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Abstract

Background

There is increasing interest in the microbiome of the hepatobiliary system. This study inves-

tigated the influence of infection with the fish-borne liver fluke,Opisthorchis felineus on the

biliary microbiome of residents of the Tomsk region of western Siberia.

Methodology/Principal Findings

Samples of bile were provided by 56 study participants, half of who were infected withO.

felineus, and all of who were diagnosed with gallstone disease. The microbiota of the bile

was investigated using high throughput, Illumina-based sequencing targeting the prokary-

otic 16S rRNA gene. About 2,797, discrete phylotypes of prokaryotes were detected. At

the level of phylum, bile from participants with opisthorchiasis showed greater numbers of

Synergistetes, Spirochaetes, Planctomycetes, TM7 and Verrucomicrobia. Numbers of > 20

phylotypes differed in bile of the O. felineus-infected compared to non-infected participants,

including presence of species of the generaMycoplana, Cellulosimicrobium,Microlunatus
and Phycicoccus, and the Archaeans genus, Halogeometricum, and increased numbers of

Selenomonas, Bacteroides, Rothia, Leptotrichia, Lactobacillus, Treponema and Klebsiella.

Conclusions/Significance

Overall, infection with the liver flukeO. felineusmodified the biliary microbiome, increasing

abundance of bacterial and archaeal phylotypes.
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Author Summary

The microbiota of the alimentary tract and other sites of the body influences human
health. Contrary to popular belief, the bile within the liver is not sterile, and may host a
microbiome consisting of diverse species of microbes. The spectrum of microbial species
and their numbers within the biliary system may be influenced by disease including infec-
tion with pathogens such as parasitic worms and with gallstone disease, liver cancer and
other ailments. Here we examined the microbes in the bile of patients from western Sibe-
ria, Russia who were concurrently infected with a food-borne parasitic worm, the liver
fluke Opisthorchis felineus. Infection with this liver fluke is common in western Siberia, as
a consequence of dietary preference for undercooked or smoked fresh-water fishes that
often carry the larva of the liver fluke. Using high throughput sequencing targeting a con-
served bacterial gene and statistical analyses, numerous bacterial species were identified in
the bile of the patients. Infection with the liver fluke modified the biliary microbiome,
resulting in abundant and diverse species of bacteria and Archaea.

Introduction
There is increasing interest in the microbiota with respect to diseases of the gastroenterological
system [1, 2] including the liver and biliary tree [3, 4]. Many reports have detailed the colorec-
tal/ fecal microbiota, given that samples of feces are readily accessible using non-invasive
approaches. Modifications of the gut microbiota have been documented for a number of liver
diseases including primary biliary cirrhosis, primary sclerosing cholangitis, cholelithiasis, [4–
6]. Moreover, information is becoming available on the microbial composition of the bile dur-
ing liver disease [6–8]. Conversely, it had long been considered that during good health the bile
was sterile or at least that bile was inimical to bacteria [9], with a few reports indicating coloni-
zation of the gallbladder and bile as the consequence of reflux of the duodenal contents, blood-
borne infection and infection spread through the portal-venous channels [10].

High throughput sequencing of bacterial 16S rDNA genes has provided information on the
present of complex microbiota in the bile environment even in absence of biliary tract morbid-
ity. Studies of pigs show that bacteria from the phyla Proteobacteria, Firmicutes and Bacteroi-
detes populate the gall bladder ecosystem [9]. The investigation of the feces, bile and gallstones
from patients diagnosed with cholelithiasis (gallstones) revealed higher bacterial diversity in
the biliary system in the comparison with feces; the biliary tract microbiome of gallstone
patients includes>100 bacterial OTUs belonging to six bacterial phyla [6]. On the other hand,
dysbiosis of biliary microbiome may play key role in the biliary inflammation, supporting the
concept that factors that affect bile duct composition can be associated with liver diseases [4].
In this context, findings in hamsters infected with Opisthorchis viverrini demonstrated that
infection with this liver fluke not only modifies the intestinal microbiota but revealed the pres-
ence of>60 phylotypes of nine phyla in the biliary system associated with the parasites [11].
Moreover, infection of hamsters with O. viverrini positively correlated with increased co-infec-
tion withHelicobacter pylori and H. bilis, both in the fecal microbiota and in the biliary tract
within the gut of the liver flukes [12].

