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Rare-Earth-Metal-Catalyzed Kinetic Resolution of Chiral
Aminoalkenes via Hydroamination: The Effect of the Silyl
Substituent of the Binaphtholate Ligand on Resolution

Efficiency
Hiep N. Nguyen'® and Kai C. Hultzsch*"]

Abstract: The kinetic resolution of a-substituted aminopent-
enes via intramolecular hydroamination was investigated using
various 3,3’-silyl-substituted binaphtholate yttrium catalysts.
High efficiencies in the kinetic resolution were observed for
methyl-, benzyl-, and phenyl-substituted substrates utilizing the
cyclohexyldiphenylsilyl-substituted catalyst 2¢ with resolution
factors reaching as high as 90(5) for hex-5-en-2-amine (3a). Ki-
netic analysis of the enantioenriched substrates with the match-
\ing and mismatching catalyst revealed that the efficiency of

catalyst 2c benefits significantly from a favorable Curtin-
Hammett pre-equilibrium and by a large kg,s/ksi0,, ratio. Other
binaphtholate catalysts were less efficient due to a less favor-
able Curtin-Hammett pre-equilibrium, which often favored the
mismatching substrate-catalyst combination. Cyclization of the
matched substrate proceeds generally with large trans-selecti-
vity, whereas the trans/cis-ratio for mismatched substrates is
significantly diminished, favoring the cis-cyclization product iso-
mer in some instances. Y,

Introduction

Nitrogen-containing compounds are widely found in nature
and biological systems; therefore, this class of organic com-
pounds is of high importance in fundamental research, as well
as pharmaceutical and chemical industry. The metal-catalyzed
hydroamination of olefins, in which an amine N-H functionality
adds directly to an unsaturated carbon—-carbon bond, provides
one of the simplest routes to amine products with 100 % atom
efficiency.”? Significant research efforts have resulted in the de-
velopment of a large variety of catalyst systems for the hydro-
amination of olefins;>81 however, many challenges remain, in
particular with respect to asymmetric hydroamination reac-
tions.5-11]

We have developed biphenolate, binaphtholate and NOBIN-
based aminophenolate rare-earth metal catalysts for the asym-
metric intra-l'? and intermolecular!'?¢'2%13! hydroamination of
alkenes. In particular 3,3’-bis(silyl)-substituted binaphtholate
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rare-earth metal complexes (Figure 1) exhibited high activity
and enantioselectivities of up to 96 % ee in intramolecular reac-
tions and up to 66 % ee in intermolecular reactions.['2¢12f13]

SiAr; SiR3
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(R)-1a-Ln, SiAr; = SiPh,

(R)-2a, SRy = 3¢_/
(R)-1b-Ln, SiAry = Si(3,5-xylyl) S

(R)-2b, SiR; = Sit-BuPh,
(R)-2¢, SiR; = SiCyPh,
(R)-2d, SiR; = Si(iPr);
(R)-2e, SR, = SiCy,Ph

Ln=8c,Y, Lu

Figure 1. Rare-earth metal complexes based on 3,3"-bis(silyl)-binaphtholate
ligands for asymmetric hydroamination reactions.

Moreover, complexes 1a and 1b were also applied in the
catalytic kinetic resolution of chiral aminoalkenes via the asym-
metric hydroamination/cyclization (Scheme 1).[12¢12d/14-17]

Previously we have shown that resolution factors f as high
as 19 can be achieved for a phenyl-substituted aminopentene
using (R)-1a-Lu at 40 °C (Scheme 1, R = Ph).['2¢75] The hydro-
amination products of aryl-substituted aminopentenes using
the binaphtholate catalysts 1a and 1b displayed high trans/cis
diastereoselectivity of up to 50:1. Moreover, the kinetic study of
the kinetic resolution process revealed that the Curtin-
Hammett pre-equilibrium favors the matching substrate-cata-
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Scheme 1. General scheme of the kinetic resolution of a-substituted amino-
alkenes.

lyst complex for a-substituted aminopentenes containing aryl
substituents, as indicated by a pre-equilibrium constant
Kdas > 1 (vide infra). However, the kinetic resolution of
aminoalkene substrates containing aliphatic substituents in the
a-position of the amine was significantly less efficient with
these catalysts, primarily as a result of a shifted Curtin-
Hammett pre-equilibrium in favor of the mismatching sub-
strate-catalyst complex (K92 < 1).

Herein we report the kinetic resolution process using the
yttrium catalysts (R)-2a-el'?" based on binaphtholate ligands
with a variety of bulky trisarylsilyl-, trisalkylsilyl-, and alkylaryl-
silyl-substituents in the 3 and 3" position (Figure 1). Our previ-
ous studies have shown that the sterically demanding silyl
groups in the binaphtholate catalysts are responsible for cata-
lyst stability as well as high catalytic activity and selectivity, but
herein we will show that subtle changes in these silyl-substitu-
ents can have a significant influence on the kinetic resolution
process, especially on the Curtin-Hammett pre-equilibrium.

