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ABSTRACT

Arsenic (As) is the most ubiquitous toxic metalloid
in nature. Microbe-mediated As metabolism plays
an important role in global As biogeochemical pro-
cesses, greatly changing its toxicity and bioavailabil-
ity. While metagenomic sequencing may advance our
understanding of the As metabolism capacity of mi-
crobial communities in different environments, ac-
curate metagenomic profiling of As metabolism re-
mains challenging due to low coverage and inac-
curate definitions of As metabolism gene families
in public orthology databases. Here we developed
a manually curated As metabolism gene database
(AsgeneDB) comprising 400 242 representative se-
quences from 59 As metabolism gene families, which
are affiliated with 1653 microbial genera from 46
phyla. AsgeneDB achieved 100% annotation sensi-
tivity and 99.96% annotation accuracy for an arti-
ficial gene dataset. We then applied AsgeneDB for
functional and taxonomic profiling of As metabolism
in metagenomes from various habitats (freshwa-
ter, hot spring, marine sediment and soil). The re-
sults showed that AsgeneDB substantially improved
the mapping ratio of short reads in metagenomes
from various environments. Compared with other
databases, AsgeneDB provides more accurate, more
comprehensive and faster analysis of As metabolic
genes. In addition, we developed an R package, As-
gene, to facilitate the analysis of metagenome se-
quencing data. Therefore, AsgeneDB and the asso-

ciated Asgene package will greatly promote the study
of As metabolism in microbial communities in vari-
ous environments.

GRAPHICAL ABSTRACT

INTRODUCTION

Arsenic (As) is classified as a group I carcinogen by the In-
ternational Agency for Research on Cancer, known as both
‘the king of poisons’ and ‘the poison of kings’ (1). As has
therefore been a prime focus of ecology and environmen-
tal sciences (1–3). Once elemental As is released from min-
eral deposits by geological, agricultural and industrial pro-
cesses, the element’s toxicity and mobility can be greatly al-
tered by microbial metabolism (4,5). These metabolic pro-
cesses play a major role in the global As cycle through mi-
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crobial oxidation, respiration, reduction and methylation
(6), and are mediated by a variety of genes. It has been re-
ported that almost all microorganisms have As resistance
and metabolism genes (7). For example, As redox genes
encoding cytoplasmic arsenate [As(V)] reductase (arsC),
periplasmic As(V) respiratory reductase (arrAB) and arsen-
ite [As(III)] oxidase (aioAB/arxA) affect species transfor-
mation between As(V) and As(III) (8–10), while As(III) S-
adenosylmethionine (SAM) methyltransferase (arsM) and
non-heme iron-dependent dioxygenase (arsI) with C–As
lyase activity catalyze As methylation and demethylation
(11,12). Mechanisms involved in As metabolism can also
be co-opted from other processes, with As(III) and As(V)
acting as analogs of glycerol and phosphate, allowing mi-
crobial uptake through glycerol transporters (GlpF) and
phosphate transporters (Pit/Pst) (13,14). As these processes
greatly change the toxicity and bioavailability of As, the
study of microbial As metabolism genes is of great impor-
tance for understanding the process of environmental As
metabolism and microbial remediation potential.

Although the mechanisms of microbial As metabolism
are well documented and characterized, the distribution
and diversity of As metabolic genes in microbial communi-
ties is still unclear due to the large proportion of uncultured
microorganisms in environmental samples. Previous works
investigating the distribution and diversity of several genes
have typically used targeted primer sets to conduct analy-
ses such as polymerase chain reaction (PCR), cloning, de-
naturing gradient gel electrophoresis (DGGE), microarray-
based metagenomic techniques (e.g. GeoChip) and quanti-
tative PCR (qPCR) (5,15–17). These methods are limited
by their low throughput that only targets one or several
specific genes and also by non-specific amplification intro-
duced by the primers. In addition, as primers cannot be
designed for unknown nucleic acid sequences, the inability
to detect unknown microorganisms is the biggest obstacle
to this kind of technology. Characterization of microbial-
induced As metabolism at gene- and species-level resolu-
tion has become an important method to better understand
microbial As metabolism in the current metagenomic era.
In contrast, high-throughput sequencing techniques target
all genes and do not rely on the specificity and coverage of
primers. Shotgun metagenomic sequencing technology can
probe the function of unknown microbiomes and enable
us to have a detailed understanding of As metabolism in a
complex microbiome, so that microbiome metabolism can
be used to address environmental issues (2,18). However,
metagenomic data analysis requires comprehensive and re-
liable orthology databases for accurate metagenomic profil-
ing of functional gene families. An undesired observation
is that the results of metagenomic analysis are substantially
affected by the orthology database (19).