Liver flukes excrete and secrete mediators [13], altering liver functions that may modify the
biliary environment [14] and which, in turn, may modify the composition of the microbiota
[12, 15]. Indeed, interactions between liver flukes and the microbiome can be expected to be
dynamic and to modify the metabolic responses specific to opisthorchiasis, as known during
infection with other helminths [16, 17]. Molecular markers of inflection with the blood fluke
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Schistosoma mansoni infection were found in urine to be primarily linked to changes in gut
microflora, energy metabolism and liver function [18], and infection with Schistosoma haema-
tobium leads to changes in bacterial pathobionts in the urinary bladder [19]. Other metabolites
known to arise from the activities of helminths including catechol estrogens, oxysterols and
their adducts involving host cell DNA and other macromolecules likely also influence the
ecology of the microbiome [20, 21]. Also, helminth parasites can harbor endosymbiotic
microbes, in particular the rickettsia-like bacteria of trematodes [22] and symbioticWolbachia
of filariae [23]. This study investigated the influence of infection with the fish-borne liver
fluke Opisthorchis felineus on the biliary microbiome, within a background clinical setting of
cholelithiasis.

Materials and Methods

Study participants; bile samples
The Ethics Committee of the Siberian State Medical University approved this study. All partici-
pants provided written informed consent. Participants ranged in age from 40 to 61 years. Pro-
spective participants who had used antibiotics or probiotics within the previous six months
were excluded from the study. Fifty-six participants who had been diagnosed with cholelithiasis
(gallstone disease) but who were in disease remission provided samples of bile. Gallstone dis-
ease had been diagnosed by B-mode ultrasonography. Thirty of these 56 participants were
concomitantly diagnosed with infection with the fish-borne liver fluke, Opisthorchis felineus,
whereas the remainder (26 persons) was not infected with O. felineus (below). The bile samples
were obtained from the study participants during therapeutic intervention for cholelithiasis
involving open or laparoscopic cholecystectomy at the 3-d City Tomsk Hospital, Tomsk, west-
ern Siberia. During cholecystectomy, 5–10 ml of bile was aspirated from the gallbladder under
sterile conditions, three to five ml dispensed into in a sterile tube, and thereafter dispatched
immediately to the laboratory. Two ml bile was clarified by centrifugation (10, 000 g, 10 min),
the supernatant removed, and the pellet was stored at -80°C until processing. Other aliquots of
these biles, ~3 ml were subjected to centrifugation at 5,000 g, 10 min, after which the pellet was
examined for eggs of O. felineus.

DNA extraction
The pellet was diluted into Buffer ASL QIAamp Stool Mini Kit (QIAGEN, Hilden, Germany),
25 mg glass beads (0.1 mm diameter) added to the suspension, the mixture vortexed for 10 sec-
onds, and then subjected to bead-beating (Mini-Beadbeater-24, Bio Spec Products Inc) for
three minutes. A second bead beating was performed after incubating the suspension at 70°C,
after which phenol-chloroform extraction was undertaken to recover genomic DNAs. Subse-
quently, the DNA was dissolved in 20 μl TE, and DNA yield was measured using a NanoDrop
ND-1000 UV spectrophotometer (Nano-Drop Technologies, Wilmington, DE). DNA was ali-
quoted to perform the PCR to confirm or not infection with O. felineus (exclusion) and for the
16S rRNA sequence-based survey of biliary prokaryotes. Control DNA extractions in which
100 μl sterile water replaced biliary DNA were undertaken, in order to address laboratory and
sequence-based artifacts that can occur with reagents and kits [24].

