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Abstract

Background and Methodology: The aim of this study was to establish a gene expression blueprint of pancreatic beta cells
conserved from rodents to humans and to evaluate its applicability to assess shifts in the beta cell differentiated state.
Genome-wide mRNA expression profiles of isolated beta cells were compared to those of a large panel of other tissue and
cell types, and transcripts with beta cell-abundant and -selective expression were identified. Iteration of this analysis in
mouse, rat and human tissues generated a panel of conserved beta cell biomarkers. This panel was then used to compare
isolated versus laser capture microdissected beta cells, monitor adaptations of the beta cell phenotype to fasting, and
retrieve possible conserved transcriptional regulators.

Principal Findings: A panel of 332 conserved beta cell biomarker genes was found to discriminate both isolated and laser
capture microdissected beta cells from all other examined cell types. Of all conserved beta cell-markers, 15% were strongly
beta cell-selective and functionally associated to hormone processing, 15% were shared with neuronal cells and
associated to regulated synaptic vesicle transport and 30% with immune plus gut mucosal tissues reflecting active protein
synthesis. Fasting specifically down-regulated the latter cluster, but preserved the neuronal and strongly beta cell-
selective traits, indicating preserved differentiated state. Analysis of consensus binding site enrichment indicated major
roles of CREB/ATF and various nutrient- or redox-regulated transcription factors in maintenance of differentiated beta cell
phenotype.

Conclusions: Conserved beta cell marker genes contain major gene clusters defined by their beta cell selectivity or by their
additional abundance in either neural cells or in immune plus gut mucosal cells. This panel can be used as a template to
identify changes in the differentiated state of beta cells.
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Introduction

In this study we tried to establish a blueprint of the pancreatic

beta cell transcriptome conserved from rodents to humans.

Identification of novel beta cell-selective biomarkers can have

several (pre)clinical applications. Beta cell-selectively expressed

genes are likely important for beta cell survival and specialized

functions and could yield novel targets for drugs that regulate

glucose-sensing and insulin synthetic capacity of the beta cell.

They could also serve as candidate biomarkers for diagnostic

purposes, e.g. beta cell surface proteins for in vivo imaging of beta

cell mass, or to find targets for assays that detect beta cell

biomarkers that are specifically discharged from dying beta cells in

analogy to GAD65 [1]. A comprehensive view on beta cell-

selective biomarkers can also guide the preclinical development of

novel types of transplantable beta cell grafts: to solve the current

shortage in donor beta cells, studies are undertaken to generate

functional beta cells through differentiation of stem cells or

reprogramming of developmentally related cell types [2]. These

lab-generated beta cell preparations need to be extensively

evaluated in the preclinical phase, to ensure that their gene and

protein expression profiles and functional properties closely

resemble primary beta cells.

In the present study we used Affymetrix oligonucleotide arrays

to record the transcriptome of freshly isolated highly FACS-

purified rat beta cells (.90% insulin+), freshly isolated mouse islets

and cultured human beta cells obtained from 10 donor organs and

FACS-enriched to 655% insulin-positivity. In each species we

compared these to a large panel of mRNA profiles of other

primary tissues or cell types, and selected transcripts with relatively

abundant expression in the beta cell preparations. To filter out

inevitable experimental noise associated with each of these

comparisons, we focused only on marker genes that had a beta

cell-selective and – abundant expression in the three model
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species. Notwithstanding the fact that there are proven differences

in beta cell function and gene expression between rodents and

man, our focus on evolutionary conserved features serves as

additional argument for likely biological significance of identified

beta cell biomarkers.

In a second part of the study, the experimental usefulness of the

resulting conserved beta cell marker genes was evaluated. First, the

panel was used to compare beta cell preparations obtained by cell

isolation or in situ laser capture microdissection. Second, the panel

was used to examine how beta cell differentiated states is

dynamically regulated by fasting. Third, two different bioinfor-

matics algorithms were used to identify likely conserved transcrip-

tional regulators in the conserved beta cell biomarkers. Finally, we

confirmed beta cell-selective expression of the corresponding

proteins using quantitative LC-MS/MS analysis of unfractionated

beta cell proteomes and immunohistochemistry on pancreatic

sections. Protein phosphatase 1, regulatory (inhibitor) subunit 1A

(PPP1RIA) came out as a novel beta cell marker with high molar

protein abundance and beta cell-restricted expression in the

pancreas.

Results

Selection of conserved beta cell marker genes
In each of the three examined species, we selected a set of 2500

transcripts with higher expression in beta cells than in other tissues

(from 20% to 100-fold higher). Intersects were sought with

common annotated genes (Fig. 1) and only transcripts with

conserved relative beta cell abundance were further analyzed. This

restriction lowers comprehensiveness (sensitivity), but increases

robustness (specificity) of the resulting 395 candidate beta cell

marker transcripts, which represent 16% (mouse) to 31% (human)

of initial input genes. We then removed transcripts that can be

attributed to the pancreatic non-beta cell types that contaminate

beta cell preparations. We used mRNA profiles of FACS-purified

rat islet endocrine non-beta cells to remove 46 transcripts that are

at least 1.5-fold higher in alpha than in beta cells (p,0.05, n = 3,

e.g. hormone-coding genes GLUC, PPY and SST). The human data

sets enabled removal of transcripts typical for exocrine duct (n = 5)

or acinar (n = 12) cells. As shown in Fig. S1, the contamination by

exocrine-associated genes is much lower in FACS-purified human

Figure 1. Selection algorithm of conserved beta cell marker genes. Beta cell preparations were compared to the indicated tissues in mouse,
rat and human and genes with conserved beta cell-abundant expression selected (Venn diagram intersect). The rat data set was used to discard 46
islet endocrine non-beta cell (mainly alpha cell) markers; the human data set enabled curation of 17 pancreatic exocrine (acinar and duct) markers.
Final set of conserved beta cell marker genes consists of 332 genes, represented by 419 (rat), 499 (mouse) or 503 (human) oligonucleotide probe sets.
doi:10.1371/journal.pone.0024134.g001

Beta Cell Genes Conserved from Rodents to Humans
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beta cells than in the whole islet-preparations. The resulting panel

of 332 genes with conserved beta cell-abundant expression (Table

S1, further referred to as beta cell marker genes) is represented by

419, 499 or 503 probe sets on the rat, mouse and human arrays

respectively.

Distribution of conserved beta cell marker genes over
three clusters with different tissue selectivity

The 332 beta cell marker genes were visualized for their natural

tissue tropism in the context of the Human Gene Atlas [3], a

public repository of mRNA expression profiles of human organs or

cell types. Beta cell-selectivity was independently confirmed for

most markers (Figure 2). The hierarchical cluster graph highlights

that most beta cell marker genes are also actively transcribed in

other cell or tissue types and few genes can be called beta cell-

specific. Combined however, our beta cell marker gene list clearly

discriminates beta cells from all other examined cell types: this is

graphically illustrated by the cluster tree in Figure 2 and its

associated principle component analysis (Fig. S2). In terms of their

overall tissue-selectivity, at least 60% of beta cell marker genes fall

into three main clusters; i.e. a neuroendocrine cluster (cluster A), a

beta cell cluster (cluster B) and a immune/gut enriched cluster

(cluster C) (Fig. 2).