Orthology databases such as arCOG (Archaeal Clus-
ters of Orthologous Genes) (20), COG (Clusters of Or-
thologous Groups) (21), eggNOG (evolutionary genealogy
of genes: Non-supervised Orthologous Groups) (22) and
KEGG (Kyoto Encyclopedia of Genes and Genomes) (23)
have been developed to date and are widely used for func-
tional annotation in both genomic and metagenomic stud-
ies. These databases have their own distinct features due to
differences in the design concept, with arCOG for archaeal

annotation (20), COG and eggNOG for annotation of or-
thologous groups (21,22) and KEGG for linking genes with
pathways (23). When As metabolism is considered, analyt-
ical limitations encountered in these databases include low
coverage of As metabolic genes, difficulty in distinguishing
homologous genes and long database search times (24,25).
Therefore, the development of a comprehensive and accu-
rate database of As metabolism genes is essential for effi-
cient analysis of As metabolism function in microbial com-
munities.

To understand the microbial community of As
metabolism in the environment, we developed a man-
ually curated As metabolism gene database (AsgeneDB).
We identified 59 As metabolic gene families from five As
metabolic pathways (transport, respiration, reduction,
oxidation and methylation/demethylation processes) to
construct AsgeneDB. AsgeneDB integrates multiple pub-
licly orthology databases and the NCBI RefSeq database,
and then manual checks and corrections were made. We
demonstrate that AsgeneDB enables researchers to directly
study newly discovered As metabolic pathways and gene
families, allowing high specificity, comprehensiveness,
sensitivity and accuracy. By analyzing metagenomic se-
quencing data from four habitats (freshwater, hot spring,
marine sediment and soil), our results show that AsgeneDB
can detect more As metabolism genes and their abundance
in environmental microorganisms. Moreover, the vast di-
versity and importance of microbial As metabolism in the
environment remain to be explored. To facilitate metage-
nomic data comparison and statistics, we developed an R
package, Asgene, that can be used to automatically provide
statistical results of gene family abundance and functional
community composition at different classification levels
in different environments. AsgeneDB and the Asgene
package will become a convenient tool for comprehensive
and accurate metagenomic analysis of arsenic metabolism,
greatly promoting research in this area.

MATERIALS AND METHODS

Core database construction

An improved pipeline based on previous research was used
to build AsgeneDB (24,25). As the coverage of As metabolic
genes in orthology databases is very limited, we mainly re-
trieved new and more comprehensive genetic information
of As metabolism through a literature search (7,16,17,26).
As metabolic genes in KEGG were also referenced (23). In
conclusion, the genes mentioned in the literature and clearly
described by KEGG that play a role in As metabolism were
selected as our target genes. Target protein sequences of
genes were downloaded from the Swiss-Prot and TrEMBL
databases (27) by creating and refining keywords for each
gene family involved in As metabolic pathways (includ-
ing gene and protein names). To ensure the accuracy of
AsgeneDB, the seed sequences of each gene family were
checked manually based on their annotations and similar-
ity to other sequences, especially for sequences with no ref-
erence sequence in Swiss-Prot. For each gene family, pro-
tein sequences from the TrEMBL database were searched
against the Swiss-Prot database and were clustered into dif-
ferent groups using USEARCH (version 11.0) at a 30%
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global identity cut-off. A nearest neighbor clustering proce-
dure was then carried out to cluster sequences into groups.
The outlier groups were then checked again to confirm their
annotation information in the TrEMBL database and to re-
move abnormal sequences. The remaining sequences were
then retained as the core database for As metabolic gene
families (Figure 1A).

Full database construction

After the core database was created, orthology databases
including COG, arCOG, KOG, eggNOG and KEGG were
searched against the core database. There were two pur-
poses for comparing the databases. The first was to in-
crease the comprehensiveness of the core database. The sec-
ond was to identify homologous gene families and include
them in the full database, thereby reducing false positives
in database searching (24). In addition, corresponding se-
quences (As metabolic gene families) from the NCBI Ref-
Seq database (Identical Protein Groups) of bacteria, ar-
chaea and eukarya were identified, extracted and merged.
The coverage of As-metabolizing functional species in As-
geneDB was determined by comparing the core database
against NCBI RefSeq (options: -evalue 1e-6 -id 60). Com-
plete taxonomic-level information of sequences was deter-
mined used TaxonKit (28,29). Finally, the sequence ID and
genes were matched with taxonomic information to gener-
ate the taxonomy file. Sequences of both As metabolic gene
families and homologous gene families were clustered by
cd-hit (30) at 100% identity. All representative sequences
and related information were checked and used to construct
AsgeneDB (Figure 1B).