Diagnosis of infection with liver flukes
Status of infection liver fluke infection was established by the microscopic examination for eggs
of O. felineus in the material pelleted from several ml of bile and by PCR to identify the pres-
ence of DNA of O. felineus in the pellet. To confirm the infection, we employed a PCR-real
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time commercial kit for identification of O. felineus (Medico-biological Union, Novosibirsk,
Russia)[25] following the manufacturer’s guidelines. PCR using bile pellet DNA, above, was
performed in a thermal cycler (LightCycler 480, Roche).

Illumina-based sequencing
The DNA samples were used for a 16S rRNA sequence-based survey of bacterial diversity.
Amplicons that cover V3 and V4 hypervariable region of 16S rRNA genes (Escherichia coli
positions 341–805) were generated by PCR with using Primers Next-16S-1st-F 5’- TCG TCG
GCA GCG TCA GAT GTG TAT AAG AGA CAG CCT ACG GGN GGCWGC AG -3’ and
Next-16S-1st-R 5’- GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GGA CTA
CHV GGG TAT CTA ATC C-3’. These primers contain gene-specific sequence (bold-face
font) and Illumina adapter sequences. The initial PCR cycles were carried out in MJ Mini ther-
mal cycler (MJ Research). The PCR reactions were performed in the following program: initia-
tion enzyme activation at 95°C for 3 min, followed by 25 cycles consisting of denaturation at
95°C for 30 sec, annealing at 55°C for 30 sec and extension at 72°C for 30 sec. After 25 cycles,
the reaction was completed with a final extension of 5 min at 72°C. PCR products were recov-
ered by chromatography on Ampure XP beads (Thermo Fisher Scientific) and deployed in a
second PCR. The Illumina Nextera XT Index kit (Illumina Inc., San Diego. CA, USA) were
used for multiplexing. Two unique indices located on either end of the amplicon were chosen
based on the Nextera dual-indexing strategy. To incorporate the indices to the 16S amplicons,
PCR reactions were performed on MJ Mini thermal cycler (MJ Research).

Cycling conditions consisted of one cycle of 95°C for 3 min, followed by eight cycles of 95°C
for 30 sec, 55°C for 30 sec and 72°C for 30 sec, followed by a final extension cycle of 72°C for 5
min. After purification of PCR-products on Ampure beads (Thermo Fisher Scientific), the con-
centrations were measured using Qubit technology (Thermo Fisher Scientific). The libraries
were sequenced by 2 × 300 bp paired-end sequencing on the MiSeq platform using MiSeq v3
Reagent Kit (Illumina) at the Faculty of Bioengineering and Bioinformatics, Lomonosov Mos-
cow State University.

Bioinformatics analysis, phylograms
Analysis of the 16S rRNA gene reads was performed using the QIIME (quantitative insight
into molecular ecology) pipeline, version 1.9.0 [26]. The Operational Taxonomic Units
(OTUs) picking strategy consisted in usage of the open QIIME reference OTU picking algo-
rithm with the OTU-picking method UCLUST [27]. Chimera-checked GreenGenes taxonomy
v13.5 was used as the reference base for taxonomic assignment [28]. After taxonomic assign-
ment and demultiplexing, OTUs present only in reagent control samples were subtracted from
O. felineus infected and O. felineus non-infected groups to eliminate reads due to contamina-
tion. Samples with�200 counts were included in the analysis. Alpha diversity within and
between groups (infected or not-infected with O. felineus) samples of was calculated in QIIME
using Chao1, Shannon and Simpson alpha metrics at depth of 200 sequences per sample.
Alpha diversity comparisons were calculated using a two-sample non-parametric t-test and
999 Monte Carlo permutations. Beta diversity was investigated by principal components analy-
sis (PCoA) both on non-normalized and normalized (CSS-algorithm [29]) data with the usage
of unweighted Unifrac distance and validated with ANOSIM in QIIME. To examine signifi-
cance of variation among groups at levels of phylum, we used fitZig model, a metagenomeSeq-
package in the R statistical environment [29]. Metagenomic prediction was undertaken using
the Galaxy-based PICRUSt algorithm [30] against KEGG database, with statistical analysis of
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variation among groups analyzed using the Mann-Whitney-Wilcoxon test and logistic regres-
sion. S1 Table outlines the pipeline.