Beta cell marker genes with high degree of beta cell-
selectivity

At least 15% of conserved beta marker genes (n = 48) show near

absolute beta cell-selectivity (beta cell selective cluster B in Fig. 2,

exemplary genes shown in Fig. 3 and Fig. S4). This cluster

contains established beta cell markers such as hormones (INS2

IAPP) and hormone processing enzymes (PCSK1, CPE), transcrip-

tion factors (NKX2-2, INSM1), metabolic enzymes (HADH, G6PC2,

PFKFB2) and secretogranin proteins. It also reveals novel beta cell

markers such as putative tumor suppressor ST18, phosphatase

regulator PPP1R1A, ketone body-metabolizing enzyme AACS and

several RAB/RAS GTPase-associated proteins (RRAGD, RAB2A,

GARNL4)., mRNA expression of these markers is 10 to 15-fold

higher in beta cells than in other tissues. The cluster is statistically

enriched (p,0.001) in ontologies of hormone processing, protein folding

and secretory granules (Fig. S4).

Beta cell marker genes sharing selectivity with neuronal
cells

At least 15% of beta cell marker genes (n = 47) are also

abundant in various brain regions (cluster A in Fig. 2, exemplary

genes shown in upper panel Fig. 3). Some have been previously

reported as beta cell markers (e.g. PTPRN2 alias IA-2b, DDIT3

and GLP1R); others were so far considered as brain-selective. This

cluster is enriched (p,0.001) in ontologies such as synaptic vesicle,

neurotransmitter transport and nervous system development. Examples of

genes involved in neuronal development or migration are

NEUROD, ROBO1, DCX and PAFAH1B1. Genes belonging to

this beta-cell cluster were found to be particularly transcribed in

the dopaminergic neurons of the globus pallidus (GP) and the

glutaminergic/GABAergic neurons of the subthalamic nucleus

(STN) (Fig. S3). An exemplary marker is dopa decarboxylase

(DCC), rate-limiting enzyme for biogenic amine synthesis, of which

the mRNA is 20-fold more abundant in beta cells than in whole

brain (Table 1).

Beta cell marker genes sharing selectivity with immune
and gut mucosa cells

Roughly 30% (n = 99) of beta cell marker genes appear also

actively transcribed in immune cells, and to a lesser extent in

Figure 2. Shared gene clusters between beta cells, neuronal cells and immune cells. The 503 human probe sets corresponding to the 332
conserved beta cell marker genes are visualized by hierarchical clustering in the Human Genome Atlas data set [3]. At least 15% of beta cell marker
genes show near absolute beta cell selectivity (beta cell selective cluster B). Beta cells also share an equally extensive cluster (15%) with various brain
regions (neuroendocrine cluster A), and an even larger cluster (30%) with immune and gut mucosal cells (gut/immunological cluster C). Statistical
enrichment analysis indicates that these clusters accentuate different functions proper to the specialized beta cell phenotype. Blue to red correspond
low to high relative expression, as shown in legend (bottom). Relevant genes of clusters A, B and C are shown in Fig. 3.
doi:10.1371/journal.pone.0024134.g002

Beta Cell Genes Conserved from Rodents to Humans
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cells of the gut mucosa (cluster C in Fig. 2, examples in Fig. 3).

Functionally these genes are enriched (p,0.001) in pathways

such as response to stress, small GTPase, protein folding and

endoplasmic reticulum, reflecting a role of many of these marker

genes in the synthesis and proper folding of secretory proteins in

the endoplasmic reticulum and Golgi. Compared to the other

two clusters, it shows a more moderate beta cell-selectivity with

only a 2 to 3-fold higher expression in beta cells than in other

tissues.

Quantitative real-time PCR confirmation of novel beta
cell markers

Beta cell selectivity of 27 marker genes – positive controls as well

as novel candidate markers from the three clusters – was verified

by qPCR in the rat model (Table 1). Use of geometric

normalization of marker mRNAs to 4 validated reference genes

[4] allows reliable quantification of mRNA abundances both

within and between different cell types. The selected beta cell

marker genes show large variations in their mRNA levels, with the

Figure 3. Examples of beta cell marker genes belonging to neuroendocrine cluster A, beta cell selective cluster B and beta-immune
cluster C. Average fold change (AvFC) indicates the relative abundance of a given mRNA in the beta cell as compared to the other tested tissues in
that species, while lower rank value reflects higher beta cell selectivity (see methods). From each tissue-tropic cluster (A, B, C from Fig. 2), beta cell
marker genes with, calculated for the 3 species, an averaged avFC score $4, are shown. Relative beta cell abundance (and selectivity) decreases from
cluster B over cluster A to cluster C, and consequently this is reflected in number of retained exemplary genes.
doi:10.1371/journal.pone.0024134.g003
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most abundant mRNAs INS2 and IAPP respectively 105 and

56103 more abundant than the least abundant one, that of

transcription factor NKX2.2. Of note, none of the genes with the

exception of IAPP shows a truly beta cell-selective expression, since

low hybridization signals were detected in other tissues, notably

brain and gut. The strongest novel markers are ST18 – with

undetectable expression in all other cell types except brain - and

DCX, PPP1R1A and FOSB – which are detected in other tissues but

at much lower levels than in beta cells. Other markers show

abundant expression in islet endocrine cells with weak or no

selectivity towards either beta or alpha cell lineage, such as GCK,

PTPRN (IA2) and SCG5.

Figure 4. Conserved beta cell marker genes in isolated versus laser capture microdissected human beta cells. Panel A shows mRNA
expression signal on HG133A chip of 13 established pancreatic exocrine (acinar) genes, in freshly isolated human islets (islets, red bars, n = 3), laser
capture microdissected beta cells (LCM, green bars, n = 3) and 2–3 w cultured beta cells that were subsequently FACS-enriched (beta cells, blue bars,
n = 3). * p,0.05 versus LCM. Panel B shows relative mRNA levels established beta cell-specific genes in cultured beta (blue), fresh islets (red) and LCM-
beta cells (green). Table shows fold change (LCB, lower confidence bound) and P values of versus LCM-beta.
doi:10.1371/journal.pone.0024134.g004
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Conserved beta cell markers obtained by analysis of
isolated beta cells also mark beta cells obtained by laser
capture microdissection

The panel of conserved beta cell markers was obtained by study

of isolated beta cell preparations. Cell isolation entails hypoxia,

mechanical stress, disruption of intercellular and cell-to-matrix

interactions and possibly contamination by exocrine pancreatic

cells. Since associated biases on gene expression are reportedly less

pronounced in beta cells obtained by laser capture microdissection

(LCM) [5], we compared mRNA profiles of cultured human beta

cells to published [5] profiles of freshly isolated islets and laser

capture microdissected (LCM)-beta cells. First we quantified

exocrine contamination. LCM-beta cells indeed showed 7-fold

lower mRNA expression of 13 acinar markers (p,0.05 for 9/13,

n = 3) than freshly isolated islets but they expressed on the average

13-fold higher levels (p,0.05 for 3/13, range 22.8 to 73-fold)

than cultured beta cells (Fig. 4a).