Database sources

We used the UniProt database (http://www.uniprot.org)
to retrieve seed sequences and construct the core database
(27). The orthology databases used for database merging
and homologous gene identification in this study were
arCOG (ftp://ftp.ncbi.nih.gov/pub/wolf/COGs/arCOG/,
version ar14) (20), COG (ftp://ftp.ncbi.nih.gov/pub/
COG/COG2020/, version COG2020) (21), eggNOG
(http://eggnogdb.embl.de/download/ eggnog 5.0/, version
5.0) (22) and KEGG (http://www.genome.jp/kegg/) (23).
The microbial NCBI RefSeq database (31) was used to
enrich AsgeneDB (https://www.ncbi.nlm.nih.gov/) and for
taxonomically classifying microbial communities of As
metabolism (ftp://ftp.ncbi.nih.gov/pub/taxonomy/).

Metagenomic profiling of As metabolic genes

To facilitate the analysis of metagenome sequencing data,
an R package (Asgene) is provided for metagenomic align-
ment (nucleic acid or protein sequence), gene abundance
standardization and statistics of all samples. The database
AsgeneDB was built into the R package Asgene. There-
fore, users only need to input several parameters (e.g. search
tools, working path, search parameters of tool and filetype)
to automatically analyze and output statistical results. As-
gene provides example datasets for analysis as input and
output to help users better understand the usage of the

package. Users can select gene abundance statistics (option:
abundance) to normalize read counts per kilobase per mil-
lion reads (RPKM) to eliminate differences in sequencing
depth and reference sequence length between samples. In
addition, if the user selects functional species statistics (op-
tion: taxonomy), the statistical results of the driving species
of each As metabolism gene at different classification levels
in the sample can be generated automatically (Figure 1C).
The Asgene package is available on github (https://github.
com/XinweiSong/Asgene). Our work can be used to ana-
lyze metagenomic data, providing functional profiles at the
gene family level and composition of the functional micro-
bial community at various classification levels in different
environments.

Sensitivity, accuracy and run-time assessment of AsgeneDB

An artificial dataset, including 81 631 As metabolism
gene sequences and 54 403 sequences highly similar to As
metabolic genes, from the NCBI GeneBank database was
used to assess the sensitivity, accuracy and run-time of As-
geneDB. The 41 As metabolic genes and 10 homologous
genes were contained in the artificial dataset to calculate the
false-positive and false-negative rates. Homologous gene se-
quences annotated as As metabolic gene or As metabolic
gene sequence assigned to the incorrect gene gene fam-
ily were considered as false-positive annotations. The se-
quences belonging to As metabolic genes but not assigned
were counted as false-negative annotations. The artificial
dataset was searched against KEGG, COG, arCOG, KOG
and AsgeneDB using DIAMOND (32) with an e-value
of ≤10−4 and identity >30%, and against the eggNOG
database using eggNOG-mapper with an e-value of ≤10−4

to compare the accuracy of these databases for annotation
(22). Each query sequence only output one hits result with
the best matching degree (option: –max-target-seqs 1). All
searches specified one thread (option: −p 1 or –cpu 1) to
calculate the time of annotation the dataset.

Case study

We applied AsgeneDB and the orthology databases
(KEGG, eggNOG, COG, arCOG and KOG) to ana-
lyze microbial As metabolism from four distinct habitats:
freshwater, hot spring, marine sediment and soil. Forty
metagenome sequencing data files were downloaded from
the NCBI SRA database (https://www.ncbi.nlm.nih.gov/
sra) (Supplementary Table S2). Raw reads were quality
controlled using Trimmomatic v2.39 (33) to trim adap-
tors and primers, and to filter short (<50 bp) and low-
quality reads (<20 bases). The forward and reverse quality-
controlled reads were merged by the program idba (34).
Merged shotgun metagenome sequences were searched
against KEGG, eggNOG, COG, arCOG, KOG and As-
geneDB databases using DIAMOND (parameters: -k 1 1e-
10 -p 20 –query-cover 80 –id 50) (32). Subsequent standard-
ization of gene abundance between samples and statistics of
gene abundance and As metabolic microbial communities
were performed with R studio. We assessed significant dif-
ferences for the number and abundance (RPKM) of key As
metabolic gene families in environmental samples detected

http://www.uniprot.org
ftp://ftp.ncbi.nih.gov/pub/wolf/COGs/arCOG/
ftp://ftp.ncbi.nih.gov/pub/COG/COG2020/
http://eggnogdb.embl.de/download/
http://www.genome.jp/kegg/
https://www.ncbi.nlm.nih.gov/
ftp://ftp.ncbi.nih.gov/pub/taxonomy/
https://github.com/XinweiSong/Asgene
https://www.ncbi.nlm.nih.gov/sra
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Figure 1. Framework of AsgeneDB construction. (A) Core database construction: a core database was constructed for selected gene (sub)families by
retrieving protein sequences from UniProt databases using keywords (Swiss-Prot database and TrEMBL database). Sequences that failed to cluster at
30% identity were manually checked again to remove outlier sequences. (B) Full database construction: As metabolic gene families and homologous gene
families were retrieved from the public orthology databases and NCBI RefSeq database, and representative sequences were extracted and included in the
full database. (C) Metagenomic profiling: the Asgene package generates both gene abundance and taxonomic profiles of environmental samples.

by KEGG, eggNOG, COG, arCOG, KOG and AsgeneDB
using one-way analysis of variance (ANOVA) and Tukey’s
honest significant difference (HSD).