Results and Discussion

Previously we had observed that the cyclization of a-substi-
tuted aminopentenes proceeds significantly faster using the tri-
phenylsilyl-substituted binaphtholate catalyst (R)-1a-Y com-
pared to (R)-1a-Lu and that (R)-1a-Y displayed slightly higher
efficiency in the kinetic resolution of the sterically less demand-
ing substrate 3a in comparison to the smaller ionic radius metal
complex (R)-1a-Lu (Table 1, entries 1, 2).['2¢12415] We therefore
decided to focus our kinetic resolution studies on the more
active and presumably more efficient yttrium catalysts (R)-2a-
e. A broad range of substrates for intra- and intermolecular
asymmetric hydroamination reactions unrelated to the kinetic
resolution process has been reported for these catalysts re-
cently.['??! For the purpose of this study we investigated the
kinetic resolution of the racemic a-substituted 1-aminopent-4-
enes 3a-d (Table 1). These substrates feature aliphatic as well
as aromatic substituents which had been kinetically resolved
with low (resolution factor f = 2-6 for 3b, 3d) to moderate
(f=6-19 for 3a, 3¢) efficiency using catalysts (R)-1a-Ln and (R)-
1 b-Ln.“2C"2d"5]

For the sterically least demanding methyl-substituted amino-
pentene 3a, the structurally rigid dibenzosilole-substituted
complex (R)-2a was more efficient than the triphenylsilyl-substi-
tuted binaphtholate catalysts (R)-1a-Y and (R)-1a-Lu (Table 1,
entries 1-3). The sterically more demanding dicyclohexylphen-
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ylsilyl-substituted binaphtholate complex (R)-2e showed signifi-
cantly diminished kinetic resolution efficiency (Table 1, entry
5), while exhibiting a significant higher rate of cyclization in
comparison to the other catalysts. Remarkably, the cyclohexyl-
diphenylsilyl-substituted binaphtholate complex (R)-2c was sig-
nificantly more efficient than all other binaphtholate complexes
1 and 2 with a resolution factor f > 5018 for 3a (Table 1, entry
4). Although the silyl groups in the 3 and 3’ positions of the
binaphtholate ligands had a pronounced effect on catalytic ac-
tivity as well as the resolution factors in the cyclization of 3a,
the trans/cis diastereoselectivities were rather unaffected, show-
ing consistently low ratios in the range of 7:1 to 9:1.

Higher trans/cis selectivities of up to 20:1 were observed for
the benzyl-substituted aminopentene 3b (Table 1, entries 6-9).
However, the cyclization of 3b proceeded at a much lower rate
using the tert-butyldiphenylsilyl-substituted binaphtholate cata-
lyst (R)-2b in comparison to (R)-1a-Y [42.3 h at 25 °C for (R)-2b
vs. 9 h at 22 °C for (R)-1a-Y to obtain 50 % conversion; see
Table 1, entries 6 and 8]. This is in contrast to our observation
that (R)-2b generally displayed similar catalytic activity as (R)-
1a-Y in the cyclization of aminopentenes.!'?" Despite the slow
rate of cyclization, (R)-2b resolved 3b more efficiently than (R)-
1a-Y. Similar to the previous observation, the resolution of 3b
was generally less efficient than the resolution of 3a with the
same rare-earth metal binaphtholate catalyst (for example,
compare Table 1, entry 4 and 9). Nevertheless, catalyst (R)-2c
resolved 3b with a still impressive resolution factor of 43.

The kinetic resolution of the phenyl-substituted amino-
pentene 3c was performed at 40 °C using catalysts (R)-2a-e
with good turnover rates, giving consistently high trans/cis se-
lectivities > 50:1 (Table 1, entries 11-15). Complexes (R)-2a, (R)-
2b, and (R)-2c displayed similar catalytic activity in the cycliza-
tion of 3c (Table 1, entries 11-13), but as for substrates 3a and
3b, the highest resolution factor (f > 50) was observed for the
cyclohexyldiphenylsilyl-substituted binaphtholate complex (R)-
2c. As expected, the triisopropylsilyl-substituted binaphtholate
catalyst (R)-2d exhibited the lowest activity as well as the lowest
efficiency in the resolution of 3c (Table 1, entry 14) in agree-
ment to its general performance in the hydroamination/cycliza-
tion of achiral aminopentenes.!'?! The dicyclohexylphenylsilyl-
substituted complex (R)-2e exhibited the highest activity in the
cyclization of 3c at three times the rate compared to (R)-2a-c
(Table 1, entries 11-13 vs. entry 15), but unfortunately at the
expense of resolution efficiency.

