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Amnestic mild cognitive impairment (aMCI) and Type 2 diabetes mellitus

(T2DM) are both important risk factors for Alzheimer’s disease (AD). We aimed

to investigate whether a T2DM-specific polygenic risk score (PRSsT2DM) can

predict the conversion of aMCI to AD and further explore the underlying

neurological mechanism. All aMCI patients were from the Alzheimer’s disease

Neuroimaging Initiative (ADNI) database and were divided into conversion

(aMCI-C, n = 164) and stable (aMCI-S, n = 222) groups. PRSsT2DM was

calculated by PRSice-2 software to explore the predictive efficacy of the aMCI

conversion to AD. We found that PRSsT2DM could independently predict the

aMCI conversion to AD after removing the common variants of these two

diseases. PRSsT2DM was significantly negatively correlated with gray matter

volume (GMV) of the right superior frontal gyrus in the aMCI-C group. In

all aMCI patients, PRSsT2DM was significantly negatively correlated with the

cortical volume of the right superior occipital gyrus. The cortical volume of

the right superior occipital gyrus could significantly mediate the association

between PRSsT2DM and aMCI conversion. Gene-based analysis showed that

T2DM-specific genes are highly expressed in cortical neurons and involved in

ion and protein binding, neural development and generation, cell junction and

projection, and PI3K-Akt and MAPK signaling pathway, which might increase

the aMCI conversion by affecting the Tau phosphorylation and amyloid-beta

(Aβ) accumulation. Therefore, the PRSsT2DM could be used as a measure to

predict the conversion of aMCI to AD.
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Introduction

Alzheimer’s disease (AD), a neurodegenerative disease, is
the main cause of dementia. The etiology of AD is unclear;
some researches supports that it might be related to multiple
factors such as genetics, living habits, age, and education
(Norton et al., 2014; Adams et al., 2015; Cuyvers and Sleegers,
2016). Today, there is no effective cure for AD, which burdens
society and families. Therefore, early prevention has become an
important measure to reduce AD’s prevalence. Amnestic mild
cognitive impairment (aMCI) is a cognitive deficit with memory
impairment as the main manifestation (Winblad et al., 2004).
Patients with aMCI have a higher risk of converting to AD,
and approximately 12% progress to AD yearly (Palmer et al.,
2008). Therefore, finding the risk factors that can predict aMCI
conversion to AD is important for early AD prevention (Xu
et al., 2018).

Previous studies have shown that education level
(Tokuchi et al., 2014), clinical history (Agostini et al., 2016),
neuropsychology (Mazzeo et al., 2016; Jang et al., 2017),
cognitive behavior level (Julayanont et al., 2014), genetics
(Adams et al., 2015; Xu et al., 2018), and neuroimaging (Yuan
et al., 2009) can be used to predict aMCI conversion to AD.
As a risk factor for AD, Type 2 diabetes mellitus (T2DM) (Ma
et al., 2015) and blood glucose levels (Albai et al., 2019) also had
predictive values for the aMCI conversion to AD. Individuals
with both T2DM and APOE 4 allele had a risk ratio (RR) of
5.5 for AD compared to those with neither (Peila et al., 2002).
T2DM and AD share some similar pathological findings, such
as decreased insulin expression level, insulin-like growth factor
1 (IGF-1), insulin receptor substrate, and increased amyloid
precursor protein (APP) expression level (de la Monte and
Wands, 2005). The deficiency of insulin-PI3K-AKT signaling
was more severe in individuals with T2DM and AD than
in those with either alone. The level of PI3K-AKT signaling
was negatively correlated with tau phosphorylation (Liu
et al., 2011). Deposition of Aβ in brain and islet cells exhibits
similar pathogenicity in T2DM and AD (Beeler et al., 2009).
Autopsy studies in T2DM patients have shown that amyloid
plaques and neurofibrillary tangles are also present in the
hippocampus of T2DM patients (Peila et al., 2002). All these
studies demonstrated a link between T2DM and AD (Hossain
et al., 2020), and T2DM is the risk factor for AD. Genetic
factors play an important role in the pathogenesis of T2DM
(Sladek et al., 2007) and AD (Lambert et al., 2013; Cuyvers
and Sleegers, 2016). Genome-wide association studies (GWAS)
have found that the occurrence of T2DM and AD is associated
with multiple single nucleotide polymorphisms (SNPs), and
they have many shared genetic variation sites (Wang et al.,
2017). A longitudinal study showed that the T2DM risk SNP
(rs391300) could predict aMCI’s conversion to AD (Girard
et al., 2018). However, it is still not clear whether the cumulative
genetic risks of T2DM can improve the ability to predict aMCI’s

conversion to AD. Thus, this study aimed to investigate if
the cumulative T2DM-specific genetic risks could predict the
conversion from aMCI to AD. If so, we further explored the
possible neurobiological mechanisms underlying the predictive
effect.