Next we looked at signs of isolation-associated cell stress and

found no statistical enrichment in cultured beta cells of clusters

involved in HIF alpha signaling, TNF signaling or MAPK/ERK

signaling as reported for freshly isolated islets [5]. Cultured beta

cells did show however a significant (p,0.001) activation of genes

involved in unfolded protein binding, but this was accompanied by

significant (p,0.001) up-regulation of clusters with role in mRNA

splicing in the spliceosome, ribosomal subunits, translation initiation, protein

transport, ER to Golgi transport and vesicle-mediated secretion (Table S2),

reflecting concerted activation of the protein synthetic machinery

rather than unfolded protein response due to cell stress. This

associated with higher expression of genes coding for mitochon-

drial metabolic enzymes (Table S2).

Third, we compared isolated and LCM-beta cells for mRNA

level of classical beta cell marker genes and observed that most

established beta cell markers were more abundantly expressed in

cultured beta cells, with mRNAs of NEUROD1, NKX6.1, PCSK1,

HADH, G6PC2 and GLP1R 1.5 to 4-fold up (p,0.05, Fig. 4B). For

ATF3 differences were more dramatic, with 640-fold (p,0.03)

higher levels both in isolated islets and beta cells.

Finally, when compared to other human tissues, our panel of

conserved beta cell marker genes proved also abundantly

expressed in LCM beta cells (not shown), and consequently this

gene panel could equally well discern LCM and cultured beta cells

from all other tissue types, as shown in PCA graph in Fig. S2.

Use of conserved beta cell marker genes to identify
transcription factors important for maintenance of beta
cell differentiated state

Next we used the conserved biomarkers to identify correspond-

ing conserved transcriptional regulators. Two complementary

algorithms were used for identification of statistically overrepre-

sented transcription factor binding sites. First, the DiRE algorithm

[6] was used to scan for cis-regulatory motifs in conserved

promoter regions. This analysis was run on the full panel of beta

cell marker genes as well as on the three main clusters in terms of

tissue-tropism (Table S3). In a fully complementary strategy,

candidate promoter regions were searched for conserved enrich-

ment using a matrix-scan approach [7] (Table S4, Fig. 5). Motifs

Figure 5. In rat beta cells fasting down-regulates cluster C genes with role in ER function and protein processing. Heat map in Fig. 5A
shows the complete set of species-conserved beta cell markers, visualized in FACS-purified beta cells freshly isolated from control (FED) and 24-h
fasted (FAST) rats; one third is reproducibly $1.25-times down-regulated (blue window) most of which statistically significantly (21% of all beta
markers, p,0.05, n = 3). Table in panel B shows the 42 beta markers that are at least 1.5-fold down-regulated (p,0.05) by fasting: 50% of the fasting-
suppressed beta cell marker genes belong to cluster C, also functionally enriched in pathways of protein folding and processing through ER/Golgi.
doi:10.1371/journal.pone.0024134.g005
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identified by both strategies (Fig. 5, Venn diagram intersect)

include members of the Creb/Atf (Creb, Atf6, Atf3), Pax (Pax4 or

Pax6) and Fox families, established beta cell transcription factors

Nkx2-2 and Pdx1 and several transcriptional regulators with likely

role in nutrient-redox regulated gene expression: upstream factors

(Usf), Arnt/HIF, yingyang 1 (YY1), Xbp1, Oct1, Nfat and Stra13.

Other overrepresented binding sites are those for transcription

factors mostly studied in relation to blood (Tal1, Meis, Hoxa9,

Gfi1b) or muscle (Myogenin, Tbx5, Rfx1, Mrf2) homeostasis. Of

these, Atf3, Pdx1 and Nkx2.2 are also beta cell-abundant at the

mRNA level. This is also the case for Foxa2, Nkx6.1, MyoD1, c-

Jun and FosB, which are only identified by the DiRE algorithm.

Use of conserved beta cell marker genes to evaluate
effect of fasting on beta cell differentiated state and
functional phenotype

Short periods of fasting are thought to mediate the beta cells’

competence for insulin synthesis and secretion [8]. We examined

whether it influenced their typical mRNA expression. After 24 h

of fasting, a 1.5 fold change was detected in 1.5% of all assayed

transcripts (p,0.05), with 95% of altered genes (430 of 452) being

down-regulated (Fig. 6A). Suppression was more marked for the

beta cell marker genes of which 12% were 1.5-fold suppressed (42

transcripts, Fig. 6B). Of these 42 transcripts, 21 expressed genes of

endoplasmic reticulum (ER), ER to Golgi transport, protein folding and

secretory vesicle-mediated transport, i.e. the pathways of protein synthesis

and transport. These genes mostly belonged to cluster C which

shared genes with immune and gut mucosa cells (Fig. 2). In

contrast few changes occurred in the two other clusters: 4 genes

down-regulated in the beta cell selective cluster, and only 1 in the

cluster sharing selectivity with neural cells.

Confirmation of conserved beta cell marker genes at the
protein level

We previously reported a quantitative LC-MS proteome

analysis of FACS-purified rat beta and alpha cells, in comparison

to liver and brain tissues [9]. Analysis of unfractionated cell

proteomes is biased towards the proteins with higher molar

abundance: only 38 proteins coded by the set of 332 beta cell

marker genes (11%) were detected (Table 2). Of these, 12 proteins

(32%) were uniquely detected in the beta cells, at relatively high

molar levels (13 to 105 times above the MS quantification limit).

An additional 9 markers (24%) appeared islet-restricted. 17 (45%)

proteins were also detected in liver and/or brain tissues but

typically at lower abundances than in beta cells. Overall 74% of

detected proteins indeed showed highest abundance in beta cells.

Those that did not were typically shared by alpha and beta cells

with a molar predilection for the alpha cell (e.g. the secretogranins

2, 3 and 5).

Protein phosphatase 1, regulatory (inhibitor) subunit 1A

(PPP1RIA) came out as a novel marker with high molar protein

abundance specifically in beta cells. Molar Ppp1r1a abundance

was similar to that of the established beta cell marker proprotein

convertase subtilisin/kexin type 1 (PCSK1) and 30% of islet

amyloid polypeptide (IAPP) abundance (Table 2). In situ analysis

in rat pancreas confirmed a restricted expression in insulin+ cells

with no protein detected in glucagon+ cells or surrounding

exocrine tissue (Fig. 7 A–B). In situ analysis in human pancreas

also confirmed beta cell-selective expression of protein tyrosine

phosphatase, receptor type, N (PTPRN) alias IA2 (Fig. 7C). Both

markers display an equal beta cell-selectivity as the beta-oxidation

enzyme L-3-hydroxyacyl-CoA dehydrogenase (HADH), shown in

human pancreatic sections in Fig. 7D.

Discussion

Novelty of our beta cell biomarker selection approach
Previous studies have generated gene lists characteristic for

mouse [10], rat [11–13] or human [5,12–16] pancreatic islets,

which represent a resource for novel beta cell biomarkers. Our

study advances these efforts for three reasons.

First, rather than using a rigid score of mRNA expression as

absent/present, a more permissive algorithm was used that

highlights mRNAs with a higher averaged abundance in beta

cells as compared to other tissues and cell types. It zooms in on

genes that are apparently actively transcribed in beta cells without

excluding genes that also have a high expression in other

specialized cells. Indeed, virtually all beta cell markers showed a

varying degree of cell type ‘tropism’ or ‘selectivity’ and can rarely

be considered absolutely beta cell-specific.

