOs. In the general case, we stress that there is always a unitary metaplectic
transformation (so ÛS belongs to the metaplectic group Mp(2n,R) and it is always associated with a
matrix S that belongs the symplectic group Sp(2n,R) [50]), ÛS, that connects û and v̂, viz. v̂ = Û†

SûÛS.
However, this metaplectic transformation is not necessarily a π/2 rotation, which would be the case
if û and v̂ were CCOs. In order to see this, we first define two sets of operators (û, û′)T = (û =

û1, . . . , ûn, û′1, . . . , û′n)T =
√

γ S̃ x̂ and (v̂, v̂′)T = (v̂ = v̂1, . . . , v̂n, v̂′1 . . . , v̂′n)T =
√

γ S′ x̂, where S̃ and
S′ are some matrices belonging to the symplectic group Sp(2n,R), with the only restriction that
the first rows of S̃ and S′ correspond to the real coefficients d and d′ in Equation (5), respectively,
which define the operators û and v̂ in Equation (3). Due to the properties of symplectic matrices, all
the pairs ûi and û′j, and also v̂i and v̂′j, satisfy CCRs, viz. [ûi, û′j] = ih̄γδij and [v̂i, v̂′j] = ih̄γδij with

i, j = 1, . . . , n. However, it is immediate to see that (v̂, v̂′)T = S(û, û′)T where the matrix S := S′S̃−1

is a generic symplectic matrix. Then the Stone-von-Neumann theorem guarantees that the change
(û, û′)T → (v̂, v̂′)T is unitarily implementable by a metaplectic transformation ÛS [50]. In particular
we have Û†

S û ÛS = (S x̂)1 =: v̂.

5.1. URs Proved Only for CCOs

The key concept behind the treatment of coarse-grained URs in [24,32] is the introduction of the
piece-wise continuous probability density functions:

Q∆,u(u) := ∑
k∈Zk

p(u)
∆,k D∆(u, uk) and Qδ,v(v) := ∑

l∈Zl

p(v)
δ,l Dδ(v, vl), (54)

where D∆(u, uk) and Dδ(v, vl) are called the histogram functions (HF) with uk (and vl in an analogous
way) defined in Equation (40). Generically, these functions are defined such that they are normalized
in each bin: ∫ (k+1/2)∆

(k−1/2)∆
D∆(u, uk) du = 1 and

∫ (l+1/2)δ

(l−1/2)δ
Dδ(v, vl) dv = 1, (55)
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and approach the Dirac delta distribution for infinitesimal bin size:

lim
∆→0

D∆(u, uk) = δ(u− uk) and lim
δ→0

Dδ(v, vl) = δ(v− vl). (56)

Therefore, in the limit Zk,Zl → Z and ∆, δ → 0 we have Q∆,u(u) → Pu(u) and Qδ,v(v) →
Pv(v). We shall stress here that the HF can, in general, have any functional form as long as it is
non-negative, normalized and fulfills Equation (56). However, the most common histogram function
is the rectangular HF:

DR
∆(u, uk) :=

{
1/∆ for u ∈

(
(k− 1

2 )∆, (k + 1
2 )∆

]

0 otherwise.
, (57)

with an equivalent definition for DR
δ (v, vl). In Figure 2 we show an example of coarse-grained

probability distributions functions Q∆,u(u) (the area beneath these functions are displayed in full)
using rectangular histogram functions and for different size bins ∆.

Here, we generalise the results in [24,32] through the following expression that will be
justified later:

hα[Q∆,u] + hβ[Qδ,v] ≥ ln

(
πh̄|γ| ehα [D∆ ]−ln ∆+hβ [Dδ ]−ln δ

εα(Γ/4)

)
, (58)

with 1/α + 1/β = 2 and 1/2 ≤ α ≤ 1. To simplify the notation we define the function:

εα (x) := min
{

α
1

2−2α β
1

2−2β ,
1
2

R2
00 (x, 1)

}
, (59)

where R00(x, y) denotes one of the radial prolate spheroidal wave functions of the first kind [172],
and introduce the joint coarse-graining parameter Γ = ∆δ/(h̄|γ|). We stress that Equation (58) involves
the differential Rényi entropies of the piece-wise continuous distributions defined in Equation (54).

Let us see how the results in [12,24,30–32] can be derived from Equation (58). First, we observe
that the Rényi entropies of rectangular HFs, for every values of α and β, are:

hα[DR
∆ ] = ln ∆ and hβ[DR

δ ] = ln δ, (60)

so Equation (58) reduces to:

hα[Q∆,u] + hβ[Qδ,v] ≥ ln
(

πh̄|γ|
εα(Γ/4)

)
. (61)

If we perform the limit Γ/4 → 0 in Equation (61), we have (1/2)R2
00 (Γ/4, 1) → 1/2,

and considering that 1/e < α
1

2−2α β
1

2−2β ≤ 1/2 when 1/2 < α ≤ 1 (see Figure 4) we recover the
Rényi-entropy UR in Equation (24) and when α = 1 the Shannon UR in Equation (20).

Now, we can decompose the differential Rényi entropies in the left hand side of Equation (58) as
(see Appendix A):

hα[Q∆,u] = Hα

[
P(u)

∆

]
+ hα [D∆] and hβ[Qδ,v] = Hβ

[
P(v)

δ

]
+ hβ [Dδ] , (62)

where we denote the set of discrete probabilities appearing in Equation (53) as P(u)
∆ := {p(u)

∆,k} and

P(v)
δ := {p(v)

δ,k }, respectively. Please note that, for pdfs with bounded support, the Rényi entropy is
maximized for the uniform distribution [173], so we always have: hα [D∆] ≤ ln(∆) and hβ [Dδ] ≤ ln(δ).



Entropy 2018, 20, 454 20 of 36

If we apply the result Equation (62) to the inequality Equation (58) we recover the result proved in
Reference [24] for the discrete entropies:

Hα[P
(u)
∆ ] + Hβ[P

(v)
δ ] ≥ ln

(
π

εα(Γ/4)Γ

)
. (63)
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Figure 4. In panel (a) the full line is the graph of the function f (α) = α
1

2−2α β
1

2−2β , with 0 < α ≤ 1,
and where β(α) = α/(2α− 1) that stems from the condition 1/α + 1/β = 2. The horizontal dashed
line is drawn to indicate the limit limα→1 f (α) = 1/e. In panel (b) we plot the behaviour of g(y) =
(1/2)R00(y, 1) as a function of y := ∆δ/(4h̄|γ|). Although g(y) is shown in the range 0 ≤ y ≤ 50, it is
important to note that g(y) is continuous monotonically decreasing function in the positive real axis
such limy→∞ g(y) = 0.

This is the coarse-grained version of the Rényi entropy UR in Equation (24) (Schürmann
conjectured [169] that ε1 (z) defined in (59), in the context of Equation (63) could be replaced
by e−1R2

00 (2z/e, 1)). We shall also emphasize, as the title of this subsection suggests, that the
demonstration of the URs (63) presented in Reference [24] uses explicitly the fact that û and v̂ form a
CCO pair. Therefore, the UR in Equation (58) is, in principle, valid only for CCO pairs, since it can be
obtained from Equation (63) by adding hα [D∆] + hβ [Dδ] to both sides, and using Equation (62).

The discrete Rényi entropy is always positive, and we have

lim
Γ→+∞

ln
(

π

Γεα(Γ/4)

)
= lim

Γ→+∞
ln


 π

1
2 ΓR2

00

(
Γ
4 , 1
)


 = 0, (64)

with the last line being valid because limx→∞(2x/π)R2
00(x, 1) = 1 (Equation (28) in [174] reads:

z
2π R2

00 (z/4, 1) ∼ 1− 2
√

πze−z/2. This result is based on the appropriate asymptotic expansion [175]
valid for z→ ∞). This results show that the coarse-grained UR in Equation (63) is non-trivially satisfied
for an arbitrary (even very large) values of the coarse-graining widths. However, this desired property
is not enjoyed by the UR

Hα[P
(u)
∆ ] + Hβ[P

(v)
δ ] ≥ ln


 π

α
1

2−2α β
1

2−2β Γ


 , (65)

first derived in [31]. This UR corresponds to Equation (63) in the coarse-grained regime Γ/4 . 1.79
in which ε1(Γ/4) = 1/e. Obviously, this is not a mere coincidence, as Equation (63) subsumes (65).
This is clearly visible inside the definition of ε which involves the minimum of two different bounds.
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When Γ/4 > 1.79 the lower bound in Equation (65) is negative so this UR is trivially satisfied, since the
discrete entropy is always non-negative.