In this study, a polygenic risk score (PRS) was used to assess
the accumulated genetic risks for T2DM and AD. The PRS is
one of the best indicators for evaluating the polygenic risk of
disease and has been used to predict disease conversions, such
as using the PRS of AD (PRSAD) (Adams et al., 2015) and major
depression (PRSMDD) (Xu et al., 2018) to predict the aMCI
conversion to AD. It is well-known that brain atrophy is one
of the main features of AD (Fox and Schott, 2004). Multiple
studies have reported that relatively reduced brain volumes
in both aMCI and AD patients, including the hippocampus,
parahippocampal gyrus, cingulate, and other brain regions (Jack
et al., 1999, 2008; Fox and Schott, 2004; Karas et al., 2004), and
the atrophy of brain structure can be used as the biomarker
to predict the conversion of aMCI to AD (Visser et al., 2002;
Stoub et al., 2005; Yuan et al., 2009; Risacher and Saykin,
2013). Xu et al. (2018) further found that the left hippocampal
volume mediates the predictive effect of the PRSMDD on the
conversion of aMCI to AD. However, no studies have reported
whether brain structures could mediate the predictive effect of
the T2DM genetic variants on the conversion of aMCI to AD.
Mediation analysis was widely used to explore the underlying
mechanism of a known relationship: one variable influences
another variable through a mediator variable (VanderWeele,
2016). Firstly, we used the genetic variants specific to T2DM
to calculate PRSsT2DM and investigate if the PRSsT2DM could
predict the conversion from aMCI to AD after excluding the
common genetic variants with AD. Secondly, mediation analysis
was used to assess whether the PRSsT2DM effect on the prediction
was mediated by the brain structures, including voxel-based
morphometry (VBM) and surface-based morphology (SBM).
Finally, genetic variants for calculating the PRSsT2DM and
genetic variants in GWAS of T2DM were fine-mapped into
genes. Then enrichment analysis of those overlapped genes was
conducted to identify the potential functions of these genes. In
addition, cell type-specific expression analysis was performed
to explore the specific cell types these genes are significantly
expressed.

Materials and methods

Base dataset and target dataset

During the PRS calculation, a base dataset was needed
to calculate the genetic effect size associated with the disease
status at a predefined threshold. In this study, GWAS
data of the Diabetes Genetics Replication and Meta-analysis
(DIAGRM) (Mahajan et al., 2018) and International Genomics
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of Alzheimer’s Project (IGAP) (Lambert et al., 2013) were
used as the base dataset to calculate PRST2DM and PRSAD
in a target dataset, respectively. The target dataset provided
by all stages of Alzheimer’s Disease Neuroimaging Initiative
(ADNI1/GO/2/3).1 There are 975 patients in total with the
baseline diagnosis of aMCI. Diagnosis of aMCI was made
according to the criteria by Petersen (Petersen et al., 1999).
Among them, 522 patients had no whole-genome sequencing
information, five patients had no follow-up information, one
patient’s follow-up was too short (≤3 months), 52 patients
converted into normal controls during the follow-up, eight
patients converted into AD then back to aMCI during the
follow-up, and one patient’s structural MRI image could
not be downloaded. After excluding the above subjects, 386
aMCI patients’ data were retained in the subsequent statistical
analyses. According to the follow-up outcome in March 2019
(the follow-up time range is 6–156 months, an average of
50.69 months), 386 aMCI patients were divided into conversion
(aMCI-C, n = 164) and stable (aMCI-S, n = 222) groups. The
final clinical diagnosis will be based on the last follow-up results
if the subject is missing during the follow-up.

Genotyping and quality control

The whole-genome sequencing was performed on Illumina
HiSeq2000 platform. The genome-wide SNPs were genotyped
using the Illumina Omni 2.5M Bead Chip for the ADNI subjects.

Quality control was performed at both the individual level
and SNP level. Subjects with a missing genotyping rate of
>0.05, sex inconsistency, possible relative relationships, and
European population outliers identified by multidimensional
scaling (MDS) were excluded. The first four components
of MDS analysis were used as covariates in subsequent
analysis. SNPs with a missing call rate of >0.05, minor allele
frequency <0.01, a significant deviation from Hardy-Weinberg
equilibrium (P < 5 × 10−6), and ambiguous strands were
excluded. Finally, 9,845,494 SNPs from 386 subjects were
included in the subsequent analyses.

Polygenic risk score calculation

In the base dataset, the associations between the SNPs and
disease status were calculated at predefined P threshold (PT)
values ranging from 5 × 10−5 to 0.5 with an increment of
5 × 10−5. Under each PT value, we removed the effects of
SNPs in linkage disequilibrium (LD) in each clumped region
(excluding SNPs with r2 > 0.1, within a 250-kb window)
and selected the index SNPs (iSNPs) with the most significant
P-value from each clumped association region. Thus, the

1 http://adni.loni.ucla.edu

information of the risk alleles and effect sizes of the iSNPs were
obtained for each PT value. In the target dataset, the PRSice-2
(v2.2.6) software (Choi and O’Reilly, 2019) was used to calculate
the PRS according to Equation 1.