Previous studies have shown that the sterically more de-
manding a-alkyl substrates, such as the benzyl-substituted 3b
and the cyclohexyl-substituted 3d exhibit significantly dimin-
ished resolution factors using the bis(triarylsilyl)-substituted
binaphtholate catalysts (R)-1a-Ln and (R)-1b-Ln.!">! This obser-
vation is also true for 3d using the cyclohexyldiphenylsilyl-
substituted binaphtholate catalyst (R)-2c (Table 1, entry 19). In-
terestingly, the least reactive, triisopropylsilyl-substituted cata-
lyst (R)-2d resolved 3d most effectively among our available
binaphtholate catalysts, with a resolution factor of 8.9 (Table 1,
entry 20). Among all the tested substrates, cyclization of 3d
proceeded with the lowest trans/cis diastereoselectivity in the
range of 5:1-10:1.

© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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Table 1. Catalytic kinetic resolution of a-substituted 1-aminopent-4-enes./?!

N N
2 mol% cat. i, R R
W\rNHZ o g . \(_7‘ . MNHQ
R [Dglbenzene R

3aR =Me

3b R = CH,Ph trans-4a—d cis-4a—d recovered 3a—d

3¢ R=Ph

3dR=Cy
Entry Subst. Cat. T[Cl  t[h] Conv. [%] transicis®! ee [%]* f

-1a- . [d]
1 /\/\I/NHZ (R)-1a-Y 22 255 53 11:1 72 9.5
2 Me (R)-1a-Lu 22 42 55 10:1 73 8.4
3 3a (R)-2a 25 29.5 49 91 71 14
4 (R)-2¢c 25 13.0 48 71 86 >50
5 (R)-2e 25 4 50 8:1 34.5 28
6 (R)-1a-Y 22 9 50 20:1 42 3.6
Z NH>

7 (R)-1b-Y 22 27 52 20:1 38 2.9
8 (R)-2b 25 42.3 50 20:1 64 8.6
9 (R)-2¢c 25 17.8 48 20:1 82 43

10 (R)-1a-Y 22 95 50 250:1 74 150

Haz

1" (R)-2a 40 41.0 50 250:1 77 18

12 (R)-2b 40 39 54 250:1 86 18

3b
/\/5
13 3c (R)-2¢ 40 39 46 >50:1 78 >50
y\/g\'
3d

14 (R)-2d 40 82 50 =50:1 30 2.4
15 (R)-2e 40 14 45 250:1 57.5 10
16 Hy (R-1aY 22 8 56 49 3.50
17 (R-1bY 22 46 59 54 3.6
18 (R)-2b 25 33 54 5:1 56 48
19 (R)-2¢ 25 43 51 7:1 57 5.9
20 (R)-2d 25 16 58 10:1 80 8.9
21 (R)-2e 25 55 50 6:1 41 35

[a] General reaction conditions: 0.10-0.20 mmol substrate ([sub.] = 0.2-0.5 m), 2 mol-% cat., [Dg]benzene, Ar atm. [b] Trans/cis ratio of products. [c] Enantiomeric
excess of recovered starting material 3a—d. [d] Data from ref.'2! [e] Data from ref.l'"]

In order to identify the factors governing the high efficiency
= Ksrlkrs

of the cyclohexyldiphenylsilyl-substituted binaphtholate com-

plex (R)-2c in the kinetic resolution process, we started a more Rl + [cat-S] ksr [cat-R] + [S]
detailed investigation of the kinetic resolution of aminoalkenes kgrs
using the general model (Scheme 2).1129:15.19] lks lkﬁ‘

The two diastereomeric substrate-catalyst complexes [cat-S]
and [cat-R] readily interconvert with an equilibrium constant
ias : . _
K (Equation 1) and each of the complexes reacts with a corre Scheme 2. The general model for the kinetic resolution of aminoalkenes ([S],

sponding rate constant (kg and ks) to give the corresponding  (r] = substrate enantiomers; [cat-S], [cat-R] = substrate-catalyst complex of
hydroamination products. The rate of interconversion between  respective substrate enantiomer).

(S)-product (R)-product
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the two substrate-catalyst complexes is rapid even at low tem-
peratures and significantly higher than both rates of cycliza-
tion.[12d]

kﬂ_ [cat — R][S] "

dias — - o
K = s~ Tcat =SIIR]

The resolution factor f is determined by the equilibrium con-
stant K%* and the cyclization rate constants of the two dia-
stereomeric substrate-catalyst complexes (Equation 2),2% which
may be determined independently.
f= K dias k_R 2)

ks

For pseudo-first-order reactions the resolution factor can be
expressed as a function of conversion C and ee of recovered
substrate (Equation 3).'”!

_ In[(1-C)(1 —ee)] 3)

T In[(1-0)(1 +ee)]

According to Equation 3, the resolution factor f for 3a using
the binaphtholate catalyst (R)-2c can be determined by plotting
In[(1-O)(1 - ee)] vs. In[(1-C)(1 + ee)] (Figure 2). The relationship
between conversion and enantiomeric excess ee is expressed
by Figure 3.