From the above considerations we can obtain an UR for the variances, σ2
Q∆,u

and σ2
Qδ,v

, if we set
α = 1 in Equation (58) and use the inequality (22):

ln
(

2πeσQ∆,u σQδ,v

)
≥ h[Q∆,u] + h[Qδ,v] ≥ ln

(
πh̄|γ| eh[D∆ ]−ln ∆+h[Dδ ]−ln δ

ε1(Γ/4)

)
, (66)

where h[·] stands for the Shannon entropy. Now, we can use the decompositions:

σ2
Q∆,u

= σ2
P(u)

∆
+ σ2

D∆
and σ2

Qδ,v
= σ2

P(v)
δ

+ σ2
Dδ

, (67)

where the variances of the discrete probability distributions were defined in Equation (42), while σ2
D∆

and σ2
Dδ

, are the variances of the generic HFs. Therefore, applying the above splitting to Equation (66)
we arrive at the lower bound [24]:

(
σ2

P(u)
∆

+ σ2
D∆

)(
σ2

P(v)
δ

+ σ2
Dδ

)
≥ h̄2γ2

4
e2(h[D∆ ]−ln ∆+h[Dδ ]−ln δ−1)

ε2
1(Γ/4|γ|)

. (68)

When the HF are rectangular, and in the coarse-grained regime Γ/(4|γ|) . 1.79 where
ε1(Γ/4|γ|) = 1/e, we recover the UR [32]:

(
σ2

P(u)
∆

+
∆2

12

)(
σ2

P(v)
δ

+
δ2

12

)
≥ h̄2γ2

4
, (69)

where we have used the fact that in this case

σ2
DR

∆
=

∆2

12
and σ2

DR
δ
=

δ2

12
. (70)

Both Equations (68) and (69) are the coarse-grained versions of the Heisenberg UR in Equation (8).
It is important to emphasize that Equation (69) cannot be obtained by the simple substitution σ2

Pu
→

σ2
P(u)

∆

and σ2
Pv
→ σ2

P(v)
δ

done inside the Heisenberg UR.

Although both σ2
D∆

and σ2
Dδ

are the variances of a generic HF, viz. D∆(u, uk) and Dδ(v, vk) for any
value of k, it is interesting to associate them to the respective central bins, namely those that contain
the mean value of the probability distributions Pu and Pv. By doing this, together choosing the origins
of the coordinates in the middle of the central bin, we can see that the variances σ2

P(u)
∆

and σ2
P(v)

δ

are free

from contributions associated with the statistics relevant for the central bins. Thus, if the widths of the
coarse graining increase in the measurement of û and v̂, the respective central bin-widths grow, so that
the variances σ2

P(u)
∆

and σ2
P(v)

δ

only involve contributions from the tails of the probability distributions

Q∆,u and Qδ,v. Therefore, for large coarse grainings, the variances σ2
D∆

and σ2
Dδ

become more important
in the inequalities Equations (68) and (69). Thus, in the regime when:

Γ ≥ πe⇒ Γ ≥ π

ε1(Γ/4|γ|) ⇒ Γ2 ≥ 1
4

e2(h[D∆ ]+h[Dδ ])

e2σ2
D∆

σ2
Dδ

ε2
1(Γ/4|γ|)

⇒

⇒ σ2
D∆

σ2
Dδ
≥ h̄2|γ|2

4
e2(h[D∆ ]−ln ∆+h[Dδ ]−ln δ−1)

ε2
1(Γ/4|γ|)

(71)

both Equations (68) and (69) are satisfied trivially. Note, that in Equation (71) we have used the relation
4π2 ≥ e2(h[D∆ ]+h[Dδ ])/e2σ2

D∆
σ2

Dδ
> 0 which can be obtained from the inequality in Equation (22).
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However, Equation (68) is only the starting point for the second construction, proposed in [24],
that is free from the above limitation, and cannot be trivially satisfied. This improved UR reads:

K




σ2
P(u)

∆

∆2


K




σ2
P(v)

δ

δ2


 ≥ π2

Γ2ε2
1(Γ/4)

, (72)

where K(t) is implicitly defined as

K(t) :=
exp

[
2tM−1(t)

]

erf2
(√
M−1(t)/2

) ,

with erf(x) := (2/
√

π)
∫ x

0 e−y2
dy being the error function andM−1(t) denoting the inverse of the

invertible function

M(y) :=
exp(−y/4)

2
√

πy erf(
√

y/2)
.

The idea behind derivation of the coarse-grained UR in Equation (72) is the following. Let us
rewrite Equation (68) in the form:

ξ(h[D∆], σ2
D∆

, h[Dδ], σ2
Dδ
) :=

(
σ2

P(u)
∆

+ σ2
D∆

)(
σ2

P(v)
δ

+ σ2
Dδ

)

e2(h[D∆ ]+h[Dδ ]−1)
≥ 1

4Γ2ε2
1(Γ/4)

.

Now the function ξ is supposed to be minimized; however, because the Shannon entropy h[D∆]

(h[Dδ]) is interrelated with (bounded by a function of) the variance σ2
D∆

(σ2
Dδ

) the minimization needs
to be performed in two steps. For fixed values of the variances σ2

D∆
and σ2

Dδ
, the function ξ achieves its

minimum when the Shannon entropies h[D∆] and h[Dδ] are maximized with respect to the functional
form of the HFs, D∆ and Dδ. As already stated, the HFs are constrained by the requirement of
the fixed value for both variance. The form of the HF with maximum Shannon entropy [24] is a
Gaussian with support restricted to the central bin and whose variance is an appropriate function
of σ2

D∆
(σ2

Dδ
) (for details see [24].) Therefore, for this optimal HF its Shannon entropy h[Dop

∆ ] (h[Dop
δ ])

is only a function of the variance σ2
D∆

(σ2
Dδ

), thus we have G(σ2
D∆

, σ2
Dδ
) = ξ(h[Dop

∆ ], σ2
D∆

, h[Dop
δ ], σ2

Dδ
).

The second step is a direct minimization of G(σ2
D∆

, σ2
Dδ
), which results in the left hand side product in

Equation (72).
According to the discussion above Equation (71) the coarse-grianed UR in Equation (72) has no

contributions from the statistics corresponding to the central bin. In the limit when ∆, δ→ 0 we recover
the Heisenberg UR in Equation (8) thanks to the identities [24]

lim
∆→0

∆2K




σ2
P(u)

∆

∆2


 = σ2

Pu
lim
y→0

1
M(y)

exp(2yM(y))
erf2 (√y/2

) = 2πeσ2
Pu

. (73)

In the opposite limit of infinite coarse graining, viz ∆, δ→ ∞, we have σ2
P(u)

∆

, σ2
P(v)

δ

−→ 0 and

=1︷ ︸︸ ︷

lim
σ2

P(u)∆

→0
K




σ2
P(u)

∆

∆2




=1︷ ︸︸ ︷

lim
σ2

P(v)
δ

→0
K




σ2
P(v)

δ

δ2


 ≥

=1︷ ︸︸ ︷
lim

Γ→∞

π2

Γ2ε2
1(Γ/4)

. (74)



Entropy 2018, 20, 454 23 of 36

It is important to note that since
π2

Γ2ε2
1(Γ/4)

> 1, (75)

whenever both ∆ and δ are finite, it is forbidden to set σ2
P(u)

∆

and σ2
P(v)

δ

as simultaneously equal to

zero, as it would contradict the coarse-grained UR (72). This means that any quantum state (pure or
mixed) cannot be localised in both observables û and v̂ that are CCOs. In other words, the associated
probability distributions cannot simultaneously have compact support.

This remarkable conclusion somehow threatens the scientific program to recover classical
mechanics solely from coarse-grained averaging, physically originating from the finite-precision
of the observations [19,176,177]. Indeed, quantum features can be observed in the measurement of û
and v̂ irrespective of the precision of the detectors. However, for very large coarse-graining widths
the variances σ2

P(u)
∆

and σ2
P(v)

δ

are dominated by the contributions from the tails of the P(u)
∆ and P(v)

δ .

Thus, as these probabilities are likely very small, they would be particularly susceptible to statistical
fluctuations and it would in general require very long acquisition times to collect the sufficient amount
of data necessary to verify the UR (72) in the regime of extremely large coarse graining.

5.2. URs Valid for General Observables, û and v̂, Defined in Equation (3)

If we let α = 1 in Equation (58), use rectangular HFs such that Equation (60) is valid and restrict
the size of the involved bins such that ε1(Γ/4|γ|) = 1/e—this is the regime of the coarse graining
when Γ/4 . 1.79—we obtain the simplified coarse-grained UR of the form:

h[Q∆,u] + h[Qδ,v] ≥ ln (πeh̄|γ|) . (76)

Because the coarse-grained UR in Equation (58) was derived only for CCOs, û and v̂, a priori
it is not clear why the above UR could remain valid also for generalized observables defined in
Equation (3). This fact, however, can be proved with the help of the Shannon-entropy UR (20), that has
properly been extended to the desired observables, and the inequalities:

h[Q∆,u] ≥ h[Pu] and h[Qδ,v] ≥ h[Pv], (77)

whose detailed derivation based on the Jensen inequality is relegated to Appendix B. Passing to the
discrete entropies we find the coarse-grained UR:

H[P(u)
∆ ] + H[P(v)

δ ] ≥ ln
(πe

Γ

)
, (78)

which looks the same as the one derived in [30] for CCOs. Here, the validity of this UR has been
extended for any observables û and v̂ as defined in Equation (3). Also, following the same arguments
that lead from Equation (66) to the UR in Equation (69) we can see that the UR for the discrete variances
is also valid for general û and v̂ as defined in Equation (3).