RESULTS

Advantages of the AsgeneDB over other orthology databases

High coverage of As metabolic gene (sub)families. To
show the need for construction of a manually curated As
metabolism gene database, we compared the coverage of
As metabolism genes (subfamily; Figure 2) in AsgeneDB
with the main public orthology databases. Of the 59 gene
subfamilies recruited to AsgeneDB, fewer than a third were
found in any other single database, with the largest pro-
portion found in KEGG (20 gene subfamilies), followed
by COG (16 gene subfamilies), eggNOG (13 gene subfami-
lies), arCOG (6 gene subfamilies) and KOG (2 gene subfam-
ilies). AsgeneDB further contains several key As metabolic
gene families that are missing in the five common orthology
databases, including As(V) respiratory reductase (arrA and
arrB), organic As efferent osmotic enzyme (arsJ and arsP),
pentavalent As(V) reductase (GstB) and trivalent As(III)
oxidase (aioR, arxR, arxA and arxB; Supplementary Figure
S1). In addition to containing more genes, the families de-
fined by AsgeneDB were considered one homologous group
in the five public orthology databases. For example, both

arsB and acr3 are involved in arsenite efflux even though
they belong to two different phylogenetic clades (5,15,35).
However, in KEGG, COG and eggNOG databases, arsB
and ACR3 are mixed into one orthology group (Supplemen-
tary Table S3). Similarly vague definitions of As metabolic
genes were improved in AsgeneDB. We analyzed the phy-
logenetic evolution of ACR3 and arsB in AsgeneDB, and
this illustrated that the sequences of the two genes were ob-
viously distinct in AsgeneDB (Supplementary Figure S3).
AsgeneDB is therefore a superior database for determining
gene families related to As metabolism and has obvious ad-
vantages over existing resources in terms of coverage, com-
pleteness and clear definition.

More highly sensitive, accurate and rapid annotation of As
metabolic gene families

The sensitivity, accuracy (the rate of false positives and false
negatives) and running time of database annotations can be
calculated by constructing artificial microbial communities
with or without As metabolism genes. We further assessed
AsgeneDB, KEGG, COG, arCOG, KOG and eggNOG by
the artificial dataset (Figure 3; Supplementary Tables S7
and S9). The results of sensitivity assessment showed that
all the sequences belonging to As metabolism in the arti-
ficial dataset were assigned by AsgeneDB (100% sensitiv-
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Figure 2. Summary of As metabolic gene families with representative sequences and comparison of As metabolic gene families in AsgeneDB with other
public orthology databases. The heatmap represents coverage of the selected As metabolic gene families in corresponding orthology databases. AsgeneDB
was used as a reference for the comparison. Gray indicates the absence of this gene family in the public orthology databases.

ity). Furthermore, almost all As metabolism gene sequences
were annotated to the correct As metabolism gene fam-
ily, while other non-As metabolism sequences were not as-
signed (99.96% accuracy) (Figure 3). In addition, the run-
ning time of AsgeneDB was less than that of KEGG, COG
and eggNOG databases (Supplementary Table S7).

However, public orthology databases were not as good
as AsgeneDB for annotation of As metabolic genes (Figure
3). For KEGG, the accuracy for annotation was the high-
est of the public orthology databases (89.61%), but a 5.22%
false-positive rate and 5.18% false-negative rate were ob-
served. Also, sequences of As metabolism detected by the
eggNOG database accounted for 86.18% of the total As
metabolic sequences in the artificial dataset. Even though
the COG database was highly sensitive to As metabolic se-
quences (99.97%), many homologous sequences were mis-
assigned as As metabolic genes (false-positive rate 34.07%).
KOG and arCOG for fungi and archaea showed very low
sensitivity to the As metabolic sequences (3.96% and 0.37%
sensitivity). Therefore, the AsgeneDB represents higher sen-
sitivity, accuracy and rapidity for As metabolic gene analy-
sis than other orthology databases.

Summary of gene families and pathways in AsgeneDB

The 59 gene subfamilies in AsgeneDB target five As
metabolic pathways (Figure 2), i.e. As transport, As(V)
respiration, As(V) reduction, As(III) oxidation and As
(de)methylation pathways.