In[(1-C)(1+ee)]
-0.04 -0.02 0.00

-0.03 -0.01

T 0.5

y = 89.676x + 0.0402
R?=0.9993

In[(1-C)(1-ee)]

Figure 2. Plot of In[(1-C)(1 - ee)] vs. In[(1-C)(1 + ee)] for the kinetic resolution
of 3a using binaphtholate catalyst (R)-2c at 25 °C.

Inspired by the high resolution factor for the methyl-substi-
tuted aminopentene 3a obtained with the cyclohexyldiphenyl-
silyl-substituted binaphtholate catalyst (R)-2c at 25 °C, a large-
scale kinetic resolution of 3a was performed with (S)-2¢, giving
(5)-3a (95 % ee) in 38 % re-isolated yield at 52 % conversion.
The yield of (S)-3a is lower than expected due to its volatility
(b.p. 114-116 °C at 760 Torr). The enantioenriched a-substituted
aminopentenes 3b-3d were also prepared using (R)-2c and the
resolution data are summarized in Table 2.
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Figure 3. Dependence of enantiomeric excess of recovered starting material

on conversion in the kinetic resolution of 3a with (R)-2c at 25 °C. The line
was fitted to a resolution factor f = 90.

The rate constants ke and kg, for the cyclization of the
matching and mismatching substrate-catalyst combination, re-
spectively, were obtained via kinetic measurements of the cycli-
zation rates of enantioenriched (S)-3a using (R)-2c (Figure 4)
in the temperature range of 25-50 °C for the faster matching
substrate-catalyst combination, respectively the cyclization
of (5)-3a using (S)-2c (Figure 5) in the temperature range
of 25-55 °C for the slower mismatching substrate-catalyst com-
bination.

0.14
0.12 - ®at25°C
+at30°C

0.10
= mat 40 °C
PR Aat50°C
d

0.06 +

0.04

0.02

0.00 4

O 10 20 30 40 50 60 70 8 90 100 110 120
t/ min

Figure 4. Time dependence of the substrate concentration in the hydroamin-

ation of (S)-3a using (R)-2¢ {matching pair; [(S)-3a], = 0.140 mol L', [(R)-2¢] =

2.73 mmol L7'}. The straight lines represent the least square linear regression.

The kinetic data and resolution parameters of a-substituted
aminopentenes were determined with the alkylarylsilyl-substi-
tuted binaphtholate catalysts 2b, 2¢, and 2e (Table 3). In agree-

Table 2. Large-scale preparation of enantioenriched a-substituted aminopentenes via kinetic resolution using binaphtholate catalyst 2¢.[?!

Subst. Cat. T [°C] t [h] f ol Conv. [%] Yield (ee, config.) [%]™
3a (S)-2¢ 25 9 90(5) 52 38 (95, 5)
3b (R)-2¢ 25 225 43 57 40 (95, S)
3c (R)-2¢ 40 31 > 50 54 40 (97, S)
3d (R)-2¢ 25 9.5 5.6(3) 77 18 (95, S)

[a] General reaction conditions: 0.8-1.5 g of racemic aminoalkene ([sub.] = 0.9-1.3 m), 2 mol-% cat., benzene, Ar. [b] Taken from Table 3 (for 3a and 3d) and
Table 1 (for 3b and 3c). [c] Isolated yield and ee value of recovered (5)-3. All recovered aminoalkenes have (S) configuration, because the CIP priorities differ
between substrate 3a on the one side and substrate 3b—d on the other side. Thus, the (S)-catalyst enantiomer is the matching catalyst for substrate (R)-3a,

while it is the (R)-catalyst enantiomer for substrates (R)-3b-d.
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Figure 5. Time dependence of the substrate concentration in the hydroamin-
ation of (S)-3a using (S)-2¢ {mismatching pair; [(S)-3al, = 0.140 mol L',
[(5)-2¢] = 2.73 mmol L™'}. The straight lines represent the least square linear
regression.

Table 3. Kinetic resolution parameters of a-substituted aminopentenes.?
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ment with the kinetic measurements reported previously for
the methyl-substituted 3a using the triphenylsilyl-substituted
binaphtholate catalyst 1a-Y,/">! the Curtin-Hammett pre-equi-
librium favors the mismatching substrate-catalyst combination
(K925 < 1) when 3a is paired with catalysts 2b and 2e (Table 3,
entries 1, 2 and 7). On the contrary, the equilibrium for the
cyclohexyldiphenylsilyl-substituted binaphtholate catalyst 2c
and substrate 3a favors the matching substrate-catalyst com-
plex (K92 > 1); thus, effectively enhancing the efficiency of the
kinetic resolution process. The relative rate ksg/Kso,, remains in
the range of 9.1(3)-18.9(2) for the methyl-substituted amino-
pentene 3a with our novel binaphtholate catalysts 2b, 2¢, and
2e at temperatures ranging from 25 to 50 °C, with the highest
ratio being achieved with 2c¢ at 25 °C. Dramatic differences in
the trans/cis diastereoselectivities in the cyclization of (S)-3a us-
ing (R)-2c (Figure 6, trace a, trans/cis = 39:1 for the matching