To briefly summarize, entropic uncertainty relations for coarse-grained probability distributions
were almost only considered for position and momentum variables. As far as we know, the only
exceptions are given in References [58,65]. However, as we have shown here, the generalization of
entropic URs for differential probabilities associated with general observables û and v̂, which are linear
combinations of position and momentum, can be done in many cases. However, in each case a careful
analysis should be carried out to verify that the related coarse-grained URs are also valid for these
generalised operators. Here, we have done this only in the simple cases.
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5.3. Coarse-Grained URs Merged with the Majorization Approach

In [174] the coarse-grained scenario has been discussed with the help of the results obtained
in [156,157,159], namely the majorization-based approach to quantification of uncertainty. To say it
briefly, a majorization relation x ≺ y between two arbitrary d-dimensional probability distributions
means that for every n ≤ d the inequality ∑n

k=1 x↓k ≤ ∑n
k=1 y↓k holds, with an equality (normalization)

for n = d. Traditionally, by “↓” we denote the decreasing order, so that
(

x↓
)

k ≥
(
x↓
)

l , for all k ≤ l.
The Rényi entropy (and also others, such as the Tsallis entropy) is Schur-concave, which implies
Hα [x] ≥ Hα [y] whenever x ≺ y.

In the context of coarse-grained probability distributions it was conceptually simpler to consider
the so-called direct-sum majorization introduced in [159]. An advantage of the majorization approach
is that it covers a regime of (α, β) parameters, β = α to be precise, which in some way is perpendicular
to the conjugate choice 1/α+ 1/β = 2. In [174] an infinite hierarchy of majorization vectors, depending
on a single parameter Γ = ∆δ/h̄, has been derived. The discussion is conducted for CCOs, thus one can
easily recognize the dimensionless Γ parameter as those which appears in all previous URs with γ = 1.

The main result, namely a family of lower bounds denoted as R(n)
α (∆δ/h̄) for n = 2, . . . , ∞,

has been presented in Equation (27) from [174], however, we refrain from providing its detailed
construction here. It seems enough to say that the bound in question is a function of R2

00 (j0Γ/4, 1)
with j0 being certain positive integers. In other words, in spirit, the majorization bound is close to
that derived in [24] and extensively discussed above. A comparison of the new bound and (63) for
α = 1 = β—the only value of both parameters for which the involved bounds describe the same
situation—-showed thatR(3)

1 outperforms (63) in the regime when the R00-term does contribute to ε1.
Asymptotic behavior of the new and previous coarse-grained bounds shows that for α = 1 = β

and large Γ, allR(n)
1 bounds improve (63) by a divergent factor Γ/4. Moreover, the typical behavior of

discrete majorization bounds has been confirmed in the coarse-grained setting. In the discrete case,
the majorization relations almost surely dominate the MU bound, with an exception being a small
neighborhood of the point for which the unitary matrix U is the Fourier matrix. The analog of the
Fourier matrix in the coarse-grained scenario is the continuous limit Γ→ 0. This probably intuitive fact
has been rigorously shown by means of the asymptotics ofR(∞)

1 for small Γ, which is equal to − 1
2 ln Γ.

5.4. Other Coarse-Grained URs

At the very end of this long section we would like to touch on a few coarse-grained URs which go
beyond the standard position-momentum conjugate pair. First of all, Bialynicki-Birula also provided
his major Shannon entropy UR in the case of angle and angular momentum [30], as well as (together
with Madajczyk) to the variables on the sphere [178]. Coarse graining in these physical settings is only
relevant for the periodic CVs (angle on a circle and two angles on a sphere), as the conjugate variables
are discrete (though infinite dimensional).

Also, the coarse-grained scenario has been developed [179] in relation to the memory-assisted
UR [180] relevant for quantum key distribution. The result, even though non-trivial, differs from
Equation (63) in a similar fashion as the MU bound differs from the UR in the presence of quantum
memory by Berta et al [180].

Going in a completely different direction, Rastegin [181] in his recent contribution proposed
an extension of (65) to the case of a modified CCR, which assumes the form [x̂, p̂] = ih̄(1 + β p̂2).
The parameter β is related to the so-called minimal length predicted by certain variants of string
theory and similar approaches (not to be confused with β playing the role of a conjugate parameter in
the MU bound and similar URs for the Rényi entropies).

Last but not least, some of us have very recently derived an inequality (see Equations 9–12
from [182]), which could be understood as an UR (valid for CCOs) in the setting relevant for periodic
coarse graining discussed in Section 4.1.2. As this UR involves additional averaging of p(x)

k (ρ̂) and
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p(p)
l (ρ̂) defined below Equation (47) with respect to the positioning degrees of freedom, we do not

provide further details of this construction encouraging the interested reader to consult [182].

6. Applications of Coarse-Grained Measurements and Coarse-Grained Uncertainty Relations

As discussed above, when detecting the position and momentum of particles such as photons or
individual atoms, coarse-grained measurements are not just necessary but can be much more practical.
In this regard, URs that deal with coarse-grained measurements can be useful for several applications,
such as those discussed in Section 3.

Section 3 discussed the use of URs along with the PPT arguement for the convenient detection
of quantum entanglement in continous variable quantum systems. However, sufficient care must be
taken in regards to coarse-grained measurements. The pitfalls of applying the usual entanglement
criteria for continuous variables to coarse-grained measurements was discussed in Reference [26],
where it was argued that this can lead to false-positive identifications of entanglement, such that the
entanglement criteria based on uncertainty relations discussed in Section 3 can be (falsely) violated even
for separable states. For a simple illustration of this, consider the most trivial example of a separable
continuous variable state, the two-mode vacuum state [10]. Even though the state is separable,
improper application of entanglement criteria without correctly taking account of coarse graining can
lead to erroneous results. A demonstration of this is shown in Figure 5. We consider the results from
coarse grained measurements, and apply entanglement criteria based on an ideal continuous variable
UR and its coarse-grained version. The red circles show a variance-based entanglement criteria based
on the variance product UR Equation (8), using the global operators defined in Equations (29) and (30),
as developed in Reference [99]. Here we have subtracted the lower bound from the product of
variances, so that a negative value indicates entanglement. As can be seen, when the coarse graining
is large, one would erroneously conclude that the quantum state is entangled. On the other hand,
the coarse-grained variance product UR (69) applied to the global operators (29) and (30) never
indicates that the state is entangled, as indicated by the blue squares in Figure 5. Similar results hold
for other UR-based entanglement criteria.

To show how coarse-grained data should be properly handled to identify entanglement,
an experimental study was performed in a system of spatially-entangled photons [26]. In particular,
the same variance criteria based on (69) was tested for the global operators defined in
Equations (29) and (30), in which case entanglement was identified for a wide range of coarse-graining
widths. It was also shown that coarse-grained entropic entanglement criteria, for example based
on inequality Equation (58) (α = β = 1) applied to operators (29) and (30), can be superior to
coarse-grained variance-based criteria, identifying entanglement when variance criteria do not,
even for the case of Gaussian states. This is due to the fact that the coarse-grained probability
distributions functions such as those shown in Figure 2 are not Gaussian functions, even when the
quantum state under investigation is Gaussian.

An advantage of coarse-graining is that the measurement time can be drastically reduced.
In Reference [86] EPR-steering was tested for discrete distributions of measurements made
from standardized binning on the two-photon state produced from spontaneous parametric
down-conversion, using a coarse-grained version of the EPR-steering criteria of Reference [85].
Bi-dimensional steering was observed for sample sizes ranging from 8× 8 to 24× 24, representing
a considerable reduction in measurement overhead when compared with the quasi-continuous
measurements reported in Reference [85], which sampled about 100 data points per cartesian direction
(about 104 total measurements) to evaluate entropic EPR-steering criteria of continuous variables.

Standard coarse graining has been studied in the context of quantum state reconstruction of single
and two-mode Gaussian states, and the quantum to classical transition [183]. Two scenarios were
considered: direct reconstruction of the covariance matrix alone, and full reconstruction of the state
using maximum likelihood estimation. The reconstructed coarse-grained functions were compared to
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those of Gaussian states subject to thermal squeezed reservoirs, indicating that in this context coarse
graining does not produce a thermalized (decohered) Gaussian state.
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Figure 5. Numerical results testing entanglement criteria for the two-mode vacuum state, a separable
pure state. The entanglement criteria are based on URs following the PPT argument outlined in
Section 3. The criteria are evaluated as a function of the bin widths ∆ = δ, which are given in
units of the standard deviations σPu and σPv . We note that σPu = σPv for the two-mode vacuum state.
The red circles show the variance product UR Equation (8), where we apply the naive approach
in which the variances of the continous variables are calculated from the discretized data using
Equation (42). One can see that in this case we obtain a false-positive for entanglement when the
coarse-graining widths are large. The blue squares show the coarse-grained variance product UR
Equation (69), both applied to the global operators Equations (29) and (30). Here the lower bounds for
both inequalities have been subtracted, so that a negative value indicates entanglement. The lines are
merely guides for the eye.

