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Abstract
Background: Predicting the location of functionally important sites from protein sequence and/
or structure is a long-standing problem in computational biology. Most current approaches make
use of sequence conservation, assuming that amino acid residues conserved within a protein family
are most likely to be functionally important. Most often these approaches do not consider many
residues that act to define specific sub-functions within a family, or they make no distinction
between residues important for function and those more relevant for maintaining structure (e.g. in
the hydrophobic core). Many protein families bind and/or act on a variety of ligands, meaning that
conserved residues often only bind a common ligand sub-structure or perform general catalytic
activities.

Results: Here we present a novel method for functional site prediction based on identification of
conserved positions, as well as those responsible for determining ligand specificity. We define
Specificity-Determining Positions (SDPs), as those occupied by conserved residues within sub-
groups of proteins in a family having a common specificity, but differ between groups, and are thus
likely to account for specific recognition events. We benchmark the approach on enzyme families
of known 3D structure with bound substrates, and find that in nearly all families residues predicted
by SDPsite are in contact with the bound substrate, and that the addition of SDPs significantly
improves functional site prediction accuracy. We apply SDPsite to various families of proteins
containing known three-dimensional structures, but lacking clear functional annotations, and
discusse several illustrative examples.

Conclusion: The results suggest a better means to predict functional details for the thousands of
protein structures determined prior to a clear understanding of molecular function.

Background
Structural genomics, and the increased pace of structure
determination by X-ray and NMR approaches makes
methods to predict protein function from 3D structure of
continuing importance. Proteins of known structure and
unknown function are normally subjected to a battery of

comparisons to find proteins adopting similar folds
(DALI [1], SSAP [2], CE [3] and others) or containing
recurring active-site residue constellations (SPASM [4],
PINTS [5], Catalytic Site Atlas [6]). Proteins of similar
structure can provide functional hints, since it is very often
the case that proteins share structural and functional sim-
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ilarities in the absence of sequence similarity. Active site-
only similarities (i.e. in the absence of overall fold similar-
ity) are typically less revealing, but can sometimes suggest
the presence of a convergently evolved catalytic machin-
ery (e.g. the peptidase catalytic triad [7]) or binding sites
for particular metals or ligands [8].

When comparative approaches fail to identify a clear sim-
ilarity, or if such similarities are ambiguous – for instance,
suggesting a possible weak functional similarity requiring
confirmation – additional functional hints can come from
analyses of the protein structure, similar structures, and
what is typically a large collection of homologous
sequences from the set of genomes now available. There
are now several methods that exploit sequence conserva-
tion to identify putative functional sites in proteins,
including ConSurf [9], approaches based on identifica-
tion of 3D clusters of conserved residues [10], the evolu-
tionary trace (ET) approach [11,12], correlated mutations
[13], prediction of 3D motifs correlated with function
[14], Jensen-Shannon entropy approach [15], algorithm
based on contrasting global and local similarity matrices
that interpret locality in terms of sequence [16] or struc-
ture [17]. The approaches differ in design, but share a uni-
fying theme of using conserved amino acids, together with
structural constraints such as location on the protein sur-
face, as indicators of likely functional importance.

Some of the presented techniques make a special empha-
sis on using a protein structure for prediction. A number
of methods identify interaction hot spots on different
kinds of interaction interfaces [18-20]. Other methods
concentrate on predicting pockets in protein structures, as
they are possible ligand-binding sites [21-23], sometimes
supplementing them with annotation derived from other
available sources [24].

In contrast to those, several approaches, including our
own [25], have attempted to exploit protein sequence
alignments to determine those residues likely to confer
specificity for a particular sub-function in a protein family
[25-41]. Although they differ in algorithmic details, all
approaches aim to use the statistics of a multiple sequence
alignment to identify positions that correlate well with
sub-families that account for a certain specific function.
Sub-families are either explicitly given in advance (for
instance taken from gene or protein annotation) or are
predicted by the algorithm.

Here, we extend our previously derived approach for iden-
tifying specificity determining residues [25] to the prob-
lem of predicting protein functional sites (SDPsite). We
combine routine predictions of conserved residues with
those for specificity determinants, and use structural
information to identify spatial clusters of the predicted

important residues. SDPsite differs from structure-based
methods in that the major part of the prediction is derived
from the protein sequences. So, in theory, the method can
also be applied in absence of structural information. The
structure-based step filters out part of the predicted posi-
tions, thus leaving only the most reliable predictions,
which can be useful in the design of experimental studies.