To visualize genera, we associated each genus with the OTU from GreenGenes DB and pre-
pared a table of the OTU findings that represents all genera identified. The taxonomic tree,
which was created during taxonomic classification stage, was pruned with the usage of the
genus list by filter_tree.py script in QIIME workflow. Radial phylograms were constructed
using FigTree 1.4.2 and MEGA 7 http://www.megasoftware.net/ [31].

Results

Study groups, epidemiological characteristics
Patients hospitalized with cholelithiasis and who were diagnosed also with (n = 30) and with-
out (n = 26) infection with O. felineus participated in the study. These two groups were similar
in age and gender, and relatively similar numbers in each group presented with the comorbidi-
ties of pancreatitis and infection with hepatitis C virus (Table 1).

Diverse phylotypes comprised the biliary microbiome during
cholelithiasis and opisthorchiasis
The Illumina sequencing produced 1,547,628 reads. Demultiplexing showed 628,111 reads
were suitable for further analysis. After extraction of reagent contamination controls, there are
81,627 reads and 2,797 discrete OTUs were identified. Taxonomic composition consisted of
archaeal and bacterial super-kingdoms, 25 different phyla, 55 classes, 84 orders, 147 families,
246 genera (Fig 1), along with 77 species-level phylotypes that were well supported. Supple-
mentary S2 Table lists several of these latter phylotypes. The median number of reads per sam-
ple was 585 (range, 5–10037). However, this wide range in numbers of reads per sample, which
spanned two orders of magnitude, hindered comparison among the samples. Accordingly,
samples with< 200 reads were not included in the subsequent analysis. After this filtration,
reads from the remaining 37 samples were analyzed in depth (Table 1).

Diversity of the biliary microbiome during opisthorchiasis
Alpha diversity was estimated after rarefaction at a depth of 200 sequences per sample by using
richness metrics (Chao1, the Shannon and Simpson diversity index) [32]. Analyses of microbial

Table 1. Brief demographic and epidemiological details of the participants of the study, including age in years, gender, infection status for
Opisthorchis felineus, and other hepatobiliary diseases.

Variable Infected withOpisthorchis
felineus

Not-infected withOpisthorchis
felineus

P (comparison Infected vs non-
infected)

Cholelithiasis 30 26

Median Age (IQR) 56 (41–60) 53.5 (40–61) 0.74

Male/Female 9/21 8/18 1

Cholelithiasis & pancreatitis 2 1 1

Cholelithiasis & hepatitis C
virus

2 1 1

Samples included for the study: reads > 200

Cholelithiasis 21 16

Median Age (IQR) 57.5 (42.5–59.5) 55 (41–60) 0.75

Male/Female 6/15 5/11 1

Cholelithiasis & pancreatitis 1 1 1

Cholelithiasis & hepatitis C
virus

1 1 1

doi:10.1371/journal.pntd.0004809.t001
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communities did not reveal differences in richness (Chao1 (Fig 2A)), Shannon and Simpson
indices (S1 Fig) between participants infected with O. felineus and non-infected individuals.
Principal components analysis (PCoA) of the beta diversity, i.e. community diversity (composi-
tional heterogeneity)/ divergence among samples was undertaken using QIIME, wherein
unweighted UniFrac distances ascertained beta diversity. In the case where we used non-nor-
malized phylogenetic data, the first principal coordinate, PC1 accounted for 14.97% of total var-
iance, and after CSS normalization was, PC1 accounted for 19.65% of total variance (Fig 2B and
2C). This difference in bacterial communities between theO. felineus-infected and uninfected
participants was significant, although not robust, and was confirmed using the non-parametric
statistical test analysis of similarity (ANOSIM), unweighted Unifrac—R = 0.12, P = 0.02 (nor-
malized data). As presented in S2 Fig, hierarchical clustering analysis confirmed these modest
differences among the bacterial communities.