The work mentioned above considered standard coarse graining, as described in Section 4.1.
In some cases it is interesting to consider different models, such as that of periodic coarse graining
described in Section 4.1.2. The mutual unbiasedness of periodic coarse graining described in Section 4.2
has been tested experimentally for two [142] and even three [143] phase-space directions. It was shown
that mutual unbiasedness appears when the appropriate bin widths of the two or three conjugate
variables are chosen. Periodic coarse graining has also been used in the detection of spatial correlations
of photon pairs from SPDC [182]. Using a novel entanglement criteria based on the UR for characteristic
functions [153], it was possible to identify entanglement with as few as 2× 2 measurements in position
and momentum (8 total), representing a considerable reduction in measurement overhead.

Simple binary binning of homodyne measurements has been proposed as a means to test
dichotomic Bell’s inequalities in CV systems, while allowing for high detection efficency [184–187].
Other types of non-standard coarse graining have been proposed as a means to violate Bell’s inequality
using homodyne measurements on non-Gaussian states [188]. Though it was shown that one could
achieve maximal violation in principle, exotic non-Gaussian states are required. In Reference [27] it
was shown that imperfect binning could result in false violations of Bell’s inequalities, and even in
violations of Cirelson’s bound for quantum Bell correlations.

A closely related subject to periodic coarse graining of CVs is that of the so called modular
variables [189–191], for which phase-space variables u are rewritten as u = nu`+ ū, where nu is the
integer component and ū the modular component, such that 0 ≤ ū < `. Here ` is a scaling parameter
of appropriate dimension. For two CCOs, such as x̂ and p̂ for example, the integer operator of one
observable-say-n̂x and the modular operator of the other observable- ˆ̄p satisfy URs that closely resemble
those of the angle and angular momentum variables [30]. The modular variable construction was first
introduced by Aharanov et al. [138,189] as a method to identify non-locality in quantum mechanics.
Since then, several interesting applications have been developed. Variance-based URs for the modular
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variable construction were proposed as a method to identify a novel type of squeezing, as well
as entanglement in pairs of atoms [192]. This entanglement criteria was used in References [193],
along with one based on entropic uncertainty relations, to identify spatial entanglement of photon
pairs that have passed through multiple slit apertures. Application to multiple-photon states was
studied in Reference [194]. It is worth noting that in this case the usual CV entanglement criteria
as discussed in Section 3 are incapable of detecting entanglement. Modular variables have been
proposed as a way to test for the Greenberger-Horne-Zeilinger paradox in CV systems [195], as well as
quantum contextuality [196–198] and as a method to construct algebras resembling that of discrete
systems [190,191,199].

Finally, we briefly mention that URs play an important role in the attempt to unify quantum
theory with general relativity. In this case, the Heisenberg uncertainty principle is modified to
become a generalized uncertainty principle, taking into account Planck scale effects, which impose
coarse-graining that is a fundamental part of nature, leading to minimum and maximum length
quantum mechanics. An extensive amount of literature exists on the subject, for two recent reviews,
see References [200,201].

7. Conclusions

Uncertainty relations play an important role in quantum physics, which is two-fold: on the one
hand they have historically represented the difference between classical and quantum physics, while on
the other hand they are a tool that can be used to identify and even quantify interesting quantum
properties. Beginning with the seminal work of Heisenberg in 1927, several uncertainty relations have
been developed for continuous variable quantum systems. However, in a realistic experimental setting,
one never has access to the infinite dimensional spectrum associated to these observables. Thus, coarse
graining is imposed by the detection apparatus to account for the measurement precision and range.

Here we have provided a review of several quantum mechanical uncertainty relations tailored
specifically to coarse-grained measurement of continuous quantum observables. Our aim was to
survey the state-of-the-art of the subject, from both the theoretical advances to experimental application
of coarse-grained uncertainty relations. We also extend the validity of some of the coarse-grained
URs, already in the literature, to general linear combinations of canonical observables in n-mode
bosonic systems.

Several interesting open questions remain. First, it would be interesting to see the generalization
of all the coarse-grained URs presented here for pairs of observables that are connected by general
unitary metaplectic transformations. Second, one can consider applying coarse graining to URs not
mentioned explicitely here, such as the triple variance product criteria [120,150], UR for characteristic
functions [153], among others, as well the plethora of moment inequalities arising from tests for
non-classicality [68,72] and entanglement [117,118,121]. Third, and more important, a deep discussion
of the role of coarse-grained URs within the scientific program to recover classical mechanics
solely from coarse-grained averaging should be developed. We hope that this review encourage
this discussion.
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Abbreviations

The following abbreviations are used in this manuscript:

CV Continuous variable
UR Uncertainty relation
QIT Quantum information theory
CCR Canonical commutation relation
CCO Canonically conjugate operators
pdf probability distribution function
EPR Einstein-Podolsky-Rosen
PPT Positive partial transposition
PCG Periodic coarse graining
MU Maassen-Uffink
HF Histogram function

Appendix A

Following [24] we aim to prove the decomposition in Equation (62). To this end it is enough to
discuss the case of û since the proof for v̂ looks the same. We can write:

hα[Q∆,u] =
1

1− α
ln
(∫ ∞

−∞
du [Q∆,u(u)]α

)
=

1
1− α

ln

(
∑

k∈Zk

∫

Rk

du [Q∆,u(u)]α
)

=
1

1− α
ln

(
∑

k∈Zk

[
p(u)∆,k

]α
∫

Rk

du [D∆(u, uk)]
α

)
, (A1)

where we use the fact that the function Q∆,u(u) in the interval Rk is equal to p(u)
∆,k D∆(u, uk). Now,

because the shape of the HF, D∆(u, uk), is the same for all values of k, the integral
∫
Rk

du [D∆(u, uk)]
α

does not depend on k. Therefore, we can write:

hα[Q∆,u] =
1

1− α
ln

(
∑

k∈Zk

[
p(u)∆,k

]α
)
+

1
1− α

ln
(∫

Rk

du [D∆(u, uk)]
α

)
, (A2)

that corresponds to the decomposition in Equation (62).

Appendix B

Here, we prove the inequalities in Equation (77). As before, is enough to consider the single case
relevant for the variable u. In the next few lines, we actually closely follow the treatment presented
in [12]. First we define the mean value within the kth histogram bin:

〈. . .〉k :=
1
∆

∫ (k+1/2)∆

(k−1/2)∆
. . . du. (A3)

Then, because the function f (x) = x ln(x) is convex we can apply Jensen’s inequality [60]
to obtain,

〈Pu ln Pu〉k ≥ 〈Pu〉k ln〈Pu〉k. (A4)

Now we can use the definition in Equation (53), multiply both sides by −1 and sum over k ∈ Zk:

− ∑
k∈Zk

p(u)
∆,k ln p(u)

∆,k +

(
∑

k∈Zk

p(u)
∆,k

)
ln(∆) ≥ − ∑

k∈Zk

∫ (k+1/2)∆

(k−1/2)∆
Pu(u) ln Pu(u) du. (A5)
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After using the condition in Equation (36), the definition of the discrete Shannon entropy
H[P(u)

∆ ] := −∑k∈Zk
p(u)

∆,k ln p(u)
∆,k, the decomposition in Equation (62) with α = 1 and h[DR

∆ ] = ln ∆,
and the definition of the differential Shannon entropy in Equation (21) we obtain:

h[Q∆,u] := H[P(u)
∆ ] + ln ∆ ≥ h[Pu], (A6)

which is the desired result.

References

1. Wheeler, J.A.; Zurek, W.H. (Eds.) Quantum Theory and Measurement; Princeton University Press: Princeton,
NJ, USA, 1983.

2. Scully, M.O.; Englert, B.G.; Walther, H. Quantum optical tests of complementarity. Nature 1991, 351, 111–116.
[CrossRef]

3. Kim, Y.H.; Kulik, S.; Shih, Y.; Scully, M. Delayed Choice Quantum Eraser. Phys. Rev. Lett. 2000, 84, 1.
[CrossRef] [PubMed]

4. Bertet, P.; Osnaghi, S.; Rauschenbeutel, A.; Nogues, G.; Auffeves, A.; Brune, M.; Raimond, J.M.; Haroche, S.
A complementarity experiment with an interferometer at the quantum-classical boundary. Nature 2001,
411, 166–170. [CrossRef] [PubMed]

5. Walborn, S.P.; Cunha, M.O.T.; Pádua, S.; Monken, C.H. Double-slit quantum eraser. Phys. Rev. A 2002,
65, 0338. [CrossRef]

6. Mandel, L. Coherence and indistinguishability. Opt. Lett. 1991, 16, 1882–1883. [CrossRef] [PubMed]
7. Englert, B.G. Fringe Visibility and Which-Way Information: An Inequality. Phys. Rev. Lett. 1996, 77, 2154.

[CrossRef] [PubMed]
8. Ozaktas, H.M.; Zalevsky, Z.; Kutay, M.A. The Fractional Fourier Transform: with Applications in Optics and

Signal Processing; John Wiley and Sons Ltd.: New York, NY, USA, 2001.
9. Coles, P.J.; Berta, M.; Tomamichel, M.; Wehner, S. Entropic uncertainty relations and their applications.