As transport pathway. The As transport pathway includes
a total of 22 gene families with 284 186 representative se-
quences and 386 homologous orthology groups (Figure 2).
Among these, the genes responsible for glycerol and phos-
phate transporters (glpF, PiT, pstA, pstB, pstC and pstS)
can absorb As(III) and As(V) as their analogs into microor-
ganisms. Gene families including arsA, arsB, aqpS, acr3,
arsF, arsT, GET3 and ASNA1 participate in As(III) efflux
(36,37). As(III) efflux systems have been intensively stud-
ied in both microbes and higher organisms (7,38,39). In
particular, the acr3 gene family is most common in bac-
teria (40). In addition, the gene family arsJ encodes an
organoarsenical efflux permease, in which organic As is
decomposed into As(V) and 3-phosphoglycerate when ex-
creted from cells. The net reaction is effectively As(V) extru-
sion, which is the only known efflux pathway for As(V) (41).
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Figure 3. The accuracy assessment for KEGG, eggNOG, COG, arCOG, KOG and AsgeneDB. (A) The sensitivity of annotation to As gene sequences.
(B) The false-positive rate (the rate of mismatched or incorrect sequence annotation). (C) The false-negative rate (the rate of unassigned sequences). (D)
The accuracy rate (the rate at which As metabolic gene sequences were correctly assigned to the correct As metabolic gene families).

Meanwhile, the gene family arsP has been demonstrated
to be an efflux system specific for trivalent organoarseni-
cals (42). Since As(III) and As(V) act as analogs of glycerol
and phosphate, they can enter microbial cells via glycerol
transporters (GlpF) and phosphate transporters (Pit/Pst),
respectively.

As(V) respiratory pathway. The As respiratory pathway
contains arrA and arrB gene families with 1498 representa-
tive sequences encoding arsenate respiratory reductase (Fig-
ure 2; Supplementary Table S5). The large catalytic subunit
(ArrA) and small subunit (ArrB) can form a heterodimer
(ArrAB) (43,44). Dissimilatory As(V)-respiring prokary-
otes (DARPs) have evolved pathways to take advantage
of As(V) as a terminal electron acceptor. This energy-
generating respiratory chain uses the respiratory As(V) re-
ductase ArrAB, which reduces the less toxic As(V) to the
more toxic and potentially more mobile As(III) (45,46,47).
It is noteworthy that As(V) respiration and As(III) oxida-
tion functions mainly occur in the periplasm whereas As(V)
reduction and As(III) methylation mainly occur in the cy-
toplasm (46).

As(V) reduction pathway. Gene families such as arsC,
acr2 and GstB are included for this pathway with 100 357

sequences and 84 homologous orthology groups (Figure 2;
Supplementary Table S5). Nearly every extant microbe has
ArsB or Acr3 efflux permeases for As(III) detoxification (7).
When As(V) became the predominant soluble species, all
cells had to do was to reduce As(V) to As(III), the sub-
strate of ArsB or Acr3, and they would become resistant
to As(V) (48). However, ArsC, Acr2, GstB, etc. located in
the cytoplasm can reduce As(V) in the cytoplasmic mem-
brane and then excrete As(III) through the ArsB or Acr3
efflux pump (49–51). The transcriptional repressor (ArsR)
controls these ars operons (52,53).

As(III) oxidation pathway. There are 15 gene families
responsible for As(III) oxidation, with a total of 92 183
sequences and 39 homologous orthology groups (Fig-
ure 3; Supplementary Table S5). As(III)-oxidizing mi-
croorganisms exist widely in nature and include both
heterotrophic and chemo/photosynthetic autotrophic mi-
croorganisms (54). During early life, As(III) oxidation by
anaerobes would have produced As(V) in the absence of
an oxygen-containing atmosphere, which opened a niche
for As(V)-respiring microbes prior to the Great Oxida-
tion Event (GOE) (55). As(III) oxidation is catalyzed by
the enzyme As(III) oxidase. This enzyme is composed of
two subunits, a large subunit (�) having molybdopterin
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Figure 4. Phylogenetic tree of As metabolic pathways in AsgeneDB. The outermost circle shows the classification of microorganisms in AsgeneDB at the
class level.

and a [3Fe–4S] cluster (AioA) and a smaller subunit
(�) incorporating a Rieske-type [2Fe–2S] cluster (AioB)
(54). Both aioS/aroS/aoxS (sensor histidine kinase) and
aioR/aroR/aoxR (transcriptional regulator) can regulate
expression of aio genes via recognizing As(III) (56). The
operon sometimes has a aioX/arxX gene that encodes an
As(III)-binding protein involved in As(III)-based signaling
and regulation of As(III) oxidation, or a moeA gene en-
coding MoeA protein that synthesizes the molybdenum co-
factor of AioAB oxidase (56). A new type of As(III) ox-
idase (arxA) has been discovered with both As(V) reduc-
tase and As(III) oxidase activities in vitro (57). In addition
to arxA, arxB, arxC, arxD and arxH code for As(III) ox-
idation coupled to photosynthesis (58). An adjacent and

divergent gene cluster, arxXSR, encodes putative regula-
tory proteins, a periplasmic substrate-binding protein spe-
cific for phosphate (ArxX), a two-component histidine ki-
nase sensor (ArxS) and a response regulator (ArxR) (58). In
addition, methylarsenite-specific oxidase ArsH can oxidize
methylarsenite to methylarsenate (59,60).