PRS =
∑

i

Si × Gi

M
(1)

Si is the number of risk alleles of iSNPs, Gi is the effect sizes
(natural logarithm of the odds ratio) of the iSNPs, and M is the
number of iSNPs.

In this study, the logistic regression method was used to
assess the predictive effects of the PRSs on the conversion from
aMCI to AD after controlling for sex, age, educational years
at baseline, the number of APOEε4, and the first four MDS
components for population stratification. Nagelkerke’s R2 was
used to estimate the percentage of the variance predicted by the
PRS in the regression model. Thus, we could obtain the best PT
values for calculating PRS with the best predictive abilities in
the target dataset. We calculated both PRST2DM and PRSAD to
explore the predictive effects of the two groups of risk genes on
the conversion from aMCI to AD.

In this study, we aimed to evaluate the predictive effect
of the PRS specific to T2DM (PRSsT2DM) on the conversion
from aMCI to AD. Therefore, we removed the common
genetic variants of T2DM and AD and reconstructed PRSsT2DM

and PRSsAD. Finally, the four groups of PRS values were
z-transformed before being used in the statistical analyses.

Magnetic resonance imaging data
acquisition and preprocessing

All imaging data are publicly available and were downloaded
from the ADNI website (see text footnote 1). Following
the ADNI acquisition protocol, three-dimension T1 weighted
imaging (3D-T1WI) was scanned by 1.5T (ADNI1) or 3.0T
(ADNIGO/2) MR scanner with a magnetization prepared
rapid gradient echo (MPRAGE) sequence at 54 sites. Image
corrections involved calibration, geometry distortion, and
reduction of the intensity of non-uniformity applied to each
image by the ADNI. We downloaded the corrected 3D-T1WI
images of 386 aMCI patients for subsequent analysis.

Statistical Parametric Mapping software package (SPM122)
and the voxel-based morphometry (VBM) toolbox CAT12.6-
rc13 were used to preprocess the 3D-T1WI images. The
preprocessing processes included bias-field-corrected, tissue-
classified, DARTEL-based spatial normalization, segmentation,
modulation, and smooth with a Gaussian kernel with a full
width at half maximum of 8 mm.

2 http://www.fil.ion.ucl.ac.uk/spm

3 http://dbm.neuro.uni-jena.de/cat12/
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FreeSurfer (version 5.3.04) was used to reconstruct the
cerebral cortex using the SBM method. In brief, 3D-T1WI
images of all subjects were registered to the MNI305 template
with an affine way, and then the skulls were stripped. White
matter and pial surfaces were constructed with a triangle area
called a vertex unit. We visually inspected all images and
segmentation quality and manually edited them as necessary.5

Vertex-wise cortical thickness was obtained by calculating the
shortest distance between the pial and white surface. Vertex-
wise surface area was calculated by assigning one-third of
each triangle’s area to each of its vertices. Vertex-wise cortical
volume was calculated by multiplying the surface area by cortical
thickness (Fischl and Dale, 2000; Han et al., 2006). The cortical
thickness, surface area, and cortical volume were resampled at
1 mm resolution and smoothed with a Gaussian kernel with a
full width at half maximum of 10 mm.

Statistical analysis

Demographic analysis
The Statistical Package for the Social Sciences (SPSS,

Armonk, NY, United States: IBM Corp) version 22.0 software
package was used for demographic analysis. The chi-square
test was used to compare the gender, APOEε4 carrier state,
and diabetes condition between the aMCI-C and aMCI-S
groups. The independent-sample t-test was used to compare
the differences in age, educational years, fasting blood glucose
levels, and PRS values between the two groups. Considering
that the Aβ and the tau protein are the main AD markers, we
further compared the difference in the Aβ and tau level of the
cerebrospinal fluid (CSF) biomarkers between the aMCI-S and
aMCI-C groups. The statistical significance threshold was set at
P < 0.05.

Polygenic risk score analysis
The logistic regression method was used to test the

predicting effect of PRS on the conversion from aMCI to AD
after controlling for sex, age, educational years at baseline, the
number of APOEε4, and the first four MDS components for
population stratification. The receiver operating characteristic
(ROC) curves were built with the four groups of PRS
as independent variables, and the areas under the ROC
curves (AUC), sensitivities, and specificities were calculated.
Considering the possible impact of the Aβ and tau level on
the results, we further performed the logistic regression in 299
patients with the Aβ and tau data after extra controlling the
Aβ and tau level.