Rev. Mod. Phys. 2017, 89, 848–858. [CrossRef]
10. Braunstein, S.L.; van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 2005,

77, 513. [CrossRef]
11. Adesso, G.; Ragy, S.; Lee, A.R. Continuous Variable Quantum Information: Gaussian States and Beyond.

Open Syst. Inf. Dyn. 2014, 21, 1440001. [CrossRef]
12. Bialynicki-Birula, I.; Rudnicki, Ł. Entropic Uncertainty Relations in Quantum Physics. In Statistical

Complexity: Applications in Electronic Structure Chapter 1; Sen, K., Ed.; Springer: Dordrecht, The Netherlands,
2011; pp. 1–34.

13. Wehner, S.; Winter, A. Entropic uncertainty relations—A survey. New J. Phys. 2010, 12, 025009. [CrossRef]
14. Sperling, J.; Vogel, W. Verifying continuous-variable entanglement in finite spaces. Phys. Rev. A 2009,

79, 052313. [CrossRef]
15. Willard, J. Elementary Principles in Statistical Mechanics; Scribner’s sons: New York, NY, USA, 1902.
16. Ehrenfest, P.; Ehrenfest, T. Begriffliche Grundlagen der Statistischen Auffassung in der Mechanik; B. G. Teubner:

Leipzig, Germany, 1912.
17. Ehrenfest, P.; Ehrenfest, T. The Conceptual Foundations of the Statistical Approach in Mechanics; Dover: New York,

NY, USA, 1990.
18. Mackey, M. Time’s Arrow: The Origins of Thermodynamical Behavior; Springer: New York, NY, USA, 1992.
19. Kofler, J.; Brukner, C. Classical World Arising out of Quantum Physics under the Restriction of

Coarse-Grained Measurements. Phys. Rev. Lett. 2007, 99, 180403. [CrossRef] [PubMed]
20. Kofler, J.; Brukner, C.V. Conditions for Quantum Violation of Macroscopic Realism. Phys. Rev. Lett. 2008,

101, 090403. [CrossRef] [PubMed]
21. Raeisi, S.; Sekatski, P.; Simon, C. Coarse Graining Makes It Hard to See Micro-Macro Entanglement.

Phys. Rev. Lett. 2011, 107, 250401. [CrossRef] [PubMed]
22. Wang, T.; Ghobadi, R.; Raeisi, S.; Simon, C. Precision requirements for observing macroscopic quantum

effects. Phys. Rev. A 2013, 88, 062114. [CrossRef]

http://dx.doi.org/10.1038/351111a0
http://dx.doi.org/10.1103/PhysRevLett.84.1
http://www.ncbi.nlm.nih.gov/pubmed/11015820
http://dx.doi.org/10.1038/35075517
http://www.ncbi.nlm.nih.gov/pubmed/11346787
http://dx.doi.org/10.1103/PhysRevA.65.033818
http://dx.doi.org/10.1364/OL.16.001882
http://www.ncbi.nlm.nih.gov/pubmed/19784170
http://dx.doi.org/10.1103/PhysRevLett.77.2154
http://www.ncbi.nlm.nih.gov/pubmed/10061872
http://dx.doi.org/10.1103/RevModPhys.89.015002
http://dx.doi.org/10.1103/RevModPhys.77.513
http://dx.doi.org/10.1142/S1230161214400010
http://dx.doi.org/10.1088/1367-2630/12/2/025009
http://dx.doi.org/10.1103/PhysRevA.79.052313
http://dx.doi.org/10.1103/PhysRevLett.99.180403
http://www.ncbi.nlm.nih.gov/pubmed/17995385
http://dx.doi.org/10.1103/PhysRevLett.101.090403
http://www.ncbi.nlm.nih.gov/pubmed/18851590
http://dx.doi.org/10.1103/PhysRevLett.107.250401
http://www.ncbi.nlm.nih.gov/pubmed/22243055
http://dx.doi.org/10.1103/PhysRevA.88.062114


Entropy 2018, 20, 454 30 of 36

23. Jeong, H.; Lim, Y.; Kim, M.S. Coarsening Measurement References and the Quantum-to-Classical Transition.
Phys. Rev. Lett. 2014, 112, 010402. [CrossRef] [PubMed]

24. Rudnicki, L.; Walborn, S.P.; Toscano, F. Optimal uncertainty relations for extremely coarse-grained
measurements. Phys. Rev. A 2012, 85, 042115. [CrossRef]

25. Ray, M.R.; van Enk, S.J. Missing data outside the detector range. II. Application to time-frequency
entanglement. Phys. Rev. A 2013, 88, 062327. [CrossRef]

26. Tasca, D.S.; Rudnicki, L.; Gomes, R.M.; Toscano, F.; Walborn, S.P. Reliable Entanglement Detection under
Coarse-Grained Measurements. Phys. Rev. Lett. 2013, 110, 210502. [CrossRef] [PubMed]

27. Tasca, D.S.; Walborn, S.P.; Toscano, F.; Souto Ribeiro, P.H. Observation of tunable Popescu-Rohrlich
correlations through postselection of a Gaussian state. Phys. Rev. A 2009, 80, 030101. [CrossRef]

28. Semenov, A.A.; Vogel, W. Fake violations of the quantum Bell-parameter bound. Phys. Rev. A 2011,
83, 032119. [CrossRef]

29. Ray, M.R.; van Enk, S.J. Missing data outside the detector range: Continuous-variable entanglement
verification and quantum cryptography. Phys. Rev. A 2013, 88, 042326. [CrossRef]

30. Bialynicki-Birula, I. Entropic Uncertainty Relations. Phys. Lett. 1984, 103, 253–254. [CrossRef]
31. Bialynicki-Birula, I. Formulation of the uncertainty relations in terms of the Rényi entropies. Phys. Rev. A

2006, 74, 52101. [CrossRef]
32. Rudnicki, Ł.; Walborn, S.P.; Toscano, F. Heisenberg uncertainty relation for coarse-grained observables. EPL

2012, 97, 38003.
33. Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys.

1927, 43, 172–198. [CrossRef]
34. Busch, P.; Heinonen, T.; Lahti, P. Heisenberg’s uncertainty principle. Phys. Rep. 2007, 452, 155–176. [CrossRef]
35. Ozawa, M. Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance

in measurement. Phys. Rev. A 2003, 67, 042105. [CrossRef]
36. Ozawa, M. Uncertainty relations for noise and disturbance in generalized quantum measurements.

Ann. Phys. 2004, 311, 350–416. [CrossRef]
37. Ozawa, M. Universal uncertainty principle in the measurement operator formalism. J. Opt. B Quantum

Semiclass. Opt. 2005, 7, S672–S681. [CrossRef]
38. Werner, R.F. The Uncertainty Relation for Joint Measurement of Postion and Momentum.

Quantum Inf. Comput. 2004, 4, 546–562.
39. Busch, P.; Heinonen, T.; Lahti, P. Noise and disturbance in quantum measurement. Phys. Lett. A 2004,

320, 261–270. [CrossRef]
40. Busch, P.; Lahti, P.; Werner, R.F. Proof of Heisenberg’s Error-Disturbance Relation. Phys. Rev. Lett. 2013,

111, 160405. [CrossRef] [PubMed]
41. Korzekwa, K.; Lostaglio, M.; Jennings, D.; Rudolph, T. Quantum and classical entropic uncertainty relations.

Phys. Rev. A 2014, 89, 042122. [CrossRef]
42. Arthurs, E.; Kelly, J.L. On the Simultaneous Measurement of a Pair of Conjugate Observables. Bell Syst.

Tech. J. 1965, 44, 725–729. [CrossRef]
43. Davies, E.B. Quantum Theory of Open Systems; Academic Press London ; New York, NY, USA, 1976; 171p.
44. Busch, P. Indeterminacy relations and simultaneous measurements in quantum theory. Int. J. Theor. Phys.

1985, 24, 63–92. [CrossRef]
45. Arthurs, E.; Goodman, M.S. Quantum correlations: A generalized Heisenberg uncertainty relation. Phys.

Rev. Lett. 1988, 60, 2447–2449. [CrossRef] [PubMed]
46. Ishikawa, S. Uncertainty relations in simultaneous measurements for arbitrary observables. Rep. Math. Phys.