WI;IHz 1-2 mol% (R)- or (S)-cat. \&)R
R [Deglbenzene

(S)-3a R = Me trans and cis

(S)}3b R = CH,Ph 4a-d

(S)-3¢ R = Ph

(S)3d R = Cy
Entry  Subst. cat  T[C fat Ketow KiastKtow fe Ketas fransicis

[1073s71® [102s71] fast (slow, conv.M [%])

1 3a 1a¥ 30 8.5 1.12 76 6.4 0.84 >30:1.0 (2.8:1.0, 100}
2 3a b 25 231(1)  0215(2) 10.7(1) 58(1)  054(1)  35:1.0(2.2:1.0,77)
3 3a 2 25 735(5)  0.388(4) 18.9(2) 0B 48(3) 39:1.0 (1:1.2, 100)
4 3a 2 30 10.26(5)  0.730(1) 14.1(1) 775)  5.5(4) 38:1.0 (1:1.25, 100)
5 3a 2 40 193(1)  1.64(1) 11.8(1) 82 390 38:1.0 (1:1.3, 100)
6 3a 2 50 47.26)  3.49(1) 14.8(2) 237(4)  160(3)  38:1.0 (1:1.2, 100)
7 3a 2e 25 3.08(1)  0.34(1) 9.1(3) 28(1)  031(1)  35:1.0 (1.5:1.0, 60)
8 3b 1aY 30 25 0.26 96 26 0.27 >30:1.0 (>30.0:1.0, 85)
9 3b b 40 345(4)  0.432(4) 7.3(1) 6.1(4)  084(6)  24:1.0 (4.0:1.0, 65)
10 3b 2 40 5.7(1) 0.437(8) 13.0(3) 32(1)  2.501) 25:1.0 (1.0:1.0, 70)
1 3b e 40 2846)  0.542(7) 5.2(1) 55(1)  106(3)  21:1.0 (1.7:1.0, 77)
12 3c 1aY 60 1.3 159 7.1 115 16 >50:1.0 (8.8:1.0, 99)1
13 3¢ b 70 535(2)  0.48(1) 11.2(2) 1166) 104(5)  >50:1.0 (3.2:1.0, 45)
14 3c 2 60 378(2)  0.24(1) 15.7(7) 248(3) 157(7)  >50:1.0(7.0:1.0, 30)
15 3c 2 70 6.90(6)  0.46(1) 15.0(4) 166@8)  1.11(6)  >50:1.0 (6.9:1.0, 30)
16 3c 2 70 391(3)  0.65(1) 6.0(1) 76(3)  127(5)  >50:1.0(2.2:1.0, 100)
17 3d 1aY 30 85 1.0 85 27 0.32 9.0:1.0 (1.4:1.0, 90)¥!
18 3d b 25 4475)  1.19(2) 3.76(8) 47(2)  125(6)  24:1.0 (1.0:2.4, 100)
19 3d 2 25 342(1)  0.790(3) 3.95(2) 56(3)  142(8)  20:1.0 (1.0:1., 100)
20 3d 2e 25 193(1)  1.11(1) 1.74(2) 36(1)  207(4)  21:1.0 (1.2:1.0, 100)

[a] General reaction conditions: 58-74 umol (5)-3a-d ([sub.] = 0.11-0.14 m), 2 mol-% cat., [D¢]benzene, Ar. [b] ke, = kg for the reaction of (S)-3a with (R)-
catalyst; ke.o = ks for the reaction of (S)-3b, (5)-3¢, (5)-3d with (S)-catalyst. [c] Determined from the slope of plot of In(1-C)(1 - ee) vs. In(1-C)(1 + ee), with at
least three data points. [d] Conversion for mismatching substrate at which trans/cis ratio was determined. [e] Data from ref.l'! [f] Data from ref.['24!
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Figure 6. 'TH NMR spectra of hydroamination products 4a obtained with the matching substrate—catalyst pair (S)-3a and (R)-2c¢ (trace a) and with the

mismatching substrate-catalyst pair (S)-3a and (S)-2c (trace b).

substrate—catalyst pair) and (S)-3a using (S)-2c (Figure 6, trace
b, trans/cis = 1:1.2 for the mismatching substrate—catalyst pair)
account for the low trans/cis selectivities observed in the kinetic
resolution of racemic 3a (trans/cis = 7-9:1, Table 1, entries 3-
5). Additionally, the trans/cis ratios decrease gradually as the
resolution reaction proceeds (Figure 7). It is noteworthy that
the reaction of (5)-3a using (S)-2¢ (mismatching substrate—cata-
lyst pair) preferentially produced the cis-product at all reaction
temperatures in the range of 25-50 °C (Table 3, entries 3-6).

14
12 -

10

translicis ratio
(=]

0 10 20 30 40 50 60
conversion | %

Figure 7. trans/cis ratio of 4a formed in the kinetic resolution of rac-3a using
2 mol-% of (R)-2c at 25 °C as a function of conversion. The line is drawn as
a guide for the eye.