Second, our combined data sets made it possible to control for

‘contaminating’ gene markers of other cell types present in

pancreas. Though it is theoretically not excluded that the gene

clusters shared with neuronal or immune/gut tissues arise partly

from contamination with exocrine cells, neurons, endothelial or

blood cells that are co-isolated along with the beta cells, this is

unlikely for several reasons: (i) beta cell marker genes were selected

for their higher expression in purified beta cell preparations –

particularly in the rat with FACS-purifications .90% insulin-

positivity – to whole, freshly frozen tissues. The latter are more

likely to contain blood vessels and blood cells, and also nerve fibers

and ganglia dispersed in the tissue parenchyma, since beta cell

Figure 6. Transcription factor binding sites overrepresented in
the conserved beta cell marker gene set. Using two complemen-
tary search algorithms (Matrix Scan and DiRE), upstream promoter
regions were scanned for statistical enrichment of TRANSFAC-annotat-
ed transcription factor binding consensus sites. Venn diagrams indicate
number of identified matrices by each program, and with 30 commonly
identified matrices indicated in gray field. See Tables S3 and S4.
doi:10.1371/journal.pone.0024134.g006
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FACS-sorting according to cellular flavin adenine dinucleotide

content not only discriminates islet beta cells from islet endocrine

non-beta-cells but also from other cell types such as fibroblasts,

leukocytes, and exocrine cells [17]. (ii) The human beta cells were

FACS-isolated from endocrine aggregates after sustained (2–3

weeks) culture, a condition that does not well support survival of

differentiated endothelial, blood and neuronal cells unless specific

growth factors are supplemented. (iii) the gene clusters shared with

neuroendocrine and immune/gut tissues essentially reflect the

secretory and protein biosynthetic specializations, respectively, and

these make sense in the context of the beta cell. (iv) The pancreatic

acinar cell is considered as the cell type with the most specialized

gene expression in the human body [18], so even moderate

contaminations can have strong impact. Indeed, in one reported

list of human islet-specific genes [12] more than half of the top-10

genes belonged to exocrine cells. The FACS-enrichment of human

beta cells to 655% insulin positivity needs improvement but is

currently state-of-the-art. But even with ,1% exocrine contam-

ination as in the rat model, some impact by exocrine contami-

nation on resulting beta cell marker gene list cannot be fully

excluded. Therefore we used the comparison of whole pancreatic

tissue to isolated beta cells in the human data to eliminate

pancreatic exocrine marker genes, mainly of the acinar cell.

Moreover, cultured human beta cells contained much less

exocrine contamination than freshly isolated islets, but also clearly

less than laser microdissected human beta cells.

Third, our focus only on genes that are beta cell abundant in rat,

mouse and human filters out experimental noise due to variability

coming from differences in beta cell isolation techniques and age

differences (standardized adolescent 10-week old rodents versus

47610 adult human beta cells). An added advantage is that the

evolutionary conservation from rodents to man can be seen as an

indirect index for biological significance.

Our approach also has downsides. Not all relevant regulators in

beta cell physiology are conserved: examples are NADP-

dependent malic enzyme (ME1) that is important for glucose-

stimulated insulin secretion in rat and human but not mouse [19],

or cyclin D2, beta cell-abundant in rodents but not humans [20].

Also, expected conserved markers were not identified because of

technical limitations of the array platforms: e.g. SLC30A8 [16] or

FXYD2 [13] were not retrieved since probes for these genes were

not present on the oligonucleotide arrays.

Limits to the concept of beta cell specificity: many shared
traits with other cell types

As first validation, beta cell marker genes were examined for

their natural tissue tropism, by visualization in the independent

Human Gene Atlas data set [3]; this confirmed the power of our

combined marker gene list to discriminate the beta cell from any

other assayed tissue type. Yet at the level of individual marker genes,

both microarray and qPCR findings underline the notion that few

if any genes can be confidently called absolutely beta cell-specific.

Hydrolysis probes-based qPCR detects insulin 2 mRNA also in

brain and intestine albeit at respectively 3 and 5 orders of

magnitude lower than in pancreas. This is not novel since insulin

expression was previously observed in brain, thymus, liver and

bone marrow [21]. ST18 mRNA proved one of the most beta cell-

selective transcripts but was also qPCR-detected in brain, and was

previously observed in the human breast ductal cells [22]. These

low expression-signals could reflect illegitimate (ectopic) expression of

cell type-selective genes [23]. It could alternatively indicate

abundant expression only in one specific cell type within a tissue,

e.g. in small populations of glucose-sensing neurons or endocrine

cells in central nervous system [24,25] and gut [26–28]. LatterT
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beta cell-like cells express glucokinase and K+
ATP-dependent

membrane channels; gut K-cells can even be engineered to

achieve regulated insulin secretion [29]. Direct comparison of such

cell populations after their purification could disclose even higher

similarity to beta cells, and further limit the notion of beta cell-

specificity. We therefore prefer to use the term of cell type selectivity

rather than specificity, and degree of selectivity likely varies

depending of the number of corresponding mRNA or protein

copies/cell.

Among the conserved beta cell marker genes only 15% show

a near absolute beta cell-selectivity. This gene cluster contains

known beta cell markers (e.g. IAPP, INS1/2, PCSK1, INSM1,

HADH), as well as novel ones, such as (i) ST18, a nuclear

protein with tumor suppressor activity [22]; (ii) Protein

phosphatase 1, regulatory (inhibitor) subunit 1A (PPP1R1A),

known as regulator of muscle activity [30] found to be more

strongly expressed in beta cells where its target protein, protein

phosphatase 1, regulates insulin synthesis. PPP1R1A was shown

here to associate a very high molar abundance in beta cells – as

judged by quantitative LC-MS proteome analysis - to a clear

beta cell-selectivity in rat pancreas which calls for further

exploration of its functional role in beta cells; (iii) FOSB gene

products regulate neuronal plasticity [31] but are 20-times more

abundant in beta cells than in brain and (iv) WNT4, which was

recently linked to the repressed state of canonical Wnt signaling

in beta cells [32].

At least another 15% of the conserved beta cell markers are

clearly shared with neurons. Beta cells are known to express

neuronal traits. They make synaptic-like vesicles containing

glutamate decarboxylase and produce GABA [27,33–36]. Beta cell

development is guided by transcription factors that also control

formation of dopaminergic neurons [35,37–39] e.g. NeuroD1,

Nkx6-1, Foxa2, neurogenins [40]. Also, beta cell progenitors can be

epigenetically reprogrammed to a neuronal phenotype by polycomb

target derepression via loss of trimethylated histone H3K27 [41],

possibly by shutting down activity of neuron-restrictive silencer

REST [33].The presently reported beta-neuron cluster represents,

to our knowledge, the most comprehensive list of neuronal genes in

beta cells. A third cluster of beta cell marker genes was functionally

enriched in activities of protein folding and processing in the

endoplasmic reticulum. These genes were also abundant in immune

and gut mucosal cells. The similarity in gene expression between gut

and immune cells may be related to the presence of gastrointestinal-

associated lymphoid cells, which account for 10% of all gut cells

[42]. This cluster does not contain white blood cell-selective clusters

of differentiation nor other immune-selective transcripts, arguing

against contamination as obvious cause for expression similarity.