To clarify the associations between the PRS levels and
conversion rates and conversion risks, the 386 aMCI patients

4 http://surfer.nmr.mgh.harvard.edu/

5 http://freesurfer.net/fswiki/Edits

were trisected into three groups according to PRSsT2DM and
PRSsAD values, respectively. The bottom third (129 patients) was
defined as the low-risk group, the middle third (129 patients)
as the middle-risk group, and the upper third (128 patients) as
the high-risk group. The chi-square test was used to compare
the difference in conversion rate from aMCI to AD among the
three groups. Besides, survival analysis was conducted using
a Cox proportional hazards model with the PRSsT2DM and
PRSsAD groups (low/middle/high) as independent variables,
age, education years, gender, and APOEε4 carrier status as
covariates. Finally, hazard ratios (HRs) were used to estimate the
predictive effect.

Imaging analysis
Voxel-based morphometry analysis was performed using

SPM12; Surface-based morphometry (SBM) was analyzed
using the QDEC package of FreeSurfer software version 5.3.
A multiple regression analysis was conducted to identify the
brain regions whose GMV, cortical thickness, surface area, or
cortical volume were significantly correlated with the PRSsT2DM

while controlling for the age, gender, education, APOEε4 carrier
status, the first four components of MDS, MRI field strength,
and data collection sites. Monte Carlo simulation was used
to correct multiple comparisons with the voxel- and vertex-
level thresholds of P < 0.001, simulation times of 5,000, and
cluster-level P < 0.05. The brain areas significantly correlated
with the PRSsT2DM were defined as the regions of interest
(ROI). The average values of the structural indices within the
ROI were extracted for subsequent ROI-based correlation and
mediation analysis.

Mediation analysis
The PROCESS (Hayes, 2013) toolkit plugged in SPSS 22.0

was used for mediation analysis. We defined the PRSsT2DM as the
independent variable, the imaging indices within each ROI as
the mediation variable, and the aMCI conversion status (aMCI-
S vs. aMCI-C) as the binary dependent variable. We tested
the mediation effect with bias-corrected bootstrap, bootstrap
samples were 5,000, and CI was 95%. When the 95% CI does
not contain zero, it is considered a significant mediating effect.
The percentage of interpretable variance by mediation effect was
calculated as indirect effect size divided by total effect size.

Fine-mapping type 2 diabetes mellitus-specific
genetic variants into genes

The T2DM-specific genetic variants were fine-mapped
into genes using the software MAGMA (de Leeuw et al.,
2015) to evaluate the biological function of these genetic
variants. We specified a window size in five kilobases upstream
and downstream according to the UCSC Genome Browser
GRch37/hg19 release.6 Meanwhile, the genetic variants of the

6 https://genome.ucsc.edu/
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GWAS data of the Diabetes Genetics Replication and Meta-
analysis (DIAGRM) were fine-mapped into genes (Mahajan
et al., 2018) with a threshold of P < 0.05 using MAGMA. The
overlapped genes of the above two groups of genes were used in
the following analysis.

Gene enrichment analyses of gene ontology
and kyoto encyclopedia of genes and genomes

For the identified genes, enrichment analyses for gene
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) were performed using an open online tool, g:Profiler
(Raudvere et al., 2019).7 All enriched GO and KEGG terms were
Bonferroni corrected using a threshold of P < 0.05 for statistical
significance.

Cell type enrichment analysis
The online cell type-specific expression analysis (CSEA) tool

(Dougherty et al., 2010)8 was used to identify the cell types
in which the fine-mapped genes were specifically expressed.
Fisher’s exact test was used in the tool, and false discovery
rate (FDR) was used for correcting multiple comparisons
(Benjamini and Hochberg method, P < 0.05). The specificity
index probability (pSI) values were set at 0.05, 0.01, 0.001, and
0.0001, respectively.

Results

Demographic analysis

The demographic and PRS results are shown in Table 1.
There was no significant difference in gender, education, blood
glucose level, and diabetes condition between the aMCI-C and
aMCI-S groups (P > 0.05). The age of the aMCI-C group was
slightly older than that of the aMCI-S group (P < 0.05). The
proportion of APOEε4 carrier and the four groups of PRS
were higher in the aMCI-C group than in the aMCI-S group
(P < 0.001). There were significant differences in the Aβ and
tau levels in the CSF between aMCI-S and aMCI-C groups
(Supplementary Table 1).

PRST2DM could predict the amnestic
mild cognitive impairment conversion
to Alzheimer’s disease

When the T2DM-GWAS data was taken as the base
dataset, the PRST2DM calculated at PT = 0.0088 exhibited
the best predictive effect on the aMCI conversion to AD

7 https://biit.cs.ut.ee/gprofiler/gost

8 http://genetics.wustl.edu/jdlab/csea-tool-2/

(P = 6.86 × 10−4) (Figure 1A, the detailed information at
different PT values are listed in the Supplementary Table 2)
and explained 3.74% of variance based on 22,763 index SNPs
(Table 2). In addition, the PRST2DM in the aMCI-C group was
significantly higher than in the aMCI-S group (Table 1 and
Figure 1B).