To consider the influence of host sex on cholelithiasis [33], we examined the richness met-
rics (Chao1, the Shannon and Simpson diversity index)after rarefaction at a depth of 200
sequences per sample from the female versus male participants. Chao1 analysis revealed that
the diversity was higher in the female in comparison with the male participants (p = 0.0461)
(S3 Fig).

Discrete biliary microbiomes during infection with the liver fluke,O. felineus
Four phyla, the Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria dominated the
biliary microbiota in the participants of this study, all of whom were diagnosed also with

Fig 1. Radial phylogram of 246 genera identified in bile. Red circles indicate phylotypes detected only in
theOpisthorchis felineus infected group; green colored circles indicate genera that increased inO. felineus
infected group in comparison with the non-infected group, whereas blue circles indicate genera seen in the
non-infected participants but not inO. felineus infected participants.

doi:10.1371/journal.pntd.0004809.g001
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cholelithiasis (Fig 3; S4 Fig). However, the contribution by members of phylum Spirochaetes
was significantly increased during infection with O. felineus. At the level of genus, this was
exemplified by increases in Treponema (Fig 4; Table 2). Also at the phylum level, higher pro-
portions of Planctomycetes (P� 0.01), Synergistetes (P� 0.01), Verrucomicrobia (P� 0.01),
and TM7 (P� 0.01) were evident in the group of participants infected with O. felineus in com-
parison with the uninfected participants.

We identified all significant taxa aggregated to OTUs in the bile microbiota associated with
the liver fluke infection. Differences were apparent at taxonomic levels from phylum to genus.
At the level of genus, 22 phylotypes differed between these two groups. Most phylotypes that

Fig 2. Alpha and beta diversity of the biliary microbiome of 37 study participants. Panel A. Bile content
microbiota rarefaction curve generated using Chao1 richness estimator. Samples have been rarified at depth
of 200 sequences per sample. Panel B Principal Coordinates Analysis (PCoA) of the bile microbiota in groups
infected versus not infected withO. felineus. Unweighted UniFrac uses non-normalized phylogenetic
information to compare samples. ANOSIM was used to evaluate the UniFrac distances ofO. felineus group
vs non-infected group (R = 0.087, p = 0.038). Panel C. Principal Coordinates Analysis (PCoA) of the bile
microbiota in groups infected versus not infected withO. felineus. Unweighted UniFrac uses phylogenetic
information normalized by CSS to compare samples. ANOSIM was used to evaluate the UniFrac distances of
O. felineus group vs non-infected group (R = 0.12, p = 0.022).

doi:10.1371/journal.pntd.0004809.g002

Fig 3. Composition at phylum level of the biliary microbiome. Relative abundances of bacteria (phylum)
observed in bile samples.

doi:10.1371/journal.pntd.0004809.g003
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differed were detected in higher abundance (i.e. absolute read counts) in bile from the O. feli-
neus-infected participants (Fig 4; Table 2). Among specific examples, there was elevated abun-
dance of Klebsiella spp., Aggregatibacter spp., Lactobacillus spp., Treponema spp.,Haemophilus
parainfluenzae and Staphylococcus equorum in bile of participants infected with liver flukes. In
addition, Veillonella dispar, Paracoccus aminovorans, Parabacteroides distasonis, Sphingomo-
nas changbaiensis, Cellulosimicrobium sp., Phycicoccus sp. and others were detected solely in
bile from persons infected with O. felineus (Fig 4; Table 2), whereas Flectobacillus sp., Xantho-
bacter sp., Burkholderia sp., Streptomyces sp., Jeotgalicoccus psychrophilus and Treponema
socranskii increased in the uninfected group vs the group with infection with O. felineus
(Table 2). Reads assigned to the super-kingdom Archaea were identified in the microbial com-
munity of bile from one of the O. felineus-infected persons; these reads aggregated with a phy-
lotype from the Phylum Euryarcheota, genusHalogeometricum.