The conserved beta cell biomarker panel also marks beta
cells obtained in situ by laser capture microdissection

Our conserved beta cell marker genes were selected on beta cell

preparations that underwent isolation and in the human beta cells

Figure 7. In situ analysis of beta cell-selective expression of PPP1R1A, PTPRN and HADH proteins. Panels A and B respectively show
abundant expression of PPP1R1A protein in insulin+ cells and absence in glucagon+ cells in islets from 10 w old rats. Beta cell-selective expression of
PTPRN and HADH proteins in human beta cells is illustrated in panels C and D respectively. All images are representative of at least 3 different organs
with at least 3 sections analyzed per pancreas.
doi:10.1371/journal.pone.0024134.g007
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also a 2–3 week in vitro culture followed by FACS-enrichment.

Since cell isolation can entail a combined mechanical and hypoxic

cell stress, we verified expression level of conserved beta cell

marker genes in human beta cells obtained by laser capture

microdissection, which presumably closely approximates in vivo

expression. We cannot rule out some bias of cell isolation since we

found higher mRNA levels of stress response transcription factor

ATF3 [43] in isolated as compared to laser capture-beta cells; this

likely reflects active ATF3 since we also found statistical

enrichment of its binding sites in the conserved beta cell marker

genes. Yet, overall we found that the conserved beta cell marker

gene panel equally discerns laser capture and isolated beta cells

from all other tissues (Fig. S2) and that the expression levels of

established beta cell marker genes were equal or higher in the

isolated, cultured human beta cells. While cultured beta cells

indeed show statistical enrichment of genes involved in heat shock

and protein folding, they also showed concerted activation of gene

clusters with role in mRNA processing, translation factor activity

and protein processing for secretion, reflecting their higher activity

of regulated protein synthesis, which represents the beta cell’s core

function.

The beta cell biomarker panel is a practical tool to
monitor phenotypic adaptations of the beta cell

The beta cell acutely and chronically adapt to nutrient

stimulations [8,44]. We used the conserved beta cell marker

gene panel as practical tool to see how 24 h fasting impacts on

beta cell differentiated state. While genome-wide comparison

showed that fasting suppresses ,2% of coding genes, it affected

more than 10% of the beta cell marker genes. Interestingly, no

changes occurred in the cluster of beta cell selective genes nor in

that of beta-neuron genes indicating that short-term fasting

preserved the neuroendocrine differentiation. On the other hand,

suppression was clear in the cluster of genes with a role in protein

processing and synthesis, and which thus appear induced by

feeding.

From conserved mRNA expression to conserved
transcriptional regulators

Finally we applied the conserved beta cell marker genes to

partly map the transcriptional network that maintains the

specialized state of nutrient-sensing beta cells. Two entirely

different but complementary searches for conserved transcription

factor consensus motifs showed a substantial overlap, and clearly

highlighted members of the activating transcription factor Atf/

Creb family. Atf2, Atf3 and Atf4 are known regulators of beta cell

function [43,45] and their mRNA appears also abundantly

expressed in these cells. Overrepresentation of binding sites for

several other nutrient-regulated transcription factors (Arnt/Hif,

upstream factors, Oct1, Nfat and Stra13) also fit with their

previously described roles in beta cellular glucose sensing. The

enrichment of Tal1 and Meis1 binding sites fits with the reported

similarities between beta and immune cells since these transcrip-

tion factors were mainly studied as regulator of white blood cell

function. Equally surprising is the enrichment of binding sites for

factors involved in muscle/heart formation (Myogenin, Myod1,

Rfx1, Mrf2). Perhaps the latter is explained by the abundance of

contractile intermediary filaments in beta cells as part of their

secretory vesicle trafficking machinery.

In conclusion, the proposed set of conserved beta cell marker

genes is a practical tool to interpret holistic changes in gene

expression of rodent and human beta cells. It reveals novel beta

cell selective transcripts with potential as physiological regulator.

The gene set also underlines the notion that few if any genes are

absolutely beta cells specific, and highlights functional similarities

of the beta cells with neuronal and immune/gut cells.

Materials and Methods

Cell and tissue preparations
Human pancreas donor organs were procured by European

hospitals affiliated with the Eurotransplant Foundation (Leiden,

the Netherlands) and processed by the Beta-Cell Bank of the

Center for Beta-Cell Therapy in Diabetes. Use of human cells

derived from donor organs was approved by the Medical ethical

committee of the Universitair Ziekenhuis Brussel (UZB), according

to Belgian laws.

Rodents were housed according to the Belgian animal welfare

regulations. Animal killing was kept to the strict minimum, after

proper CO2-anesthesia. Use of animal cells and tissues was

approved by the Commissie Proefdiergebruik (CPG) of the Vrije

Universiteit Brussel (VUB), for a project entitled ‘‘in vitro and in

vivo markers for beta cell death and function’’ (CPG approval ID

07-274-3).

Rat beta (9263% insulin+) and alpha (6869% glucagon+ with

,10% insulin+) cells were FACS-purified from 10-weeks old

Wistar rats as described [46]. Other rat tissues (total brain,

pituitary, M. Soleus skeletal muscle, white adipose tissue and liver

for microarray; for qPCR extended panel as shown in Table 1)

were snap frozen and stored in liquid nitrogen. Mouse islets were

in house isolated from C57/BL6 mice (CERJ, France); mouse

tissue CEL files were obtained from Gene Expression Omnibus

GSE1986. Human beta cells (55613% insulin+ with 1368%

glucagon+ cells and 2167% non-granulated cells) and pancreatic

duct cells (8567% CK+ with 461% insulin+ and 664%

glucagon+) were FACS-sorted from 2–3 w cultured fractions

[47]. We hybridized 3 different pools of 6 mg RNA obtained from

10 human organs in total: pool 1 (45% insulin+, from n = 3 donor

organs), pool 2 (65% ins+, from n = 3 donor organs) and pool 3

(55% insulin+, from n = 4 donor organs). Average donor age and

BMI were 47610 yrs and 2664, respectively. RNA pools from 13

other human tissues were provided by Finn C. Nielsen

(Rigshospitalet, Copenhagen, Denmark).

Gene chip hybridization
Total RNA was isolated using TRIzol Reagent (Invitrogen,

Carlsbad, CA, USA.) and quality-controlled by 2100 Bioanalyzer

(Agilent, Santa Clara, CA, USA), taking RIN.8. One mg RNA

was used to synthesize double-stranded cDNA with the Super-

script Choice system (Invitrogen Corporation, Carlsbad, CA,

USA) using an oligo(dT) primer containing a T7 RNA polymerase

promoter (GenSet, Paris, France) and cDNA was in vitro

transcribed to synthesize biotin-labeled antisense cRNA (BioArray

high yield RNA transcript labelling kit; Enzo Diagnostics,

Farmingdale, NY, USA). After fragmentation at 94uC for

35 min in 40 mM Tris, 30 mM magnesium acetate, 10 mM

potassium acetate, labeled cRNA was hybridized for 16 h on

Affymetrix (Santa Clara, CA, USA) expression arrays. Arrays were

washed and stained with phycoerythrin-streptavidin (SAPE) in

Affymetrix Fluidics Station 400 and scanned in the Affymetrix

GeneArray 2500 scanner. For human beta and duct cells, 3

respectively 2 independent isolates, each obtained from 3–4 non-

selected donor pancreases, were hybridized on Affymetrix

HG133A. Three independent isolates of rat tissues or cells were

hybridized on Affymetrix RG230A. Three independent isolates of

mouse islets were compared to samples from Gene Expression

Omnibus GSE1986 series. CEL files of freshly isolated human

Beta Cell Genes Conserved from Rodents to Humans
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islets (n = 3) and laser capture beta cells (n = 3) were obtained from

reference [5], and normalized in one group with our human beta

cell CEL files to array with median intensity. Raw data are

publicly available through Gene Expression Omnibus (human

data GSE30803).