The PRSAD calculated at PT = 0.03645 showed the
best predictive effect on the aMCI conversion to AD
(P = 1.45× 10−5) (Figure 1D) and explained 6.15% of variance
based on 29,321 index SNPs (Table 2). The PRSAD in the aMCI-
C group was significantly higher than in the aMCI-S group
(Table 1 and Figure 1E).

PRSsT2DM could independently predict
the amnestic mild cognitive
impairment conversion to Alzheimer’s
disease

After the common genetic variants (n = 237) of the two
diseases were removed, the PRSsT2DM still exhibited a significant
predictive effect on the aMCI conversion (P = 5.06× 10−4) and
explained 3.93% of the variance, which indicated T2DM-specific
genetic variants could independently predict the conversion
from aMCI to AD. After extra controlling the Aβ and tau level
in the CSF, logistic regression analysis showed the PRSsT2DM

still exhibited a significant predictive effect on the aMCI
conversion to AD (β = 0.461, P = 0.001). The PRSsAD could also
independently predict the aMCI conversion (P = 9.26 × 10−6)
and explain 6.44% of the variance.

The ROC curves of the four PRSs predictive models are
shown in Figure 2, and the AUC, sensitivities, and specificities
are listed in Table 2.

Differences of amnestic mild cognitive
impairment conversion rates between
polygenic risk score subgroups

According to the PRSsT2DM and PRSsAD, 386 aMCI patients
were divided into low-, middle-, and high-risk subgroups,
respectively. The three PRSsT2DM subgroups exhibited a
significant difference in the aMCI conversion rate (χ2 = 14.30,
P = 7.87 × 10−4). A significant difference in aMCI conversion
rate in PRSsAD subgroups was also found (χ2 = 19.18,
P = 6.83 × 10−5) (Figure 3). Cox survival analysis showed
that the risks of aMCI conversion to AD in the middle
PRSsT2DM group (HRs, 0.67; 95% CI, 0.46–0.97; P = 0.034)
and the low PRSsT2DM group (HRs, 0.60; 95%CI, 0.41–
0.88; P = 0.009) were lower than in the high PRSsT2DM

group (Figure 1C). Additionally, aMCI patients in the high
PRSsT2DM group converted to AD about 5 months on average
earlier than the middle PRSsT2DM group and a mean of
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TABLE 1 Intergroup comparisons of the demographic information and polygenic risk score (PRS) values.

Variables aMCI-S (n = 222) aMCI-C (n = 164) Statistics P

Males, n 136 100 0.003a 0.955

Age at baseline, years 72.48 (7.37) 73.96 (6.78) −2.018b 0.044

Educational years 15.89 (2.95) 16.02 (2.91) −0.418b 0.676

Blood glucose, mmol/L 5.68 (1.04) 5.59 (0.93) 0.832b 0.406

Diabetes condition 19 16 0.164a 0.685

APOE 4 carriers, n 80 106 30.897a <0.001

PRST2DM −0.17 (0.99) 0.22 (0.98) −3.864b <0.001

PRSsT2DM −0.17 (0.99) 0.23 (0.97) −3.963b <0.001

PRSAD −0.20 (0.95) 0.27 (1.00) −4.714b <0.001

PRSsAD −0.21 (0.95) 0.28 (1.00) −4.866b <0.001

Data are shown as mean (SD) or number. The PRS are z-transformed. P-values in bold indicate there are significant differences between groups.
aχ2 value. bT value.

FIGURE 1

The predictive effects of polygenic risk scores (PRSs) on the amnestic mild cognitive impairment (aMCI) to Alzheimer’s disease (AD). (A,D) The
bar plots show the predictive effects of the PRS constructed by the best-fit PT and other eight broad PT values (0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,
and 1) on the conversion of aMCI. The y-axis shows PRS Nagelkerke’s pseudo R2 of the predicted model. The color bar shows the logarithm of
P-value. (B,E) The y-axis shows the frequency of each PRS bin (x-axis). (C,F) Cox proportional hazard model shows the associations between
the PRS and the conversion rate (y-axis) at different time points (x-axis). The orange, green and purple lines show the low, middle and high PRS
groups, respectively.

7 months earlier than the low PRSsT2DM group (average
33.67, 38.25, and 40.10 months, respectively). Accordingly,
the risk of aMCI conversion to AD in the middle PRSsAD
group (HRs = 0.66, 95%CI = 0.47–0.95, P = 0.024) and
the low PRSsAD group (HRs = 0.50, 95%CI = 0.34–0.75,
P = 0.001) was lower than in the high PRSsAD group
(Figure 1F). aMCI Patients in the high PRSsAD group converted
to AD about 13 months on average earlier than the middle
PRSsAD group and a mean of 15 months earlier than the

low PRSsAD group (average 29.10, 42.00, and 44.05 months,
respectively).