Given the potential for pathogenic microbes for involvement in cholelithiasis [6, 34], a list
of phylotypes identified in bile samples is presented. Also, we searched the list of phylotypes
for the presence of bacteria that had been described as associated with the human biliary tract
by Shen and coworkers [7]. We compared the list of phylotypes detected in the present study
in the bile of participants presenting with gallstone disease (37 individuals) with the list of
microbes recently described in human gallstones and bile [7]. About 9% of the same species
were identified here, including Rothia aeria, Haemophilus influenza, Veillonella dispar, Acine-
tobacter johnsonii, Acinetobacter lwoffii and Streptococcus anginosus (S2 Table).

The prediction of functional KEGG pathway abundances from the 16S rDNA-based meta-
genomes was accomplished using PICRUSt. The same predicted functional pathways charac-
terized the O. felineus infected and O. felineus non-infected bile, so that functional differences

Fig 4. Radial phylogram to display biliary microbiota where groups infected or not withOpisthorchis
felineuswere compared at the genus level. The phylogram displays topology. Genera in red color found
only inO. felineus infected group; genera marked in green increased in theO. felineus-infected group, in
comparison with the non-infected group, whereas blue circles indicate genera seen in the non-infected
participants but not inO. felineus infected participants.

doi:10.1371/journal.pntd.0004809.g004
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were not evident. Predicted metagenomes at the three hierarchical KEGG pathway levels
revealed the functional categories represented in the bile microbiota of patients with cholelithi-
asis. Membrane transport, carbohydrate metabolism and amino acid accounted for more than
one third of the hypothetical functions from the KEGG pathways at level 2 (S3 Table).

Database accession
Sequence data obtained have been deposited to the European Nucleotide Archive, accession
number PRJEB12755, http://www.ebi.ac.uk/ena/data/view/PRJEB12755.

Table 2. Numerous phylotypes differed between the biliary microbiota of study participants who were positive versus negative for infection with
the liver fluke,Opisthorchis felineus. The table lists details of 22 phylotypes where numbers of reads counts significantly increased or decreased in rela-
tion to liver fluke infection.