In agreement to the observations for 3a, the mismatching
substrate-catalyst combination was favored in the Curtin-Ham-
mett pre-equilibrium in the resolution of the benzyl-substituted
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aminopentene 3b with catalyst 2b (Table 3, entry 9). The high
efficiency in the kinetic resolution of 3b with 2c was achieved
through a combination of high relative rate, ks/Ksion, and a
Curtin-Hammett pre-equilibrium in favor of the matching sub-
strate—catalyst pair (K425 > 1) (Table 3, entry 10). Although the
pre-equilibrium was slightly in favor of the matching substrate-
catalyst pair for catalyst 2e, the low ks /k 0, ratio resulted in
an overall low efficiency of the kinetic resolution of substrate
3b (Table 3, entry 11). While the diastereoselectivities remained
high for the matching pair of substrate (S)-3b and the (S)-cata-
lyst, significantly lower trans/cis diastereoselectivities were ob-
served for the mismatching pair with all tested catalysts
(Table 3, entries 9-11), in contrast to previous observations for
catalyst (5)-1a-Y.[']

High diastereoselectivities of up to 50:1 were observed for
the phenyl-substituted aminopentene 3c with all binaphtholate
catalysts (Table 3, entries 12-16). Although the cyclization rate
of the matching substrate—catalyst pair, involving substrate (S)-
3c and catalyst (S)-1a-Y, was about three times faster than that
of (5)-3c and (5)-2c at 60 °C, a higher ks/kg0, ratio was ob-
served for 3¢ with 2c¢ [kes/kson, = 15.7(7) vs. 7.1 with 1a-Y]
(Table 3, entries 12 and 14). As a result, the cyclohexyldiphenyl-
silyl-substituted binaphtholate catalyst 2c was more efficient in
the kinetic resolution of 3c in comparison to 1a-Y.

The alkylarylsilyl-substituted binaphtholate catalysts 2b, 2c,
and 2e behaved quite differently in the kinetic resolution of
the cyclohexyl-substituted aminopentene 3d compared to the
triphenylsilyl-substituted binaphtholate catalyst 1a-Y. The
Ktasi/ksion, ratios were significantly lower for 2b, 2¢, and 2e com-
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pared to 1a-Y; however, this deficiency is overcompensated by
a Curtin-Hammett pre-equilibrium in favor of the matching
substrate—catalyst pair for 2b, 2¢, and 2e (k%2 > 1), whereas
in case of 1a-Y'* the pre-equilibrium favors the mismatching
substrate—catalyst pair (compare Table 3 entries 18-20 with en-
try 17). As a result, 2b, 2¢, and 2e are slightly more efficient
catalysts for the kinetic resolution of 3d in comparison to 1a-Y.

The Eyring plot for kg, and k., (Figure 8) provided an ac-
cess to the activation parameters for the hydroamination/cycli-
zation of (S)-3a using (R)-2¢ (matching substrate—catalyst pair)
[AH* = 43(6) k) mol~!, AS* = -137(18) J mol~" K™']. Because the
reaction of (S)-3a and (S)-2c (mismatching substrate—catalyst
pair) afforded the products with low trans/cis diastereoselectivi-
ties, the activation parameters for each diastereomer were ob-
tained [trans: AH* = 52(3) kJ mol™!, AS* = -138(8) J mol™' K;
cis: AH* = 52(5) kJ mol™', AS* = -135(16) J mol™" K™']. The acti-
vation parameters for the matching and mismatching sub-
strate-catalyst pair seem to be in a similar range to those ob-
tained previously for 3a with catalyst 1a-Y [matching pair:
AH* = 47.3(3.5) ki mol™!, AS* = -128(11) J mol~" K'; mismatch-
ing pair: AH* = 54.9(3.1) kJ mol™', AS* = -121(9) J mol~" K'1.['*]
The negative activation entropy is indicative of a highly orga-
nized transition state.l'2415:21]

UT KA
0.003 0.0031 0.0032 0.0033 0.0034
-32 + + + 4
y =-5160.2x - 16.531
2 =
33 - R?=0.9667
.34 +
Sﬂ + matching pair
E 35 4 y =-6275.2x - 16.213 i ) .
< R2=0.9743 Emismatching pair (trans)
£ A mismatchin pair (cis)
-36 1
-37 1
y = -6249.6x - 16.583
R*=0.993
.38 L

Figure 8. Eyring plot for the hydroamination/cyclization of (S)-3a using (R)-2¢
(matching pair) and (5)-2¢ (mismatching pair).