1991, 29, 257–273. [CrossRef]
47. Raymer, M. Uncertainty principle for joint measurement of noncommuting variables. Am. J. Phys. 1994,

62, 986. [CrossRef]
48. Ozawa, M. Uncertainty relations for joint measurements of noncommuting observables. Phys. Lett. A 2004,

320, 367–374. [CrossRef]
49. Tasca, D.S.; Gomes, R.M.; Toscano, F.; Souto Ribeiro, P.H.; Walborn, S.P. Continuous-variable quantum

computation with spatial degrees of freedom of photons. Phys. Rev. A 2011, 83, 052325. [CrossRef]
50. Dutta, B.; Mukunda, N.; Simon, R. The real symplectic groups in quantum mechanics and optics. Pramana

1995, 45, 471–497.

http://dx.doi.org/10.1103/PhysRevLett.112.010402
http://www.ncbi.nlm.nih.gov/pubmed/24483872
http://dx.doi.org/10.1103/PhysRevA.85.042115
http://dx.doi.org/10.1103/PhysRevA.88.062327
http://dx.doi.org/10.1103/PhysRevLett.110.210502
http://www.ncbi.nlm.nih.gov/pubmed/23745847
http://dx.doi.org/10.1103/PhysRevA.80.030101
http://dx.doi.org/10.1103/PhysRevA.83.032119
http://dx.doi.org/10.1103/PhysRevA.88.042326
http://dx.doi.org/10.1016/0375-9601(84)90118-X
http://dx.doi.org/10.1103/PhysRevA.74.052101
http://dx.doi.org/10.1007/BF01397280
http://dx.doi.org/10.1016/j.physrep.2007.05.006
http://dx.doi.org/10.1103/PhysRevA.67.042105
http://dx.doi.org/10.1016/j.aop.2003.12.012
http://dx.doi.org/10.1088/1464-4266/7/12/033
http://dx.doi.org/10.1016/j.physleta.2003.11.036
http://dx.doi.org/10.1103/PhysRevLett.111.160405
http://www.ncbi.nlm.nih.gov/pubmed/24182239
http://dx.doi.org/10.1103/PhysRevA.89.042122
http://dx.doi.org/10.1002/j.1538-7305.1965.tb01684.x
http://dx.doi.org/10.1007/BF00670074
http://dx.doi.org/10.1103/PhysRevLett.60.2447
http://www.ncbi.nlm.nih.gov/pubmed/10038356
http://dx.doi.org/10.1016/0034-4877(91)90046-P
http://dx.doi.org/10.1119/1.17657
http://dx.doi.org/10.1016/j.physleta.2003.12.001
http://dx.doi.org/10.1103/PhysRevA.83.052325


Entropy 2018, 20, 454 31 of 36

51. Kennard, E.H. Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys. 1927, 44, 326–352. [CrossRef]
52. Weyl, H. Gruppentheorie und Quantenmechanik (Leipzig: S Hirzel) Weyl H 1950 The Theory of Groups and Quantum

Mechanics; Dover: New York, NY, USA, 1928.
53. Robertson, H. The uncertainty principle. Phys. Rev. 1929, 34, 163–164. [CrossRef]
54. Schrödinger, E. On Heisenberg’s Uncertainty Principle. Phys. Math. 1930, 19, 296–303.
55. Simon, R.; Mukunda, N.; Dutta, B. Quantum-noise matrix for multimode systems: U (n) invariance,

squeezing, and normal forms. Phys. Rev. A 1994, 49, 1567. [CrossRef] [PubMed]
56. Solomon Ivan, J.; Sabapathy, K.K.; Mukunda, N.; Simon, R. Invariant theoretic approach to uncertainty

relations for quantum systems. arXiv 2012, arXiv:1205.5132v1.
57. Simon, R. Peres-Horodecki Separability Criterion for Continuous Variable Systems. Phys. Rev. Lett. 2000,

84, 2726–2729. [CrossRef] [PubMed]
58. Huang, Y. Entropic uncertainty relations in multidimensional position and momentum spaces. Phys. Rev. A

2011, 83, 052124. [CrossRef]
59. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
60. Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley and Sons: New York, NY, USA, 2006.
61. Bialynicki-Birula, I.; Mycielski, J. Uncertainty Relations for Information Entropy in Wave Mechanics.

Commun. Math. Phys. 1975, 44, 129. [CrossRef]
62. Beckner, W. Inequalities in Fourier Analysis. Ann. Math. 1975, 102, 159–182. [CrossRef]
63. Babenko, K.I. IAn inequality in the theory of Fourier integrals. Izv. Akad. Nauk SSSR Ser. Mater. 1961,

25, 531–542.
64. Hirschman, I.I. A Note on Entropy. Am. J. Math. 1957, 79, 152–156. [CrossRef]
65. Guanlei, X.; Xiaotong, W.; Xiaogang, X. Generalized entropic uncertainty principle on fractional Fourier

transform. Signal Process. 2009, 89, 2692–2697. [CrossRef]
66. Narcowich, F.J. Geometry and uncertainty. J. Math. Phys. 1990, 31, 354–364. [CrossRef]
67. Slusher, R.E.; Hollberg, L.W.; Yurke, B.; Mertz, J.C.; Valley, J.F. Observation of Squeezed States Generated by

Four-Wave Mixing in an Optical Cavity. Phys. Rev. Lett. 1985, 55, 2409–2412. [CrossRef] [PubMed]
68. Shchukin, E.; Richter, T.; Vogel, W. Nonclassicality criteria in terms of moments. Phys. Rev. A 2005, 71, 011802.

[CrossRef]
69. Vogel, W. Nonclassical States: An Observable Criterion. Phys. Rev. Lett. 2000, 84, 1849–1852. [CrossRef]

[PubMed]
70. Richter, T.; Vogel, W. Nonclassicality of Quantum States: A Hierarchy of Observable Conditions.

Phys. Rev. Lett. 2002, 89, 283601. [CrossRef] [PubMed]
71. Kiesel, T.; Vogel, W.; Hage, B.; DiGuglielmo, J.; Samblowski, A.; Schnabel, R. Experimental test of

nonclassicality criteria for phase-diffused squeezed states. Phys. Rev. A 2009, 79, 022122. [CrossRef]
72. Ryl, S.; Sperling, J.; Agudelo, E.; Mraz, M.; Köhnke, S.; Hage, B.; Vogel, W. Unified nonclassicality criteria.

Phys. Rev. A 2015, 92, 011801. [CrossRef]
73. Reid, M.D.; Drummond, P.D. Quantum Correlations of Phase in Nondegenerate Parametric Oscillation.

Phys. Rev. Lett. 1988, 60, 2731–2733. [CrossRef] [PubMed]
74. Reid, M.D. Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric

amplification. Phys. Rev. A 1989, 40, 913–923. [CrossRef]
75. Einstein, A.; Podolsky, D.; Rosen, N. Can Quantum-Mechanical Description of Physical Reality Be Considered

Complete? Phys. Rev. 1935, 47, 777. [CrossRef]
76. Ou, Z.Y.; Pereira, S.F.; Kimble, H.J.; Peng, K.C. Realization of the Einstein-Podolsky-Rosen paradox for

continuous variables. Phys. Rev. Lett. 1992, 68, 3663–3666. [CrossRef] [PubMed]
77. Wiseman, H.M.; Jones, S.J.; Doherty, A.C. Steering, Entanglement, Nonlocality, and the

Einstein-Podolsky-Rosen Paradox. Phys. Rev. Lett. 2007, 98, 140402. [CrossRef] [PubMed]
78. Jones, S.J.; Wiseman, H.M.; Doherty, A.C. Entanglement, Einstein-Podolsky-Rosen correlations, Bell

nonlocality, and steering. Phys. Rev. A 2007, 76, 052116. [CrossRef]
79. Cavalcanti, D.; Skrzypczyk, P. Quantum steering: a review with focus on semidefinite programming.

Rep. Prog. Phys. 2017, 80, 024001. [CrossRef] [PubMed]
80. Schrödinger, E. The Present Status of Quantum Mechanics. Naturwissenschaften 1935, 23, 807. [CrossRef]
81. Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009,

81, 865–942. [CrossRef]

http://dx.doi.org/10.1007/BF01391200
http://dx.doi.org/10.1103/PhysRev.34.163
http://dx.doi.org/10.1103/PhysRevA.49.1567
http://www.ncbi.nlm.nih.gov/pubmed/9910403
http://dx.doi.org/10.1103/PhysRevLett.84.2726
http://www.ncbi.nlm.nih.gov/pubmed/11017310
http://dx.doi.org/10.1103/PhysRevA.83.052124
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1007/BF01608825
http://dx.doi.org/10.2307/1970980
http://dx.doi.org/10.2307/2372390
http://dx.doi.org/10.1016/j.sigpro.2009.05.014
http://dx.doi.org/10.1063/1.528922
http://dx.doi.org/10.1103/PhysRevLett.55.2409
http://www.ncbi.nlm.nih.gov/pubmed/10032137
http://dx.doi.org/10.1103/PhysRevA.71.011802
http://dx.doi.org/10.1103/PhysRevLett.84.1849
http://www.ncbi.nlm.nih.gov/pubmed/11017643
http://dx.doi.org/10.1103/PhysRevLett.89.283601
http://www.ncbi.nlm.nih.gov/pubmed/12513145
http://dx.doi.org/10.1103/PhysRevA.79.022122
http://dx.doi.org/10.1103/PhysRevA.92.011801
http://dx.doi.org/10.1103/PhysRevLett.60.2731
http://www.ncbi.nlm.nih.gov/pubmed/10038437
http://dx.doi.org/10.1103/PhysRevA.40.913
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRevLett.68.3663
http://www.ncbi.nlm.nih.gov/pubmed/10045765
http://dx.doi.org/10.1103/PhysRevLett.98.140402
http://www.ncbi.nlm.nih.gov/pubmed/17501251
http://dx.doi.org/10.1103/PhysRevA.76.052116
http://dx.doi.org/10.1088/1361-6633/80/2/024001
http://www.ncbi.nlm.nih.gov/pubmed/28008876
http://dx.doi.org/10.1007/BF01491891
http://dx.doi.org/10.1103/RevModPhys.81.865