To test our method on a large scale, we developed two
benchmark datasets of diverse enzyme families, using the
Enzyme Classification (EC) system. Enzymes are the sim-
plest class of proteins to benchmark as their functional
annotations are well specified in databases. However, they
are not necessarily representative of other protein func-
tions that are less discretely characterized by precise cata-
lytic machinery (e.g. protein recognition modules, etc.).
In the absence of a reliable source of functional annota-
tions for non-enzymes, we previously tested the presented
approach on two examples, for which reasonable experi-
mental data are available, the LacI family of the bacterial
transcription factors and subtilisin-like proteases [42]. On
these examples, SDPsite results have a sensitivity between
0.06 and 0.17, specificity between 0.43 and 0.75 and false
positive rate between 0.007 and 0.05. Thus, in these anec-
dotal cases, SDPsite seems to miss a lot of truly functional
amino acids, but still provides reliable predictions.

We also predicted the functional sites in 124 unannotated
structures derived from Structural Genomics efforts. For
the benchmark datasets, the success rate of our method
(SDPsite) was 96–100%. We were then able to make con-
fident functional site predictions for ~76% of a set of fam-
ilies lacking functional annotation.

Results
1. Testing SDPsite on a benchmark set of enzymes with 
bound cognate ligands
We previously tested SDPsite on a number of protein fam-
ilies with known sites and compared the performance
with several other approaches [42]. The results encour-
aged us to predict functionally important sites in poorly
characterized protein families. Structural genomics
projects now provide up to 20% of annual growth of the
Protein data bank (PDB) and a greater coverage than ever
before of the space of protein structures [43]. This has led
to the current situation where hundreds of protein fami-
lies include a protein with a known 3D structure, but no
available functional information. These families are a per-
fect target for functional site prediction methods that use
both sequence and structural information.

However, before applying our approach to families lack-
ing functional information, we needed to benchmark the
approach on a set of protein families that are well-charac-
terised in terms of function. To do this we considered
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enzyme protein families from the Pfam database, for
which there is a functional characterization scheme in the
Enzyme Classification (EC) number system. This classifi-
cation consists of four numbers denoting a hierarchical
system that delineates enzyme function. We focused on
families containing EC numbers differing in the last
number, which normally accounts for the substrate specif-
icity. Since protein families generally correspond to a sin-
gle functional or structural domain, complications can
arise for multi-domain proteins that correspond to a sin-
gle EC number. We inspected the families manually to
ensure that the catalytic operation for each EC number did
indeed correspond to the domain considered. Thus each
considered protein domain corresponds to a single EC
number, thus catalyzing only one reaction (or one class of
reactions), and presumably have only one active site.

To assess performance of SDPsite on these Pfam enzyme
families, we generated two benchmark datasets. The first
consisted of families containing proteins with at least two
EC numbers differing in the last position; the second con-
sisted of families containing only a single EC number. We
refer to these datasets as diverse and homogeneous in the
sections that follow. The rationale is that when one is pre-
dicting function and/or specificity, one does not known in
advance whether or not there are multiple specificities in
the family. These two datasets mimic both of these situa-
tions.

For all families we computed both specificity determining
positions (SDPs) and conserved positions (CPs), then
mapped them onto a 3D structure of one of the proteins
of the family and extracted a portion of the two sets that
forms a compact spatial cluster, as described previously
[42] and in the Methods section. We designed several dis-
tance measures to assess the quality of the predictions.
These were: 1) the minimal distance from the residues of
each of the predicted sets (SDPs, CPs, best cluster) to a
bound ligand; 2) the average distance to the ligand; 3) the
diameter of the set; and 4) the average distance between
residues of the set. We performed a Mann-Whitney test to
assess the statistical significance of the best derived clus-
ter, i.e. we tested if the set of the amino acid residues in the
best cluster is significantly closer to the ligand than all res-
idues in the protein. These data are given in Additional file
1.

We considered predictions to be successful if minimal dis-
tances were smaller than 5 Å and average distances smaller
than 10 Å. We selected these thresholds based on inspec-
tion of known binding sites, and found that they capture
characteristics of typical binding sites, which are normally
15–20 Å in diameter and typically some of the amino
acids of the cluster contact the ligand directly. A small
minimal distance and a large average distance means that

the cluster is too sparse and does not define the active site
well enough, but still a part of it is close to ligand and
might be functional. Generally there is no correlation
between either diameter or average distance within a pre-
dicted set of residues and the set's proximity to the active
site.