As (de)methylation pathway. Three gene families, inamely
arsM, As3mt and arsI, are involved in As methylation and
demethylation pathways with 7862 sequences and 24 ho-
mologous orthology groups (Figure 3; Supplementary Ta-
ble S5). More recent reports of methylated As show that As
methylation is widespread in the environment (16,60,61).
Methylation is catalyzed by the enzyme As(III) SAM
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methyltransferase, designated as AS3MT in animals and
as ArsM in microorganisms. The gene arsI, whose product
catalyzes demethylation of organic As(III), was identified
and characterized from the environmental isolate bacterium
Bacillus sp. MD1 (12) and from the cyanobacterium Nos-
toc sp. 7120 (62). ArsI, a non-heme iron-dependent dioxy-
genase with C–As lyase activity, cleaves the C–As bond
in MAs(III), trivalent roxarsone and other trivalent aro-
matic Asals (63). Putative ArsI orthologs were found only
in bacterial species, suggesting that alternative pathways of
organoarsenical demethylation might exist in other organ-
isms (7,12).

Taxonomic composition of As metabolic genes and pathways
in AsgeneDB

To understand the taxonomic composition of As
metabolism genes and pathways in AsgeneDB, we mapped
sequences targeting As metabolism genes and pathways
to reference genomes from NCBI RefSeq. The results
indicate that AsgeneDB covers 46 phyla and 1653 genera of
bacteria, archaea and fungi (Supplementary Table S1). In
the As transport pathway, AsgeneDB covered 33 phyla and
1141 genera of bacteria, among which the dominant phyla
were Proteobacteria, Actinobacteria, Firmicutes and Bac-
teroidetes (Supplementary Table S6). Euryarchaeota was the
dominant phyla in six phyla of archaea. The predominant
Eukaryotaes were Sordariomycetes, Eurotiomycetes and
Saccharomycetes in Ascomycota, and Ustilaginomycetes in
Basidiomycota. In addition, Halobacteria of Euryarchaeota,
Betaproteobacteria, Deltaproteobacteria and Gammapro-
teobacteria class of Proteobacteria, Clostridia in Firmicutes
and Deferribacteres in Deferribacteres drove the As(V)
respiratory pathway. For the As(V) reduction pathway,
AsgeneDB covered 34 bacterial phyla, mainly Proteobac-
teria, Actinobacteria, Firmicutes and Bacteroidetes. It
covers six archaea, mainly Euryarchaeota, Candidatus
Thermoplasmatota and Thaumarchaeota. Saccharomycetes
and Eurotiomycetes of Ascomycota were the dominant
Eukaryotaes. The target sequence of the As(III) oxidation
pathway covers 29 phyla of bacteria, six phyla of archaea
and one phylum of Eukaryotae. For bacteria, Proteobac-
teria, Actinobacteria, Firmicutesand and Bacteroidetes
represented the dominant phyla, which were consistent
with the results of previous studies (16,64). Halobacteria
of Euryarchaeota and Sordariomycetes of Ascomycota were
the dominant class of bacteria and eukaryotae, respectively.
The functional sequences of As methylation and demethy-
lation include 20 phyla of bacteria, four phyla of archaea
and two phyla of fungi. The bacteria mainly belonged to
Rhodopseudomonas in Proteobacteria, Symbiobacterium in
Firmicutes, Dehalogenimonas in Chloroflexi and Strepto-
myces in Actinobacteria. The dominant archaea were the
class Methanomicrobia and Halobacteria of Euryarchaeota.
Saccharomycetes in Ascomycota were the dominant fungi,
which also fit with previous research (2,11). These re-
sults suggest that AsgeneDB covers a high diversity of
microorganisms involved in As metabolism, providing a
useful platform for searching and annotating As metabolic
genetic pathways and related key microorganisms in the
environment.

Application of AsgeneDB for functional and taxonomic pro-
filing of metagenomes

We applied AsgeneDB and five other orthology databases
(KEGG, eggNOG, COG, arCOG and KOG) for taxonomic
and functional profiling of As metabolism in metagenomes
from freshwater, hot spring, marine sediment and soil (Fig-
ures 5 and 6). The number of As metabolic gene families de-
tected by searching sample data against AsgeneDB ranged
from 13 to 46 in the four habitats, which was significantly
greater (HSD, P <0.001) than the other five databases (1–
13 in KEGG, 1–4 in eggNOG, 4–8 in COG, one in arCOG
and one in KOG) (Figure 5A). Moreover, AsgeneDB sub-
stantially increased the metagenomic mapping rates com-
pared with the other five databases (Figure 5B).