Entropy 2018, 20, 454 32 of 36

82. Gühne, O.; Tóth, G. Entanglement detection. Phys. Rep. 2009, 474, 1–75. [CrossRef]
83. Brunner, N.; Cavalcanti, D.; Pironio, S.; Scarani, V.; Wehner, S. Bell nonlocality. Rev. Mod. Phys. 2014,

86, 419–478. [CrossRef]
84. Ji, S.W.; Lee, J.; Park, J.; Nha, H. Steering criteria via covariance matrices of local observables in

arbitrary-dimensional quantum systems. Phys. Rev. A 2015, 92, 062130. [CrossRef]
85. Walborn, S.P.; Salles, A.; Gomes, R.M.; Toscano, F.; Souto Ribeiro, P.H. Revealing Hidden

Einstein-Podolsky-Rosen Nonlocality. Phys. Rev. Lett. 2011, 106, 130402. [CrossRef] [PubMed]
86. Schneeloch, J.; Dixon, P.B.; Howland, G.A.; Broadbent, C.J.; Howell, J.C. Violation of Continuous-Variable

Einstein-Podolsky-Rosen Steering with Discrete Measurements. Phys. Rev. Lett. 2013, 110, 130407. [CrossRef]
[PubMed]

87. Schneeloch, J.; Howland, G.A. Quantifying high-dimensional entanglement with Einstein-Podolsky-Rosen
correlations. Phys. Rev. A 2018, 97, 042338. [CrossRef]

88. Schneeloch, J.; Tison, C.C.; Fanto, M.L.; Alsing, P.M.; Howland, G.A. Quantifying entanglement in a 68-billion
dimensional quantum system. arXiv 2018, arXiv:1804.04515.

89. Reid, M.D. Quantum cryptography with a predetermined key, using continuous-variable
Einstein-Podolsky-Rosen correlations. Phys. Rev. A 2000, 62, 062308. [CrossRef]

90. Grosshans, F.; Cerf, N.J. Continuous-Variable Quantum Cryptography is Secure against Non-Gaussian
Attacks. Phys. Rev. Lett. 2004, 92, 047905. [CrossRef] [PubMed]

91. Branciard, C.; Cavalcanti, E.G.; Walborn, S.P.; Scarani, V.; Wiseman, H.M. One-sided device-independent
quantum key distribution: Security, feasibility, and the connection with steering. Phys. Rev. A 2012,
85, 010301. [CrossRef]

92. Kogias, I.; Skrzypczyk, P.; Cavalcanti, D.; Acín, A.; Adesso, G. Hierarchy of Steering Criteria Based on
Moments for All Bipartite Quantum Systems. Phys. Rev. Lett. 2015, 115, 210401. [CrossRef] [PubMed]

93. Silberhorn, C.; Lam, P.K.; Weiß, O.; König, F.; Korolkova, N.; Leuchs, G. Generation of Continuous Variable
Einstein-Podolsky-Rosen Entanglement via the Kerr Nonlinearity in an Optical Fiber. Phys. Rev. Lett. 2001,
86, 4267–4270. [CrossRef] [PubMed]

94. Bowen, W.P.; Schnabel, R.; Lam, P.K.; Ralph, T.C. Experimental Investigation of Criteria for Continuous
Variable Entanglement. Phys. Rev. Lett. 2003, 90, 043601. [CrossRef] [PubMed]

95. D’Angelo, M.; Kim, Y.H.; Kulik, S.P.; Shih, Y. Identifying Entanglement Using Quantum Ghost Interference
and Imaging. Phys. Rev. Lett. 2004, 92, 233601. [CrossRef] [PubMed]

96. Howell, J.C.; Bennink, R.S.; Bentley, S.J.; Boyd, R.W. Realization of the Einstein-Podolsky-Rosen Paradox
Using Momentum- and Position-Entangled Photons from Spontaneous Parametric Down Conversion.
Phys. Rev. Lett. 2004, 92, 210403. [CrossRef] [PubMed]

97. Tasca, D.S.; Walborn, S.P.; Souto Ribeiro, P.H.; Toscano, F.; Pellat-Finet, P. Propagation of transverse intensity
correlations of a two-photon state. Phys. Rev. A 2009, 79, 033801. [CrossRef]

98. Duan, L.M.; Giedke, G.; Cirac, J.I.; Zoller, P. Inseparability Criterion for Continuous Variable Systems.
Phys. Rev. Lett. 2000, 84, 2722–2725. [CrossRef] [PubMed]

99. Mancini, S.; Giovannetti, V.; Vitali, D.; Tombesi, P. Entangling Macroscopic Oscillators Exploiting Radiation
Pressure. Phys. Rev. Lett. 2002, 88, 120401. [CrossRef] [PubMed]

100. Giovannetti, V.; Mancini, S.; Vitali, D.; Tombesi, P. Characterizing the entanglement of bipartite quantum
systems. Phys. Rev. A 2003, 67, 022320. [CrossRef]

101. Zhang, C.J.; Nha, H.; Zhang, Y.S.; Guo, G.C. Entanglement detection via tighter local uncertainty relations.
Phys. Rev. A 2010, 81, 012324. [CrossRef]

102. Peres, A. Separability Criterion for Density Matrices. Phys. Rev. Lett. 1996, 77, 1413. [CrossRef] [PubMed]
103. Horedecki, M.; Horodecki, P.; Horodecki, R. Separability of mixed states: necessary and sufficient conditions.

Phys. Lett. A 1996, 223, 1–8.
104. Nha, H.; Zubairy, M.S. Uncertainty Inequalities as Entanglement Criteria for Negative Partial-Transpose

States. Phys. Rev. Lett. 2008, 101, 130402. [CrossRef] [PubMed]
105. Walborn, S.P.; Taketani, B.G.; Salles, A.; Toscano, F.; de Matos Filho, R.L. Entropic Entanglement Criteria for

Continuous Variables. Phys. Rev. Lett. 2009, 103, 160505. [CrossRef] [PubMed]
106. Saboia, A.; Toscano, F.; Walborn, S.P. Family of continuous-variable entanglement criteria using general

entropy functions. Phys. Rev. A 2011, 83, 032307. [CrossRef]

http://dx.doi.org/10.1016/j.physrep.2009.02.004
http://dx.doi.org/10.1103/RevModPhys.86.419
http://dx.doi.org/10.1103/PhysRevA.92.062130
http://dx.doi.org/10.1103/PhysRevLett.106.130402
http://www.ncbi.nlm.nih.gov/pubmed/21517361
http://dx.doi.org/10.1103/PhysRevLett.110.130407
http://www.ncbi.nlm.nih.gov/pubmed/23581303
http://dx.doi.org/10.1103/PhysRevA.97.042338
http://dx.doi.org/10.1103/PhysRevA.62.062308
http://dx.doi.org/10.1103/PhysRevLett.92.047905
http://www.ncbi.nlm.nih.gov/pubmed/14995411
http://dx.doi.org/10.1103/PhysRevA.85.010301
http://dx.doi.org/10.1103/PhysRevLett.115.210401
http://www.ncbi.nlm.nih.gov/pubmed/26636832
http://dx.doi.org/10.1103/PhysRevLett.86.4267
http://www.ncbi.nlm.nih.gov/pubmed/11328151
http://dx.doi.org/10.1103/PhysRevLett.90.043601
http://www.ncbi.nlm.nih.gov/pubmed/12570421
http://dx.doi.org/10.1103/PhysRevLett.92.233601
http://www.ncbi.nlm.nih.gov/pubmed/15245156
http://dx.doi.org/10.1103/PhysRevLett.92.210403
http://www.ncbi.nlm.nih.gov/pubmed/15245267
http://dx.doi.org/10.1103/PhysRevA.79.033801
http://dx.doi.org/10.1103/PhysRevLett.84.2722
http://www.ncbi.nlm.nih.gov/pubmed/11017309
http://dx.doi.org/10.1103/PhysRevLett.88.120401
http://www.ncbi.nlm.nih.gov/pubmed/11909431
http://dx.doi.org/10.1103/PhysRevA.67.022320
http://dx.doi.org/10.1103/PhysRevA.81.012324
http://dx.doi.org/10.1103/PhysRevLett.77.1413
http://www.ncbi.nlm.nih.gov/pubmed/10063072
http://dx.doi.org/10.1103/PhysRevLett.101.130402
http://www.ncbi.nlm.nih.gov/pubmed/18851423
http://dx.doi.org/10.1103/PhysRevLett.103.160505
http://www.ncbi.nlm.nih.gov/pubmed/19905682
http://dx.doi.org/10.1103/PhysRevA.83.032307