The relationship between the PRSsT2DM
and gray matter structure

In the aMCI-C group, the PRSsT2DM was negatively
correlated with the GMV of the right superior frontal gyrus

Frontiers in Aging Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fnagi.2022.964463
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-964463 September 14, 2022 Time: 11:56 # 7

Yang et al. 10.3389/fnagi.2022.964463

TABLE 2 The predictive effects of polygenic risk score (PRS) on the conversion of amnestic mild cognitive impairment (aMCI) to
Alzheimer’s disease (AD).

PRS PT Full.R2 PRS.R2 PRS.P iSNPs Specificity Senstivitity AUC ROC.P

PRST2DM 0.0088 17.33% 3.74% <0.001 22763 0.703 0.518 0.613 <0.001

PRSAD 0.03645 19.75% 6.15% <0.001 29321 0.486 0.744 0.637 <0.001

PRSsT2DM NA 17.53% 3.93% <0.001 22526 0.698 0.518 0.616 <0.001

PRSsAD NA 20.04% 6.44% <0.001 29084 0.658 0.579 0.640 <0.001

PT , P-values threshold of genome-wide association studies; Full.R2 , full Nagelkerke’s pseudo R2 of logistic regression; PRS.R2 , PRS Nagelkerke’s pseudo R2 of logistic regression; PRS.P,
P-value of PRS prediction model; iSNPs, numbers of single-nucleotide polymorphisms that constitute PRS; AUC, area under the ROC curve; ROC.P, P-value of ROC curve. P-values in
bold indicate there are significant.

FIGURE 2

Receiver operating characteristic (ROC) curve for four groups of polygenic risk score (PRS). The y-axis shows sensitivity, the y-axis shows
1-specificity.

(MNI coordinates: x = 18, y = 36, z = 55.5; t =−3.97; 458 voxels,
cluster-level P < 0.05) (Figure 4A). The ROI-based correlation
analysis is shown in Figure 4B. A significant negative correlation
was found between the PRSsT2DM and the cortical volume of the
right superior occipital gyrus in all aMCI patients (cluster size:
108.05 mm3; cluster-level P< 0.05) (Figure 5A). The ROI-based
correlation analysis is presented in Figure 5B.

Mediation analysis

The mediation analysis showed that the cortical volume
of the right superior occipital gyrus significantly mediated

the association between the PRSsT2DM and aMCI conversion
(P < 0.05), and the mediation effect could explain 5.8% of the
variance (Figure 6).

Gene-based analyses

Using MAGMA, the 22,526 T2DM-specific genetic variants
were fine-mapped into 6,238 genes based on genomic location
(within a 5 kb window both upstream and downstream,
19,427 among the 22,526 SNPs were located inside genes). The
genetic variants of the GWAS data of the Diabetes Genetics
Replication and Meta-analysis (DIAGRM) were fine-mapped
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FIGURE 3

The difference of amnestic mild cognitive impairment (aMCI) conversion rate in polygenic risk score (PRS) risk groups. The bar plots show the
conversion rates (y-axis) of each PRS risk group (x-axis).

FIGURE 4

Voxel-based morphometry (VBM) analysis. (A) The GMV of the right superior frontal gyrus shows negative correlation with the PRSsT2DM in the
aMCI-C groups (cluster level, p < 0.05). The color bar represents the T value. (B) Regions of interest (ROI)-based correlation analysis between
the PRSsT2DM and the GMV of the right superior frontal gyrus. GMV, gray matter volume.

into 6,330 genes with a threshold of P < 0.05 using
MAGMA. The overlapped 4,667 genes were used in the
following analysis. Detailed fine-mapped genes are listed in
Supplementary Table 3.

By performing GO and KEGG enrichment analyses,
the 4,667 fine-mapped genes were significantly enriched
in multiple GO items and pathways (P < 0.05, Bonferroni
corrected) including molecular function GO items:
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FIGURE 5

Surface-based morphometry (SBM) analysis. (A) The CV of right superior occipital gyrus shows negative correlation with the PRSsT2DM in the all
aMCI patients (cluster level, p < 0.05). The color bar represents the logarithm of P-value. (B) Regions of interest (ROI)-based correlation analysis
between the PRSsT2DM and the CV of right superior occipital gyrus. CV, cortical volume.

FIGURE 6

The mediation analysis. The mediation analysis shows that the cortical volume of right superior occipital gyrus mediates the predictive effect of
the PRSsT2DM on the conversion of amnestic mild cognitive impairment (aMCI), and the mediation effect could explain 5.8% of the variance. The
red arrow shows positive effect, the gray arrows show negative effect. G_occipital_sup = the cortical volume of right superior occipital gyrus.

ion binding (P = 6.49 × 10−14), calcium ion binding
(P = 3.52 × 10−13), and protein binding (P = 1.72 × 10−12)
(Figure 7A); biological processes GO items: nervous system
development (P = 6.84 × 10−38), anatomical structure
morphogenesis (P = 1.47 × 10−31), and generation of neurons
(P = 2.45 × 10−31) (Figure 7B); cellular component GO
items: cell junction (P = 2.11 × 10−35), cell projection
(P = 1.08 × 10−30), and plasma membrane bounded cell
projection (P = 6.30 × 10−30) (Figure 7C). In addition, the
6,267 genes were significantly enriched in oxytocin signaling
pathway (P = 6.66 × 10−8), PI3K-Akt signaling pathway
(P = 3.17 × 10−6), focal adhesion (P = 1.84 × 10−7), circadian
entrainment (P = 1.12 × 10−7), and MAPK signaling pathway
(P = 2.76 × 10−5) in KEGG (Figure 7D). Detailed enrichment
analysis results are listed in Supplementary Table 4.