Stereomodel for the Kinetic Resolution of o-Substituted
Aminopentenes

According to the proposed stereomodel for the kinetic resolu-
tion of a-substituted aminopentenes using binaphtholate rare-
earth metal catalysts, the diastereomers can be obtained via
possible cyclization pathways as depicted in Scheme 3.[2¢.15]
The stereomodel for the kinetic resolution is in agreement
with the general stereomodel for enantioselective intramolec-
ular hydroamination of aminopentenes by (R)-binaphtholate
rare-earth metal catalysts, in which the Ln-N bond preferen-
tially approaches the re face of the olefin.'?d |n case of the
matching substrate-catalyst pair, the a-substituent of the
aminoalkene rests in an equatorial position of the seven-mem-
bered chair-like transition state in the conformation that facili-
tates the approach of the Ln—-N bond to the olefin from the re
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Scheme 3. Proposed stereomodel for the kinetic resolution of a-substituted
aminopentenes with (R)-binaphtholate yttrium catalysts.'24'5 L = aminoalk-
ene substrate or hydroamination product.

face (Scheme 3, pathway C). In case of the mismatching sub-
strate-catalyst combination, the sterically unfavorable interac-
tion between the substrate and the alkylarylsilyl-substituent of
the binaphtholate ligand restricts the approach of the Ln-N
bond to the olefin from the si face (Scheme 3, pathway A).
Pathway B provides an alternative to pathway A, allowing the
mismatching substrate-catalyst complex to avoid the steric in-
teraction between the substrate and the bulky silyl group. How-
ever, pathway B requires the a-substituent of the amino-
pentene to rest in an axial position, which leads to an unfavor-
able 1,3-diaxial interaction in the chair-like transition state and
possibly steric interaction between the a-substituent R of the
substrate and an alkylarylsilyl-substituent of the binaphtholate
ligand, if the a-substituent R is sufficiently large.

Pathway B accounts for the significantly reduced diastereo-
selectivities which were observed for the mismatching sub-
strate-catalyst combinations when using catalysts 2b, 2¢c, and
2e. Moreover, the cyclization of the mismatching substrate—
catalyst pairs (5)-3a with (5)-2¢, (5)-3d with (5)-2b, and (S)-3d
with (5)-2c generated predominantly the cis-pyrrolidine prod-
ucts; thus, pathway B becomes the preferred pathway. The
exceptionally high efficiency in the kinetic resolution of the
methyl-substituted aminopentene 3a with 2c results from the
Curtin-Hammett pre-equilibrium in favor of the matching sub-
strate-catalyst complex and a high kg,s/ks0, ratio.

The large trans/cis diastereoselectivities, exceeding 50:1, ob-
served for the phenyl-substituted aminopentene 3c in compari-
son to the alkyl-substituted aminopentenes 3a, 3b, and 3d, may
result from a coordinative interaction of the phenyl-substituent
of 3¢ with the metal center'?? or a s-interaction of the phenyl-
substituent with a naphthyl ring of the binaphtholate ligand.

Conclusions

The kinetic resolution of a-substituted aminopentenes via
asymmetric hydroamination/cyclization was studied using rare-
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earth metal catalysts based on 3,3"-bis(alkylarylsilyl)-substituted
binaphtholate ligands. In general the cyclohexyldiphenylsilyl-
substituted binaphtholate catalyst (R)-2c¢ displays high effi-
ciency in the kinetic resolution of the methyl-, benzyl-, and
phenyl-substituted substrates 3a, 3b, and 3c, respectively. The
highest resolution factor of up to 90(5) was observed for 3a
using (R)-2c. Despite having a favorable Curtin-Hammett pre-
equilbrium, the cyclohexyl-substituted aminopentene 3d exhib-
its low efficiency in the kinetic resolution with all binaphtholate
catalysts screened in this study as a result of a low ks/Ksion
ratio.

The activation parameters for the cyclization of (S)-3a with
complex (R)-2c (matching substrate—catalyst pair) and (S)-3a
with complex (5)-2c (mismatching substrate—catalyst pair) are
in line with the previously reported data obtained for the cycli-
zation of 3a using complex 1a-Y.'*! It is noteworthy that the
mismatching substrate-catalyst combination of (S)-3a and (S)-
2c preferentially affords the cis-product. The kinetic resolution
parameters show that high efficiency in the kinetic resolution
of the methyl-substituted 3a with 2c stems from the Curtin-
Hammett pre-equilibrium in favor of the matching substrate-
catalyst combination and a high kgs/ksjo, ratio.

Experimental Section

General Considerations: All operations were performed under an
inert atmosphere of nitrogen or argon using standard Schlenk-line
or glovebox techniques. Solvents and reagents were purified as
stated previously.l'>] Complexes 2a-2e,['?! substrates hex-5-en-2-
amine (3a),1?®! 1-phenylhex-5-en-2-amine (3b),['>¥ 1-phenylpent-4-
en-1-amine (3¢),['?¥ and 1-cyclohexylpent-4-en-1-amine (3d),!'%)
were prepared according to previously described procedures. The
substrates were distilled twice from finely powder CaH,, stored over
molecular sieves, and kept in the fridge of a glovebox. (S)-(+)-a-
Methoxy-o-trifluoro-methylphenylacetic acid (Mosher acid) was
transformed to the corresponding (R)-Mosher acid chloride using
oxalyl chloride/DMF in hexanes.*¥! Enantiomeric excess for 3a-3d
was measured by 'F NMR spectroscopy of the corresponding
Mosher amides as reported previously.['2415!