Species ReadsOf
+ve

ReadsOf
-ve

log fold
change

Adg p % of samples that
contain reads in Of
+ group

% of samples that
contain reads inOf-
group

Mean of reads
in Of+ group

Mean of
reads inOf-
group

Lactobacillus brevis* 4941 4 11,9 <0.0001 4,8 25 235,29 0,25

Veillonella dispar 3 0 0,99 <0.0001 14,3 0 0,14 0

Methylotenera mobilis* 28 1 3,5 <0.0001 9,5 6,25 1,33 0,06

Paracoccus
aminovorans

6 0 1,2 <0.0001 19 0 0,29 0

Treponema
amylovorum*

11 1 2 <0.0001 14,3 6,25 0,52 0,06

Staphylococcus
equorum

127 14 3 <0.0001 33,3 25 6,05 0,88

Corynebacterium durum 19 1 2,5 <0.0001 14,3 6,25 0,90 0,06

Parabacteroides
distasonis *

8 0 1,7 <0.0001 14,3 0 0,38 0

Sphingomonas
changbaiensis

9 0 1,2 <0.0001 28,6 0 0,43 0

Methylobacterium
adhaesivum

21 5 3,8 <0.0001 4,8 12,5 1 0,31

Faecalibacterium
prausnitzii

7 1 1,3 0,0002 14,3 6,25 0,33 0,06

Anoxybacillus
kestanbolensis

9 2 1,47 0,0003 14,3 6,25 0,43 0,13

Bacteroides uniformis* 12 8 2,1 0,0003 9,5 6,25 0,57 0,5

Pseudoxanthomonas
mexicana

31 8 1,6 0,003 23,8 12,5 1,48 0,5

Sphingobium
xenophagum*

31 8 1,7 0,003 19,0 12,5 1,48 0,50

Haemophilus
parainfluenzae

22 8 1,5 0,004 19,0 12,5 1,05 0,50

Rathayibacter caricis 11 5 1,7 0,004 9,5 6,25 0,52 0,31

Janthinobacterium
lividum

9 5 1,1 0,004 14,3 12,5 0,43 0,31

Sphingomonas
yabuuchiae

19 10 1,5 0,009 14,3 12,5 0,90 0,63

Bacillus flexus 20 10 0,98 0,01 9,5 12,5 0,95 0,63

Jeotgalicoccus
psychrophilus

2 11 -1,88 0,0002 9,5 12,5 0,10 0,69

Treponema socranskii* 3 9 -2,1 0,002 9,5 6,25 0,14 0,56

*Genera that differed between the groups where participants were infected (Of +ve) with or not infected (Of -ve) with O. felineus.

doi:10.1371/journal.pntd.0004809.t002
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Discussion
Although it had been assumed that the biliary system in a healthy person is a sterile organ, it is
now apparent that bile supports a complex microbiome in otherwise healthy individuals [4, 9].
Nonetheless it has long been known that cholelithiasis, cholecystitis and cholangitis lead to
bacteriobilia [35, 36]. The presence of bacteria in the bile and gallbladder/gallstones has been
diagnosed by microbial culture, where positive culture of bile during cholelithiasis and chronic
cholecystitis ranges from 0–81% [37, 38]. Frequently identified are Escherichia coli, and species
of Enterococcus, Klebsiella, and Pseudomonas [38–40].

Analysis by pyro-sequencing targeting the bacterial 16S rRNA gene revealed that phylotypes
of the phylum Firmicutes were dominate the bile of healthy pigs, with Proteobacteria and Acti-
nobacteria also prominent, and with lesser contributions from other phyla. Firmicutes, Proteo-
bacteria and Bacterioidetes, dominate the human biliary microbiome of gallstones and bile
during cholelithiasis [6]. Our present findings accord with these reports [6]. Biliary tract micro-
biota of participants with cholelithiasis showed substantial person-to-person variation; the rel-
ative abundance of phylum Firmicutes varies 0–92% through the different samples. Similar
phenomena have been reported for microbiota of gallstones from residents of Kunming, China
[7]. Nonetheless, species contributing to biliary microbiota of the participants from Siberia dif-
fered markedly from microbes reported form China. Phylotypes previously identified in bile
also were present, including and Haemophilus parainfluenzae, Enterobacter cloacae [41, 42],
and Streptococcus anginosus, which is associated with pyogenic liver abscess [43]. In addition,
microbes associated with periodontal disease, including Treponema socranskii [44], T. amylo-
vorum [45], Veillonella dispar, [46], Aggregatibacter segnis [47], and Bacteroides eggerthii [48]
were identified. Others more usually known from the external environment, including soil,
plants, and rivers, also were identified including Sphingomonas changbaiensis, Rathayibacter
caricis, Bacillus flexus,Methylobacterium adhaesivum, Psychrobacter pacificensis, and Pseudo-
monas umsongensis.