Gene chip data analysis Scanned arrays were analyzed with

dChip model-based expression analysis [48] after normalization

to array with median intensity (default) and using background

correction for mismatch hybridization. Excel software was used

to calculate the relative transcript expression in beta cell

preparations versus the other tissues, a ratio further referred to

as ‘fold change’. Within each species, the average of all these

ratios calculated for all assayed tissues is called ‘average fold change’

(avFC). We also calculated a ‘beta cell rank’ to reflect beta cell

selectivity: rank 1, 2, 3,…denotes respectively that the transcript

showed the highest, 2nd highest, 3rd highest expression in beta

cells as compared to all other tissues. Selection of conserved beta

cell marker genes is described in Results section. The final set of

beta cell marker genes was independently validated in the

Human Gene Atlas [3], a freely available data set (Gene

Expression Omnibus series GSE1133) comparing duplicate

hybridizations of RNA pools from 79 human primary tissues

and cell types, and further supplemented by our beta and duct

cell samples and previously reported CEL files of human islets

[49]. dChip was also used for hierarchical clustering (correla-

tion/centroid mode by cluster tightness) and gene ontology

enrichment. Gene markers are referred to by their official gene

symbol, in capitalized italic font.

Bioinformatics enrichment analysis of cis-regulatory
motifs in the promoters of beta cell marker genes

We used the whole collection of TRANSFAC matrices (442

matrices for human, 392 for mouse and 243 for rat). Using

retrieve-ensembl-seq [50], promoter sequences were retrieved

over 2,000 bp upstream the transcription start site, masking the

coding sequences of upstream genes; in a separate file the first

intron of each gene (median length = 3,845 bp) was collected.

Repeats were masked in both promoter and intron sequences.

Site enrichment analysis. Enrichment analysis was led with the

program matrix-scan [7], which automatically estimates the

enrichment of sites for a given motif in a given input sequence

for all possible matrix weight score thresholds. The weight score

indicates the similarity between a sequence and the motif, as

defined as by Hertz and Stormo [51]. For each motif, matrix-

scan computes the number of hits in the input sequences above

each possible weight score threshold, and compares it with the

number of hits expected by chance, according to the background

model. The level of the over-representation is estimated with the

binomial P-value [52,53], which is converted to a significance

score defined as sig = 2log10 (P val). The program returns the

optimal matrix score, i.e. the weight score associated to the

minimal P-value. The background model was estimated from the

input sequences, as a Markov model of order 1. The first-order

model enables to account for dependencies between adjacent

residues, which is especially important to model the general

rarity of the CpG dinucleotide in vertebrate promoters. Negative

control As negative control, we permuted randomly the columns

of the TRANSFAC matrices, and applied the same procedure as

with the original matrices. The main interest of that type of

control is that it preserves the residue composition and the

information content while removing the actual motif. As

complementary approach, DiRE (http://dire.dcode.org/) was

used using default settings [6].

Validation of relative beta cell abundant mRNAs by
quantitative real-time PCR using hydrolysis probes

Hydrolysis probes were obtained from Applied Biosystemes

(TaqMan MGB, assays’ IDs available on request) using 4 reference

genes (beta-actin, BACT; cyclophilin A/peptidyl prolyl isomerase

A, PPIA, ubiquitin C, UBC and proteasome 26S subunit, ATPase

5, PSMC5) for normalization along the GEOnorm principle [4].

Validation of beta cell-selective protein expression by
quantitative label-free LC-MS and immunohistochemistry

The proteomes of unfractionated rat liver, brain and FACS-

purified islet alpha and beta cells were previously quantified using

label-free alternate-scanning LC-MS [9]. Selected markers were in

situ confirmed 10w-old male Wistar rat and/or human pancreas.

Primary antibodies were rabbit anti-human PPP1R1A (1:1000),

chicken anti-human PTPRN (1:500) and chicken anti-human

HADH (1:1000) all from Genway (San Diego, CA, USA.

PPP1R1A staining worked best on paraffin sections, IA2 and

HADH staining best on tissue fragments fixed for 30 min in 4%

formaldehyde followed by overnight incubation in 30% sucrose

prior to snap freezing in liquid nitrogen and cryosectioning. Non-

specific staining was blocked with 10% donkey serum in PBS,

followed by overnight incubation at 4uC with primary antibodies,

60 min with secondary antibodies and addition of bisbenzimide

(Hoechst 33342, Sigma). Secondary antibodies (dylight 488 for

markers, dylight 649 for insulin and glucagon) were from Jackson

Immunoresearch Laboratories (West Grove, PA, USA).

Statistical analysis
Data are presented as arithmetic or geometric means 6 SD or

SE of n independent experiments; statistics used by dChip, DiRE)

and Matrix Scan outlined above or in original publications.

Supporting Information

Figure S1 View on exocrine contamination and its
removal from our beta cell marker gene list. Fig. S1A

shows a hierarchical clustering of 526 probe sets corresponding to

human genes with species-conserved relative beta cell abundant

expression, including 17 exocrine contaminants (cluster marked in

blue) that uniquely expressed in pancreatic samples with strongest

expression in total pancreas.islets.FACS-sorted beta cells. Bar

graphs in Fig. S1B highlight the individual genes in this cluster;

most correspond to digestive enzymes, and are markers for

exocrine acinar cells. Note that cultured, FACS-purified human

beta cell preparations used in our study show minimal contam-

ination with exocrine markers as compared to freshly isolated

whole human islets. Expression signal in total pancreas and whole

islets are comparable; note that this probably represents an artifact

of the oligonucleotide array technique: due to probe saturation by

highly abundant mRNAs, expression signal is no longer linearly

related to actual mRNA concentration.

(TIF)

Figure S2 Beta cell marker genes discriminate beta
cells from any other cell type in the body. Fig. S2 shows a

2-dimensional principle component analysis (PCA) of the 332

species-conserved mRNAs (n = 503 probe sets) with relative beta

cell abundant expression in the tissue mRNA profiles of the

human GSE1133 data set, containing duplicate hybridizations of

RNA pools obtained from human tissues or cells [3]. This data set

was supplemented by Affymetrix hybridizations of FACS-enriched

cultured human beta cells (obtained from Beta Cell Bank, Brussels,

Belgium, data point 1, n = 3 hybridizations on cells from 10

Beta Cell Genes Conserved from Rodents to Humans
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donors) and freshly isolated human islets (data point 2) and laser

capture microdissected human beta cells (data point 3) – the latter

two preps representing n = 3 hybridizations each from one donor,

and previously published by Marselli L. et al. [5] from Joslin

Diabetes Center, Harvard, USA. The PCA illustrates that the

conserved beta marker genes can discriminate beta cell from all

other tissues in a data set independent from the one used to

compile it; it also shows that the biomarkers can equally

discriminate isolated and laser capture beta cells. X- and Y-axes

of the PCA represent respectively the major and minor

components of variation.