To assess cell-specific expression of the 4,667 fine-mapped
genes, cell type-specific enrichment analysis was performed.
Under different pSI thresholds (pSI = 0.05, 0.01, 0.001, and
0.0001, permutation corrected), which represents how likely
a gene was specifically expressed in a given cell type relative
to other cell types, the fine-mapped genes showed substantial
overrepresentation, mainly in the cortical neuron (P = 0.011).

Discussion

This study aimed to investigate whether T2DM-specific
genetic risk can predict aMCI’s conversion to AD and further
explore the underlying neurological mechanism. It was found
that T2DM-specific polygenic genetic risk can predict aMCI’s
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FIGURE 7

The top 20 items of GO and KEGG enrichment analyses of fine-mapped genes of T2DM-specific genetic variants. The size of each point
represents fine-mapped gene numbers overlapped with GO or KEGG gene sets. The x-axis represents −log10 P (Bonferroni corrected). The
y-axis represents GO or KEGG terms. (A) Molecular function (B) Biological processes (C) Cellular component (D) KEGG. GO, gene ontology;
KEGG, kyoto encyclopedia of genes and genomes.

conversion to AD, and the cortex volume of the right superior
occipital gyrus might mediate this conversion. Furthermore,
gene-based analyses suggested that T2DM-related genes were
mainly enriched in the cortical neurons and might modulate
ion and protein binding, neural development and generation,
cell junction and projection, PI3K-Akt, and MAPK signaling
pathway, which accelerated the aMCI’s conversion to AD by
affecting Tau phosphorylation and Aβ accumulation (Karran
et al., 2011).

PRSsT2DM independently predicts the
conversion of amnestic mild cognitive
impairment to Alzheimer’s disease

Alzheimer’s disease is a multifactorial neurodegenerative
disorder that lacks a curative treatment. Therefore, early
discovery, diagnosis, and treatment could significantly improve
the patients’ prognosis. The aMCI is a type of syndrome between
normal aging and AD (Winblad et al., 2004), patients with aMCI
are at a high risk of converting to AD. AD risk genes such as

APOEε4 can induce the deposition of tau protein and Aβ in and
out of cells of brain regions, lead to reduced neuronal activity
and loss of synapses, and accelerate brain atrophy in related
areas (Kim et al., 2014), further promote the conversion of aMCI
to AD. Our results confirmed Adams’ finding that the PRSAD
could predict the conversion of aMCI to AD (Adams et al.,
2015).

It has been found that AD and T2DM patients share
some pathological characteristics of the central nervous system.
Hoyer (2000) found that brain metabolism changes, including
impaired glucose utilization and energy metabolism, occurred
in AD patients after the first clinical symptoms appeared. The
metabolic impairment gradually worsens with AD’s progression
(Hoyer et al., 1991). Therefore, some researchers have proposed
that abnormal energy metabolism in AD patients may be caused
by insulin resistance or weakened insulin action in the brain
(Blass et al., 2002; Hoyer, 2004a,b). In addition, some studies
have shown that T2DM risk genes could predict the conversion
of aMCI to AD. For example, a longitudinal follow-up ADNI
study showed that the SNP (rs391300) located on the serine
racemic enzyme (SRR, a risk gene of T2DM) could predict the
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conversion of aMCI to AD (Girard et al., 2018). In this study,
for the first time, we proved that PRSsT2DM could predict the
aMCI’s conversion after the shared iSNPs between PRST2DM and
PRSAD were removed, suggesting that the polygenic genetic risk
of T2DM could be one of the risk factors for the conversion of
aMCI to AD.

Type 2 diabetes mellitus risk genes can lead to impaired
insulin signaling (Meur et al., 2010). The relationship between
impaired brain insulin signaling and AD’s pathological changes
may involve the following aspects: impaired insulin signaling
transduction may lead to elevated glycogen synthase kinase-
3β (GSK-3β) activity and oxidative stress, promoting tau
protein’s hyperphosphorylation; impaired insulin signaling will
inhibit the PI3-K-Akt signaling pathway, resulting in decreased
neuronal activity and loss of synapses; insulin or IGF-1 can
activate the Erk-MAPK pathway and promote the physiological
processing and intracellular transport of β-APP to the plasma
membrane (de la Monte and Wands, 2005). In addition, insulin
receptors are usually highly expressed in brain areas related to
cognition and memory, such as the cortex and hippocampus
(Craft, 2009; Nisticò et al., 2012). Therefore, impaired insulin
signaling-related tau protein increase and Aβ deposition in the
brain may be the plausible neurobiological mechanism that the
PRST2DM predicts the conversion of aMCI to AD.