Although alpha diversity of the biliary microbiome did not appear to be impacted during
infection with O. felineus. A diverse often contradictory literature has accumulated over past
decade on the influence of helminth infection on the microbial diversity of the intestines.
Among other examples, polyparasitsm by soil-transmitted nematodes (Ascaris, Tichuris, hook-
worms) results in increased diversity of gut microbiota in indigenous Malaysians and microbial
diversity decreases following deworming [49]. By contrast, in other situations, increasing alpha
diversity is not apparent during trichuriasis [50]. In comparison, infection with O. felineus lead
to the modification of composition of the bile microbiome. Specifically, most of the phylotypes
that differed were detected in higher abundance in bile during opisthorchiasis although some
phylotypes decreased; Jeotgalicoccus psychrophilus, a Gram-positive halophile [51, 52] was
included among the latter. Lactobacillus spp. increased in richness in O. felineus-infected bile.
Colonization of the gut by nematodes has been shown to be associated with increasing promi-
nence of Lactobacillaceae. Mice parasitized by the intestinal nematode Heligmosomoides poly-
gyrus exhibit increased numbers of Lactobacillaceae in the ileum [53] and in the duodenum
[54]. Chronic infection of mice with the whipworm Trichuris muris also increases the abun-
dance of Lactobacillus spp. [55], and similarly hamsters infected with O. viverrini-infected
exhibit more Lactobacillus in the colon [15]. Intriguingly, Lactobacillus species may contribute
probiotic defense against allergies [56, 57]. In regions endemic for opisthorchiasis felinea, spe-
cifically in western Siberia, liver fluke infection modifies genetic risk of atopic bronchial asthma
[58]. Furthermore, in urban regions, the presence of antibodies to O. felineus negatively corre-
lates with the atopic sensitization [59]. There is evidence that the modification of the micro-
biota by helminths contributes to modulation of allergic inflammation [60, 61]. Our data
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provided additional support that helminth infection promotes the increase in numbers of Lac-
tobacillus species that, in turn, influences the paradoxical relationship between allergic diseases
and helminthiasis.

Haemophilus parainfluenzae also increased in O. felineus infected samples; this pathogen
is associated with liver abscess [62], and liver abscess represents a serious complication of
opisthorchiasis felinea [63]. Veillonella dispar, Paracoccus aminovorans, Parabacteroides dista-
sonis, Sphingomonas changbaiensis, among others, were constituents of the biliary microbiome
of the liver fluke-positive participants. Although V. dispar is known from bile [53], P. distasonis
has been described from feces as a risk factor for obesity [64]. These two phylotypes represent
microbes typically seen in the human alimentary tract. By contrast, S. changbaiensis is known
from forest soils [12] and Paracoccus aminovorans associates with the skin of fish [65] [66]. In
addition, we identified reads that aggregated with the archaeal genus Halogeometricum (phy-
lum Euryarcheota). Flesh of salted, dried river fishes represents a dietary stable in regions of
Siberia [67]. We speculate thatHalogeometricum and Paracoccus aminovoransmay have been
transported to the biliary tract with ingested dried fish and/or other fish products contami-
nated with metacercarie of O. felineus. Other phylotypes of the Euryarcheota occur in bile of
hamsters infected with metacercariae of O. viverrini [15]. Conveyance of these environmental
microbes from the outside world to the human alimentary tract may have been accomplished
during establishment of infection by the liver flukes.

Notwithstanding the novelty and complexity of the findings, our study has limitations. The
findings associated withO. felineus took place in the setting of concomitant gallstone disease.
The microbial profile of the bile may differ in the absence of cholelithiasis, and furthermore, the
pH of the bile (which was not measured here) may have influenced the microbiome [68, 69].
Metabolic changes associated with gallstone formation can lead to microflora discrete from that
of healthy individuals [6]. Moreover, we cannot exclude that participants in the non-liver fluke
infected cohort had not previously been infected given elevated prevalence of opisthorchiasis
felinea in the Tomsk region [70]. Nonetheless, these findings appear to be novel in the context
of the biliary microbiome during opisthorchiasis. It will be informative to investigate this phe-
nomenon further, including in people without gallstone disease living in regions where liver
flukes are endemic and infection with which represents increased risk for bile duct cancer.
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