(TIF)

Figure S3 View on brain region-tropism of shared
neuron-beta cell marker genes. Bar graphs show relative

mRNA expression signal (human HG133A array), in the human beta

cells as compared to the indicated brain region, of 15 beta cell marker

genes that are also abundantly expressed in the human brain (mean of

2–3 hybridizations). Left panel shows these data for 15 shared beta

cell-neuron marker genes, while right panel shows the median ratio

for a given brain region. Selected beta cell marker genes reach highest

levels in globus pallidus and nucleus subthalamicus.

(TIF)

Figure S4 Focus on gene cluster with shared relative
abundant expression in gut, hematological and beta
cells as evidenced by hierarchical cluster graph from
Figure 1. Associated table shows gene symbols and names,

accession number and for each species the associated avFC and

rank scores. Table on left panel shows functional pathways that are

statistically overrepresented in this cluster, using dChip gene

ontology enrichment (p,0.05).

(TIF)

Table S1 332 genes with species-conserved relative
abundant expression in beta cells. Table S1 shows 419,

499 and 503 probe sets on respectively rat (RG230A, blue), mouse

(MG430.20, green) and human (HG133A, red) Affymetrix

microarrays. These correspond to 332 genes, since Affymetrix

chips associate multiple probe sets to the same genes. In 2nd

column the genes belonging to cluster A (neuroendocrine), B (beta

cell-selective) or C (gut/immune) of Fig. 2 are indicated. Table also

shows for each species probe set IDs, Accession/Locuslink ID,

average fold change and beta score ranging from minus to plus 6

in rat, 14 in human and 17 in mouse. Note: for user-friendly

display and to allow direct comparison of between homologous

probe sets of different species, some probe sets are shown more

than once when number of probe sets per gene differs between

species, so that all rows contain values and can easily be sorted.

(PDF)

Table S2 Statistically overrepresented functional gene
ontologies in cultured versus laser capture microdis-

sected human beta cells. 2736 probe sets were $1.5 fold

(LCB) up-regulated (p,0.05, n = 3) in cultured FACS-enriched

versus laser capture microdissected (LCM) human beta cells.

Table S2 shows the functional gene ontologies that are statistically

(p,0.001) overrepresented in the cultured (blue) versus LCM

(green) beta cells. For comparison corresponding mRNA expres-

sion signals in freshly isolated islets (red) and statistics versus LCM

beta cells are also shown. Cultured FACS-enriched beta cells show

a concerted up-regulation of the transcriptional-protein synthetic

pathway, starting from mRNA splicing and processing, transla-

tional initiation and ribosomal RNA to protein folding in

endoplasmic reticulum and subsequent processing through Golgi

apparatus to the secretory vesicle.

(PDF)

Table S3 DiRE analysis of transcriptional regulators of
the beta cell phenotype. DiRE was used to retrieve

transcription factor binding sites (TFBs) that are statistically

overrepresented in beta cell marker genes versus random reference

gene sets (65000 genes) of the human (hg18), mouse (mm9) and

rat (rn4) genomes. Score indicate statistical importance (ranging

from 0 to 1). For each species, the analysis was run on the whole

set of beta cell markers (all), and also separately on the 3

outstanding clusters of neuro-endocrine genes (cluster A, see Fig. 3),

beta cell-selective genes (cluster B, see Fig. 2) and markers shared

with immune and gut cells (cluster C, see suppl. Fig. 3) genes. Data

(human analysis) are graphically presented in Fig. 6.

(PDF)

Table S4 Transcription factor consensus sites identi-
fied by 2 independent algorithms. DNA consensus sites

(TRANSFAC) with potential for transcription factor binding were

identified by DiRE and Matrix Scan; 27 consensus sites were

identified by both algorithms (ochre), 27 only by the more

stringent Matrix Scan (blue), and 77 only by DiRE (yellow).

Marked in bold are transcription factors with established role in

beta cell development and physiology Data are graphically

presented in Fig. 6.

(PDF)

Acknowledgments

The authors thank Elke De Vos, Cindy Raemdonck and Erik Quartier

(Diabetes Research Center, Brussels Free University – VUB) for dedicated

experimental support.

Author Contributions

Conceived and designed the experiments: GM DP. Performed the

experiments: GM LJ KH FN HH GS. Analyzed the data: GM LJ OS

JVH DP. Contributed reagents/materials/analysis tools: HH FN KH.

Wrote the paper: GM KH HH FN JVH FG DP.

References

1. Waldrop MA, Suckow AT, Marcovina SM, Chessler SD (2007) Release of

glutamate decarboxylase-65 into the circulation by injured pancreatic islet beta-

cells. Endocrinology 148: 4572–4578.

2. Borowiak M, Melton DA (2009) How to make beta cells? Curr Opin Cell Biol.

3. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, et al. (2004) A gene atlas of

the mouse and human protein-encoding transcriptomes. Proc Natl Acad

Sci U S A 101: 6062–6067.

4. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, et al. (2002)

Accurate normalization of real-time quantitative RT-PCR data by geometric

averaging of multiple internal control genes. Genome Biol 3: RESEARCH-

0034.

5. Marselli L, Thorne J, Ahn YB, Omer A, Sgroi DC, et al. (2008) Gene expression

of purified beta-cell tissue obtained from human pancreas with laser capture

microdissection. J Clin Endocrinol Metab 93: 1046–1053.

6. Sharan R, Ben-Hur A, Loots GG, Ovcharenko I (2004) CREME: Cis-Regulatory

Module Explorer for the human genome. Nucleic Acids Res 32: W253–W256.

7. Turatsinze JV, Thomas-Chollier M, Defrance M, van Helden J (2008) Using

RSAT to scan genome sequences for transcription factor binding sites and cis-

regulatory modules. Nat Protoc 3: 1578–1588.

8. Hinke SA, Hellemans K, Schuit FC (2004) Plasticity of the beta cell insulin

secretory competence: preparing the pancreatic beta cell for the next meal.

J Physiol 558: 369–380.

9. Martens GA, Jiang L, Verhaeghen K, Connolly JB, Geromanos SG, et al. (2010)

Protein markers for insulin-producing beta cells with higher glucose sensitivity.

PLoS ONE 5: e14214.

10. Juhl K, Sarkar SA, Wong R, Jensen J, Hutton JC (2008) The mouse pancreatic

endocrine cell transcriptome defined in the embryonic Ngn3 null mouse.

Diabetes.

Beta Cell Genes Conserved from Rodents to Humans

PLoS ONE | www.plosone.org 14 September 2011 | Volume 6 | Issue 9 | e24134



11. Schuit F, Flamez D, De Vos A, Pipeleers D (2002) Glucose-regulated gene

expression maintaining the glucose-responsive state of beta-cells. Diabetes 51

Suppl 3: S326–S332.

12. Kutlu B, Burdick D, Baxter D, Rasschaert J, Flamez D, et al. (2009) Detailed

transcriptome atlas of the pancreatic beta cell. BMC Med Genomics 2: 3.