The relationship between PRSsT2DM
and brain structure

Our study found that the PRSsT2DM was significantly
negatively correlated with the GMV of the right superior frontal
gyrus in the aMCI-C group. A meta-analysis showed that the
GMV of the medial superior frontal gyrus of T2DM patients was
significantly smaller than that of the controls (Liu et al., 2017).
Furthermore, the GMV of the superior frontal gyrus in patients
with T2DM combined with aMCI is significantly smaller than
that of controls (Zhang et al., 2014). These results suggested that
the superior frontal gyrus is prone to atrophy in T2DM patients.
Our finding also indicated that the T2DM-related genetic risks
might modulate the GMV of the superior frontal gyrus in T2DM
patients.

In all aMCI patients, the PRSsT2DM was significantly
negatively correlated with the cortical volume of the right
superior occipital gyrus. Many studies showed structural
changes in the occipital lobe of T2DM patients, including
gray matter atrophy (Zhang et al., 2014; Moulton et al., 2015)
and decreased topological attributes (Qin et al., 2019), which
demonstrated that the occipital lobe is a brain area prone to
structural damages in T2DM patients. The occipital lobe can
transmit visual information and cooperate with other brain
regions to process and integrate visual and verbal information.
It had been found that GMV of the occipital lobe in AD
patients was significantly associated with attention function

(Cromarty et al., 2018). Kunst et al. (2019) found that the
atrophy of the occipital cortex can be used to distinguish
between AD, aMCI, and healthy controls. Our study showed
that the T2DM-related genetic risks might modulate the
cortical volume of the right superior occipital gyrus in aMCI
patients. Mediation analysis demonstrated that the cortical
volume of the right superior occipital gyrus might mediate the
predictive effect of the PRSsT2DM on the conversion of aMCI
to AD.

Neurobiological mechanisms
underlying the predictive effect of
PRSsT2DM on amnestic mild cognitive
impairment conversion

To explore the neurobiological mechanism behind the
predictive effect of T2DM-specific genetic variants on the aMCI
conversion, we fine-mapped the T2DM-specific genetic variants
to the genes and then performed the enrichment analyses.

Cell type enrichment analysis showed that these genes are
mainly expressed in the cortical neuron. Gene GO enrichment
analyses showed that these genes were primarily associated with
ion and protein binding, neural development and generation,
cell junction, and projection. These biological processes are
known to be associated with AD. For example, metal ions
binding to the Aβ peptide can promote aggregation of Aβ

(Wallin et al., 2016, 2017). Insulin-like growth factor binding
protein-2 (IGFBP-2) is associated with AD and brain atrophy
(Lane et al., 2017). Neurogenesis represents an integral part
of AD pathology (Mu and Gage, 2011). The projection of
Hippocampal neurons may affect learning and memory (Milner
and Veznedaroglu, 1993). The KEGG annotation revealed
that fine-mapped genes were mainly related to the PI3K-Akt
and MAPK signaling pathways. These enrichment analysis
results suggested that these T2DM-related genetic variants
are highly expressed in the cortical neurons, modulate ion
and protein binding, neural development and generation,
cell junction and projection, the PI3K-Akt and MAPK
signaling pathway, and further affect Tau phosphorylation
(Salkovic-Petrisic et al., 2006; Ke et al., 2009) and Aβ

accumulation (Yang et al., 2014), accelerating the conversion of
aMCI to AD.

Several limitations should be mentioned in this study. First,
the PRS was calculated with an additive effect by default; we
did not consider the influence of other genetic effects on the
results. Second, we did not control some clinical situations,
such as vasculopathy, during the predicting analysis because of
insufficient data. Further study should be performed to clarify
the impact of clinical status on the results. Third, the cell type-
specific expression analysis was based on the cortex of the
mouse because no public cell type-specific expression data in the
human cortex can be obtained.
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Conclusion

This study aims to evaluate whether T2DM-specific genetic
variants can predict the conversion of aMCI to AD and
further explore the underlying neurological mechanism. The
results showed that the PRSsT2DM could independently predict
aMCI conversion to AD. The cortical volume of the right
superior occipital gyrus may mediate the predictive effect of the
PRSsT2DM on the conversion of aMCI to AD. T2DM-related
genetic genes are highly expressed in the cortical neurons,
may modulate ion and protein binding, neural development
and generation, cell junction and projection, and the PI3K-
Akt and MAPK signaling pathways, which is related to
Tau phosphorylation and Aβ accumulation, accelerating the
conversion of aMCI to AD.
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