Entropy 2018, 20, 454 33 of 36

107. Toscano, F.; Saboia, A.; Avelar, A.T.; Walborn, S.P. Systematic construction of genuine-multipartite-entanglement
criteria in continuous-variable systems using uncertainty relations. Phys. Rev. A 2015, 92, 052316. [CrossRef]

108. Werner, R.F. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model.
Phys. Rev. A 1989, 40, 4277–4281. [CrossRef]

109. Vidal, G.; Werner, R.F. Computable measure of entanglement. Phys. Rev. A 2002, 65, 032314. [CrossRef]
110. Werner, R.F.; Wolf, M.M. Bound Entangled Gaussian States. Phys. Rev. Lett. 2001, 86, 3658–3661. [CrossRef]

[PubMed]
111. Horodecki, M.; Horodecki, P.; Horodecki, R. Mixed-State Entanglement and Distillation: Is there a “Bound”

Entanglement in Nature? Phys. Rev. Lett. 1998, 80, 5239–5242. [CrossRef]
112. Bennett, C.H.; Bernstein, H.J.; Popescu, S.; Schumacher, B. Concentrating partial entanglement by local

operations. Phys. Rev. A 1996, 53, 2046. [CrossRef] [PubMed]
113. Giedke, G.; Kraus, B.; Duan, L.M.; Zoller, P.; Cirac, I.J.; Lewenstein, M. Separability and Distillability of

bipartite Gaussian States–the Complete Story. Fortschr. Phys. 2001, 49, 973–980. [CrossRef]
114. Giedke, G.; Kraus, B.; Duan, L.M.; Lewenstein, M.; Cirac, I.J. Entanglement Criteria for All Bipartite Gaussian

States. Phys. Rev. Lett. 2001, 87, 167904. [CrossRef] [PubMed]
115. Hyllus, P.; Eisert, J. Optimal entanglement witnesses for continuous-variable systems. New J. Phys. 2006,

8, 51. [CrossRef]
116. Nha, H. Entanglement condition via su(2) and su(1,1) algebra using Schrödinger-Robertson uncertainty

relation. Phys. Rev. A 2007, 76, 014305. [CrossRef]
117. Agarwal, G.S.; Biswas, A. Inseparability inequalities for higher order moments for bipartite systems.

New J. Phys. 2005, 7, 211. [CrossRef]
118. Hillery, M.; Zubairy, M.S. Entanglement Conditions for Two-Mode States. Phys. Rev. Lett. 2006, 96, 050503.

[CrossRef] [PubMed]
119. Paul, E.C.; Tasca, D.S.; Rudnicki, L.; Walborn, S.P. Detecting entanglement through direct measurement of

biphoton characteristic functions. 2018, submitted for publication.
120. Paul, E.C.; Tasca, D.S.; Rudnicki, L.; Walborn, S.P. Detecting entanglement of continuous variables with three

mutually unbiased bases. Phys. Rev. A 2016, 94, 012303. [CrossRef]
121. Shchukin, E.; Vogel, W. Inseparability Criteria for Continuous Bipartite Quantum States. Phys. Rev. Lett.

2005, 95, 230502. [CrossRef] [PubMed]
122. Van Loock, P.; Furusawa, A. Detecting genuine multipartite continuous-variable entanglement. Phys. Rev. A

2003, 67, 052315. [CrossRef]
123. Sun, Q.; Nha, H.; Zubairy, M.S. Entanglement criteria and nonlocality for multimode continuous-variable

systems. Phys. Rev. A 2009, 80, 020101. [CrossRef]
124. Shchukin, E.; Vogel, W. Conditions for multipartite continuous-variable entanglement. Phys. Rev. A 2006,

74, 030302. [CrossRef]
125. Villar, A.S.; Cruz, L.S.; Cassemiro, K.N.; Martinelli, M.; Nussenzveig, P. Generation of Bright Two-Color

Continuous Variable Entanglement. Phys. Rev. Lett. 2005, 95, 243603. [CrossRef] [PubMed]
126. Coelho, A.S.; Barbosa, F.A.S.; Cassemiro, K.N.; Villar, A.S.; Martinelli, M.; Nussenzveig, P. Three-Color

Entanglement. Science 2009, 6, 823–826. [CrossRef] [PubMed]
127. Tasca, D.S.; Walborn, S.P.; Ribeiro, P.H.S.; Toscano, F. Detection of transverse entanglement in phase space.

Phys. Rev. A 2008, 78, 010304. [CrossRef]
128. Shalm, L.K.; Hamel, D.R.; Yan, Z.; Simon, C.; Resch, K.J.; Jennewein, T. Three-photon energy-time

entanglement. Nat. Phys. 2012, 9, 19–22. [CrossRef]
129. MacLean, J.P.W.; Donohue, J.M.; Resch, K.J. Direct Characterization of Ultrafast Energy-Time Entangled

Photon Pairs. Phys. Rev. Lett. 2018, 120, 053601. [CrossRef] [PubMed]
130. Gomes, R.M.; Salles, A.; Toscano, F.; Ribeiro, P.H.S.; Walborn, S.P. Quantum Entanglement Beyond Gaussian

Criteria. Proc. Natl. Acad. Sci. USA 2009, 106, 21517–21520. [CrossRef] [PubMed]
131. Edgar, M.; Tasca, D.; Izdebski, F.; Warburton, R.; Leach, J.; Agnew, M.; Buller, G.; Boyd, R.; Padgett, M.

Imaging high-dimensional spatial entanglement with a camera. Nat. Commun. 2012, 3, 984. [CrossRef]
[PubMed]

132. Aspden, R.S.; Tasca, D.S.; Boyd, R.W.; Padgett, M.J. EPR-based ghost imaging using a single-photon-sensitive
camera. New J. Phys. 2013, 15, 073032. [CrossRef]

http://dx.doi.org/10.1103/PhysRevA.92.052316
http://dx.doi.org/10.1103/PhysRevA.40.4277
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1103/PhysRevLett.86.3658
http://www.ncbi.nlm.nih.gov/pubmed/11328047
http://dx.doi.org/10.1103/PhysRevLett.80.5239
http://dx.doi.org/10.1103/PhysRevA.53.2046
http://www.ncbi.nlm.nih.gov/pubmed/9913106
http://dx.doi.org/10.1002/1521-3978(200110)49:10/11<973::AID-PROP973>3.0.CO;2-B
http://dx.doi.org/10.1103/PhysRevLett.87.167904
http://www.ncbi.nlm.nih.gov/pubmed/11690246
http://dx.doi.org/10.1088/1367-2630/8/4/051
http://dx.doi.org/10.1103/PhysRevA.76.014305
http://dx.doi.org/10.1088/1367-2630/7/1/211
http://dx.doi.org/10.1103/PhysRevLett.96.050503
http://www.ncbi.nlm.nih.gov/pubmed/16486912
http://dx.doi.org/10.1103/PhysRevA.94.012303
http://dx.doi.org/10.1103/PhysRevLett.95.230502
http://www.ncbi.nlm.nih.gov/pubmed/16384285
http://dx.doi.org/10.1103/PhysRevA.67.052315
http://dx.doi.org/10.1103/PhysRevA.80.020101
http://dx.doi.org/10.1103/PhysRevA.74.030302
http://dx.doi.org/10.1103/PhysRevLett.95.243603
http://www.ncbi.nlm.nih.gov/pubmed/16384378
http://dx.doi.org/10.1126/science.1178683
http://www.ncbi.nlm.nih.gov/pubmed/19762598
http://dx.doi.org/10.1103/PhysRevA.78.010304
http://dx.doi.org/10.1038/nphys2492
http://dx.doi.org/10.1103/PhysRevLett.120.053601
http://www.ncbi.nlm.nih.gov/pubmed/29481173
http://dx.doi.org/10.1073/pnas.0908329106
http://www.ncbi.nlm.nih.gov/pubmed/19995963
http://dx.doi.org/10.1038/ncomms1988
http://www.ncbi.nlm.nih.gov/pubmed/22871804
http://dx.doi.org/10.1088/1367-2630/15/7/073032


Entropy 2018, 20, 454 34 of 36

133. Moreau, P.A.; Devaux, F.; Lantz, E. Einstein-Podolsky-Rosen Paradox in Twin Images. Phys. Rev. Lett. 2014,
113, 160401. [CrossRef] [PubMed]

134. Tentrup, T.B.H.; Hummel, T.; Wolterink, T.A.W.; Uppu, R.; Mosk, A.P.; Pinkse, P.W.H. Transmitting more
than 10 bit with a single photon. Opt. Express 2017, 25, 2826–2833. [CrossRef] [PubMed]

135. Warburton, R.E.; Izdebski, F.; Reimer, C.; Leach, J.; Ireland, D.G.; Padgett, M.; Buller, G.S. Single-photon
position to time multiplexing using a fiber array. Opt. Express 2011, 19, 2670–2675. [CrossRef] [PubMed]

136. Leach, J.; Warburton, R.E.; Ireland, D.G.; Izdebski, F.; Barnett, S.M.; Yao, A.M.; Buller, G.S.; Padgett, M.J.
Quantum correlations in position, momentum, and intermediate bases for a full optical field of view.
Phys. Rev. A 2012, 85, 013827. [CrossRef]
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