The abundance of As metabolic genes can be affected
by both ecosystem and geographic location (2,16), and our
results indicated the differences in the biogeographic dis-
tribution of As metabolic microbial communities (Figure
5C). Among the five metabolic pathways, the most abun-
dant pathway was As transport and the least abundant
was As(V) respiration. Within the four habitats, the As
metabolism microbiomes were most similar between ma-
rine sediment and soil. Freshwater samples had the low-
est diversity in their As metabolism-driven microbiomes. A
wide variety of organisms that belong to certain pathways
were identified within the samples. Organisms that drive
As(III) oxidation, such as Candidatus Korarchaeota, Bal-
neolaeota, Chlorobi, Spirochaetes, Ignavibacteriae, Chlamy-
diae, Thermodesulfobacteria and Thermotogae, were found
in all habitats except freshwater. Candidatus Omnitrophica
and Synergistetes drove the oxidation of As(III) in marine
sediment and soil. Deferribacteres, which oxidize As(III),
were found only in hot spring and marine sediment. Syner-
gistetes, Chlorobi and Candidatus Lokiarchaeota drove As
methylation in sediment and soil, while only Fusobacte-
ria drove As methylation in marine sediment. Candidatus
Bipolaricaulot drove As methylation in all tested environ-
ments except freshwater. Calditrichaeotazai drove As trans-
port and reduction in hot spring, marine sediment and soil,
but only drove As transport in freshwater. Dictyoglomi had
extensive As(V) reduction functions in hot spring, marine
sediment and soil, but was not detected in freshwater. Mi-
crobes associated with As(V) respiration were the least di-
verse, with only Chrysiogenetes Deferribacteres, Firmicutes
and Proteobacteria in bacteria and Euryarchaeota in ar-
chaea detected (Figure 6). In contrast, microorganisms with
As transport genes were the most diverse, correlating with
the gene abundance of various metabolic pathways in the
environment (Figure 5C).

DISCUSSION

Combined with metagenomic methods, the identification
of microbial As metabolism pathways and correspond-
ing driving microbes can provide a comprehensive per-
spective for understanding the complexity of microbial
As metabolism in the environment (65–67). This study
develops AsgeneDB, a manually curated orthology As
metabolism gene database, for fast and accurate annotation
of As metabolic genes in shotgun metagenome sequence
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Figure 5. AsgeneDB for functional profiling of As metabolism in metagenomes from freshwater, hot spring, marine sediment and soil. (A) Comparison of
the number of As metabolism gene families detected using KEGG, eggNOG, COG, arCOG, KOG and AsgeneDB in environmental samples. ‘***’ indicates
that the use of AsgeneDB is significantly different from the use of the other five databases (P <0.001). (B) Abundances (RPKM) of key As metabolic gene
families in environmental samples among KEGG, eggNOG, COG, arCOG, KOG and AsgeneDB. Data are presented as the mean ± SE of all samples
(n = 43). ‘***’ indicates that the use of AsgeneDB is significantly different from the use of the other five databases (P <0.001). (C) Abundances of As
metabolic gene families annotated by AsgeneDB in four different habitats.

data. AsgeneDB has three major advantages over automat-
ically generated orthology databases: accurate annotation,
comprehensive information and rapid automated analysis
of metagenomic data.

Firstly, it has the precise definition of As metabolic gene
families, which were manually inspected and retrieved using
keywords combined with sequence similarity, unlike other
databases that automatically generate orthology groups
based on sequence similarities or sharing of functional
domains (21–23). AsgeneDB does not have equivocal an-
notations for As metabolism genes like public orthology
databases (Supplementary Table S3). A typical example is
arsB and ACR3, which belong to two different phylogenetic
branches evolutionarily (68). Previous studies have demon-

strated that ACR3 and arsB have complementary environ-
mental abundances (68), but they are rarely separated in
large databases (5,15). In the AsgeneDB, a clear separation
of the ACR3 gene from the arsB gene was observed by the
analysis of phylogenetic evolution (Supplementary Figure
S3). In addition, precise definitions prevent the misattribu-
tion of genes to incorrect families. By comparing with artifi-
cial microbial communities with or without As metabolism
genes, the results showed that AsgeneDB could annotate As
metabolism genes with 99.96% accuracy (Figure 3).