General Procedure for NMR-Scale Kinetic Resolution of Chiral
a-Substituted Aminopentenes: In a glove box, a screw cap NMR
tube was charged with racemic aminoalkene (20.0 mg, 0.10-
0.20 mmol), ferrocene (3.0 mg, 16.1 umol), [Dglbenzene (to give a
total volume of 0.5 mL), and catalysts (2.0 mol-% with respect to
racemic aminoalkene, 2.0-4.0 umol, 0.060 m in [Dglbenzene). The
NMR tube was capped, immediately removed from the glovebox,
and shaken well to dissolve ferrocene. The reaction mixture was
heated in a thermostatic oil bath, if required. The conversion was
monitored by 'H NMR spectroscopy by following the disappearance
of the olefinic signals of the substrate relative to the internal stan-
dard ferrocene. The reaction was stopped after ca. 50 % conversion
was achieved. The aminoalkene starting material was isolated in
form of the hydrochloride salt and enantiomeric excess was deter-
mined using the previously reported procedure.[2<12

General Procedure for Preparation of Chiral o-Substituted
Aminopentenes by Kinetic Resolution: In a glovebox, a 20 mL
vial was charged with the racemic aminoalkenes (3c: 0.80 g,
5.0 mmol; 3a, 3b, and 3d: 1.50 g, 8.0-9.0 mmol), benzene (5.0 mL),
and 2c (0.5-0.9 mL of solution, 0.20 m in benzene, 0.10-0.18 mmol,
2.0 mol-%). The vial was kept at 25 °C (3a, 3b, and 3d) or heated
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to 40 °C (3c). Small aliquots (20 pL) were syringed to NMR tubes,
which was then diluted with CDCl; (0.55 mL), and a "H NMR spec-
trum was recorded to monitor the conversion. The reaction was
stopped after enantiomeric excess of the starting material reached
at least 95 %ee, determined by "°F NMR spectroscopy of its corre-
sponding Mosher amide at 40-65 °C. The chiral a-substituted
aminopentenes were isolated by the standard benzaldimine work-
up procedurel'2¢124 and were purified by vacuum distillation from
CaH,.

(25)-Hex-5-en-2-amine [(S)-3a]: This compound was prepared by
kinetic resolution using (S)-2c at 25 °C, 52 % conversion after 9 h.
The enantioenriched starting material was recovered as colorless oil
(38 % yield, bp 114-116 °C at 760 Torr, 95 % ee). The NMR spectra
are in agreement with those of rac-hex-5-en-2-amine.?3!

(25)-1-Phenylhex-5-en-2-amine [(S)-3b]: This compound was pre-
pared by kinetic resolution using (R)-2c at 25 °C, 57 % conversion
after 22.5 h. The enantioenriched starting material was recovered
as colorless oil (40 % vyield, 95 % ee, bp 103 °C at 0.2 Torr). The NMR
spectra are in agreement with those of rac-1-phenylhex-5-en-2-
amine.l2d!

(15)-1-Phenylpent-4-en-1-amine (3c): This compound was pre-
pared by kinetic resolution using (R)-2c at 40 °C, 54 % conversion
after 31 h. The enantioenriched starting material was recovered as
colorless oil (40 % yield, 97 % ee). The NMR spectra are in agree-
ment with those of rac-1-phenylpent-4-enylamine.['2

(15)-1-Cyclohexylpent-4-en-1-amine [(S)-3d]: This compound was
prepared by kinetic resolution using (R)-2c at 25 °C, 77 % conversion
after 9.5 hours. The enantioenriched starting material was recovered
as colorless oil (18 % yield, 95 % ee, bp 80 °C at 0.2 Torr). The NMR
spectra are in agreement with those of rac-1-cyclohexylpent-4-en-
1-amine.['®]

General Procedure for Kinetic Catalytic Hydroamination/cycliza-
tion Reactions: In a glovebox, a screw cap NMR tube were charged
with a solution of the enantioenriched a-substituted aminopentene
(2.0 w% in [Dglbenzene, 200-375 pL, 58.0-74.0 umol), ferrocene
(3.0 mg), [Dglbenzene (to give a total volume of 500 pL), and cata-
lyst (2.0 mol-%, 1.16-1.48 umol, 21-24 pL stock solution in [Del-
benzene). The tube was placed in either 400 or 500 MHz NMR ther-
mostatic probe with temperature of 25-55 °C and an arrayed exper-
iment was set up to record "H NMR spectra automatically in time
intervals (30 sec, 1 min, 3 min, 5 min, or 10 min). The conversion
was determined based on the disappearance of the olefinic signals
of the substrate relative to the internal standard ferrocene. The lin-
ear part of the data was fit by least square analysis and k,,s was
determined from the slope a of a plot of concentration of amine
(M) vs. time (min).
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