13. Flamez D, Roland I, Berton A, Kutlu B, Dufrane D, et al. (2010) A genomic-

based approach identifies FXYD domain containing ion transport regulator 2

(FXYD2)gammaa as a pancreatic beta cell-specific biomarker. Diabetologia.

14. Maffei A, Liu Z, Witkowski P, Moschella F, Del Pozzo G, et al. (2004)

Identification of tissue-restricted transcripts in human islets. Endocrinology 145:

4513–4521.

15. Cras-Meneur C, Inoue H, Zhou Y, Ohsugi M, Bernal-Mizrachi E, et al. (2004)

An expression profile of human pancreatic islet mRNAs by Serial Analysis of

Gene Expression (SAGE). Diabetologia 47: 284–299.

16. Wenzlau JM, Juhl K, Yu L, Moua O, Sarkar SA, Gottlieb P, et al. (2007) The

cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1

diabetes. Proc Natl Acad Sci U S A 104: 17040–17045.

17. Pipeleers DG, Pipeleers-Marichal M, Hannaert JC, Berghmans M, in’t Veld PA,

et al. (1991) Transplantation of purified islet cells in diabetic rats. I.

Standardization of islet cell grafts. Diabetes 40: 908–919.

18. Martinez O, Reyes-Valdes MH (2008) Defining diversity, specialization, and

gene specificity in transcriptomes through information theory. Proc Natl Acad

Sci U S A 105: 9709–9714.

19. Macdonald MJ (2002) Differences between mouse and rat pancreatic islets:

succinate responsiveness, malic enzyme, and anaplerosis. Am J Physiol En-

docrinol Metab 283: 302–10.

20. Fiaschi-Taesch NM, Salim F, Kleinberger J, Troxell R, Cozar-Castellano I,

et al. (2010) Induction of human beta-cell proliferation and engraftment using a

single G1/S regulatory molecule, cdk6. Diabetes 59: 1926–1936.

21. Kojima H, Fujimiya M, Matsumura K, Nakahara T, Hara M, et al. (2004)

Extrapancreatic insulin-producing cells in multiple organs in diabetes. Proc Natl

Acad Sci U S A 101: 2458–2463.

22. Jandrig B, Seitz S, Hinzmann B, Arnold W, Micheel B, et al. (2004) ST18 is a

breast cancer tumor suppressor gene at human chromosome 8q11.2. Oncogene

23: 9295–9302.

23. Chelly J, Concordet JP, Kaplan JC, Kahn A (1989) Illegitimate transcription:

transcription of any gene in any cell type. Proc Natl Acad Sci U S A 86:

2617–2621.

24. Parton LE, Ye CP, Coppari R, Enriori PJ, Choi B, et al. (2007) Glucose sensing

by POMC neurons regulates glucose homeostasis and is impaired in obesity.

Nature 449: 228–232.

25. Zelent D, Golson ML, Koeberlein B, Quintens R, Van Lommel L, et al. (2006)

A glucose sensor role for glucokinase in anterior pituitary cells. Diabetes 55:

1923–1929.

26. Schuit FC, Huypens P, Heimberg H, Pipeleers DG (2001) Glucose sensing in

pancreatic beta-cells: a model for the study of other glucose-regulated cells in

gut, pancreas, and hypothalamus. Diabetes 50: 1–11.

27. Liu M, Seino S, Kirchgessner AL (1999) Identification and characterization of

glucoresponsive neurons in the enteric nervous system. J Neurosci 19:

10305–10317.

28. Lee CS, Perreault N, Brestelli JE, Kaestner KH (2002) Neurogenin 3 is essential

for the proper specification of gastric enteroendocrine cells and the maintenance

of gastric epithelial cell identity. Genes Dev 16: 1488–97.

29. Cheung AT, Dayanandan B, Lewis JT, Korbutt GS, Rajotte RV, et al. (2000)

Glucose-dependent insulin release from genetically engineered K cells. Science

290: 1959–1962.

30. Nicolaou P, Rodriguez P, Ren X, Zhou X, Qian J, et al. (2009) Inducible

expression of active protein phosphatase-1 inhibitor-1 enhances basal cardiac

function and protects against ischemia/reperfusion injury. Circ Res 104:

1012–1020.

31. Nestler EJ, Barrot M, Self DW (2001) DeltaFosB: a sustained molecular switch

for addiction. Proc Natl Acad Sci U S A 98: 11042–6.

32. Krutzfeldt J, Stoffel M (2010) Regulation of wingless-type MMTV integration

site family (WNT) signalling in pancreatic islets from wild-type and obese mice.
Diabetologia 53: 123–127.

33. Atouf F, Czernichow P, Scharfmann R (1997) Expression of neuronal traits in

pancreatic beta cells. Implication of neuron-restrictive silencing factor/repressor
element silencing transcription factor, a neuron-restrictive silencer. J Biol Chem

272: 1929–1934.
34. Abderrahmani A, Niederhauser G, Plaisance V, Haefliger JA, Regazzi R, et al.

(2004) Neuronal traits are required for glucose-induced insulin secretion. FEBS

Lett 565: 133–138.
35. Sharma A, Moore M, Marcora E, Lee JE, Qiu Y, et al. (1999) The NeuroD1/

BETA2 sequences essential for insulin gene transcription colocalize with those
necessary for neurogenesis and p300/CREB binding protein binding. Mol Cell

Biol 19: 704–713.
36. Sorenson RL, Garry DG, Brelje TC (1991) Structural and functional

considerations of GABA in islets of Langerhans. Beta-cells and nerves. Diabetes

40: 1365–74.
37. Prakash N, Wurst W (2006) Genetic networks controlling the development of

midbrain dopaminergic neurons. J Physiol 575: 403–410.
38. Martin M, Hauer V, Messmer M, Orvain C, Gradwohl G (2007) Transcription

factors in pancreatic development. Animal models. Endocr Dev 12: 24–32.

39. Servitja JM, Ferrer J (2004) Transcriptional networks controlling pancreatic
development and beta cell function. Diabetologia 47: 597–613.

40. Oliver-Krasinski JM, Stoffers DA (2008) On the origin of the beta cell. Genes
Dev 22: 1998–2021.

41. van Arensbergen J, Garcia-Hurtado J, Moran I, Maestro MA, Xu X, et al.
(2010) Derepression of Polycomb targets during pancreatic organogenesis allows

insulin-producing beta-cells to adopt a neural gene activity program. Genome

Res 20: 722–732.
42. Spencer J, Finn T, Isaacson PG (1985) Gut associated lymphoid tissue: a

morphological and immunocytochemical study of the human appendix. Gut 26:
672–679.

43. Allen-Jennings AE, Hartman MG, Kociba GJ, Hai T (2001) The roles of ATF3

in glucose homeostasis. A transgenic mouse model with liver dysfunction and
defects in endocrine pancreas. J Biol Chem 276: 29507–14.

44. Martens GA, Pipeleers D (2009) Glucose, regulator of survival and phenotype of
pancreatic Beta cells. Vitam Horm 80: 507–539.

45. Hay CW, Ferguson LA, Docherty K (2007) ATF-2 stimulates the human insulin
promoter through the conserved CRE2 sequence. Biochim Biophys Acta 1769:

79–91.

46. Martens GA, Vervoort A, Van de Casteele M, Stangé G, Hellemans K, et al.
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