Secondly, both the public orthology databases and ex-
isting specialized databases for microbial As metabolism
cover between only two and 20 gene families (Supplemen-
tary Figure S2; Supplementary Table S8) (21–23,68). As-
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Figure 6. Microbial species driving As metabolism in microbial communities in environmental samples as annotated by AsgeneDB. FW, freshwater; HS,
hot spring; MS, marine sediment; S, soil.

geneDB covers 59 gene families with 400 242 representa-
tive sequences. The lack of a large number of As metabolic
genes in existing database may hinder our understanding
of various As metabolism pathways of microbiome in the
real environment. Examples include arsP (41), a gene family
that encodes trivalent organoarsenical [MAs(III)] effluents
(42), GstB, a newly discovered alternative pathway to arse-
nate resistance in bacteria (49) and those that encode triva-
lent As oxidases: aioR, arxR, arxA and arxB (52,58,69).
These gene families have not been clearly defined in other
publicly available databases, but play important roles in mi-
crobial metabolism of environmental As (7,70). Moreover,
AsgeneDB can also be used in the analysis of metabolic
genes of As homolog metals, such as antimony (Sb). Many
studies have confirmed that microorganisms can metabo-
lize As and Sb through through the same biological pro-
cesses (71–73). For example, Sb(III) is transported by the
As(III) transporter Acr3 or ArsB (71,72), and Sb(V) can be
reduced through an arsenate respiratory reductase encoded
by arrAB (73). Therefore, AsgeneDB, with its comprehen-
sive and complete information on microbial As metabolism,
can contribute a lot of novel information useful to the mi-
crobial community.

Thirdly, AsgeneDB itself is relatively small; the Asgene
package and database allow researchers to quickly deter-
mine ‘who has As metabolism’ and ‘what can they do’ in mi-
crobiome analyses. Unlike other orthology databases, As-
geneDB achieved 100% sensitivity to As metabolic gene se-
quences while allowing fast profiling in artificial microbial
communities (Figure 3; Supplementary Table S7). With-
out huge computational cost or output file sizes, the As-
gene package will automate metagenomic alignment and
results statistics. AsgeneDB takes the ‘small database’ is-
sue observed in genes into account (24) and addresses it by
including homologous gene families from multiple orthol-
ogy databases (Supplementary Table S4). Therefore, As-
geneDB has the lowest incorrect rate of annotations (false-
positive and false-negative rates) compared with the existing
databases (Figure 3; Supplementary Table S8).

Finally, metagenomic samples were selected from the nat-
ural environment to analyze As metabolism genes and func-
tional species. AsgeneDB significantly increased the aver-
age detected numbers and mapping rates of As metabolic
genes in all environmental metagenomic data. Moreover,
our results also demonstrate that As metabolism genes
aioA, arrA and arxA are phylogenetically conserved (68).
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The aioA gene is limited to Proteobacteria: Alphaproteobac-
teria, Gammaproteobacteria and Betaproteobacteria. arrA
was detected in Proteobacteria, Firmicutes and Eurycota,
while arxA was only detected in Proteobacteria and Eu-
rycota (Supplementary Table S6). Furthermore, microor-
ganisms extensively metabolize As in natural ecosystems
(74). Functional genes of different As metabolic pathways
could be identified in all environmental samples, and As
transport genes are the most abundant and As respiratory
genes are the least abundant in environmental samples (Fig-
ure 4C). Previous work has also shown that detoxification
genes (As transport genes) are more abundant in the micro-
bial communities than As metabolism genes [As(V) respira-
tion, methylation and demethylation genes, etc.] in order to
adapt to a wide range of As stress environments (68,75). In
addition to the species previously shown to have As(III) ox-
idation function (16), we find that Chlamydiae, Thermoto-
gae, Ignavibacteriae and Aquificae also have As(III) oxida-
tion functions in specific ecosystems. In addition to previous
studies [such as (2,11,16)], Verrucomicrobia, Spirochaetes,
Ignavibacteriae and Candidatus Bipolaricaulota were found
to have an As methylation function (Figure 6). There are
significant differences in the functional species composi-
tion of As metabolism in microbial communities of different
ecosystems. Dictyoglomi, for example, has As(V) reduction
properties in hot spring, marine sediment and soil that are
not present in freshwater. Therefore, these results demon-
strate the vast diversity and importance of microbial As
metabolism functions in the environment that remain to
be explored, and which will be greatly facilitated by As-
geneDB.

While genetic migration and limited genetic diversifi-
cation can be achieved through horizontal gene transfer
(HGT) or vertical transfer (68), many As metabolism genes,
including ACR3, arsB, arsD, arsM and aioA, have regional
dispersal limitations (68,76). However, the distribution and
diversity of large-scale As metabolism genes remain to
be further explored. AsgeneDB and the Asgene package
are powerful tools for facilitating the analysis of shotgun
metagenomic sequencing data, enabling rapid, comprehen-
sive and accurate functional analysis of As-metabolizing
microbial communities in a variety of environments. They
will greatly promote large-scale genetic research on As
metabolism and be updated periodically.
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