As might be expected, predicted SDPs tend to be more
sparsely distributed in the structure, compared to the
more compact distribution of CPs. The best clusters are
tightest, which is natural from their construction proce-
dure, though the minimal distance suggests they are
sometimes further away from the active site (even if the
average distance is similar to CPs). We discuss these obser-
vations in more detail below.

a. The diverse dataset: protein families with at least two distinct EC 
numbers
Application of all the filters described in the Methods sec-
tion yielded 26 Pfam families (Table 1). SDPsite was
applied in different ways, either ignoring SDPs thus mim-
icking the standard, conservation-based approaches, or
including them when constructing the best cluster. For the
inclusion of SDPs, we either gave them twice the weight as
the CPs (λ = 0.5, λ being the relative weight of a CP to an
SDP) or same weight (λ = 1). (Fig. 1). For details on the
choice of the λ parameter, see Methods. In all but one of
the considered families (Carboxylesterase, see below) at
least one predictor performs well, and in the
Asparaginase_2 family the average distance is slightly
higher than 10 Å. This means that the best clusters are
located in enzyme catalytic sites, and some of residues are
in direct contact with the ligand. This result is significant
(p < 0.01) for all but four, one of which is the Carboxy-
lesterase family; for the other three the best cluster con-
tains positions accounting for intersubunit contacts. The
resulting implications for quaternary structure are dis-
cussed below.

Average values for all the above measures are given in
Tables 2 and 3. Note that SDPs contribute to identifica-
tion of the active site, although leading to prediction of a
more disperse cluster. When no SDPs are predicted (last
column), the average distance is smaller, because CPs
form a more compact cluster in the active pocket. Unlike
other methods that attempt to predict functional sites
solely using the conservation of surface residues, SDPsite
predicts a number of additional positions of potential
importance. In 11 out of 26 families the best cluster is sig-
nificantly (p-value < 0.01 in a Mann-Whitney test) closer
to the ligand in both λ = 0.5 and λ = 1 scenarios, and in
20 out of 26 in at least one of them, whereas the CPs-only
based prediction succeeded in only 15 families (Table 4).
This indicates that the inclusion of SDPs in the prediction
often leads to a significant improvement.
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Table 1: Statistics of the benchmark datasets: diverse dataset, two or more EC numbers per family

Family ID Family name # sequences Alignment length ECs PDB Bound ligand equivalent to natural substrate/product

PF00108 Thiolase_N 22 291 2.3.1.9
2.3.1.16
2.3.1.176

1NL7 Coenzyme A

PF00128 Alpha-amylase 54 673 2.4.1.4
2.4.1.7
3.2.1.10
3.2.1.20
3.2.1.70
3.2.1.98
3.2.1.93
3.2.1.141
5.4.99.16
5.4.99.15

2D3N Glucose

PF00135 COesterase 129 889 3.1.1.1
3.1.1.3
3.1.1.7
3.1.1.8
3.1.1.13
3.1.1.59

1P0M Choline ion

PF00215 OMPdecase 92 402 4.1.1.23
4.1.1.85

2CZE Uridine-5'-monophosphate

PF00278 Orn_DAP_Arg_deC 55 220 4.1.1.17
4.1.1.18
4.1.1.19
4.1.1.20

1TWI Lysine

PF00293 NUDIX 205 314 2.7.7.1
3.6.1.13
3.6.1.17
3.6.1.52
3.6.1.52
5.3.3.2

2DSC Adenosine-5-diphosphoribose

PF00348 Polyprenyl_synt 16 289 2.5.1.10
2.5.1.29

2F8Z Zoledronic acid, 3-methylbut-3-enyl trihydrogen 
diphosphate

PF00351 Biopterin_H 6 332 1.14.16.1
1.14.16.2
1.14.16.4

1MMK 5,6,7,8-tetrahydrobiopterin, beta(2-thienyl)alanine

PF00579 tRNA-synt_1b 41 402 6.1.1.1
6.1.1.2

1WQ
4

Tyrosine

PF00583 Acetyltransf_1 244 150 2.3.1.1
2.3.1.4
2.3.1.48
2.3.1.57
2.3.1.59
2.3.1.82
2.3.1.87
2.3.1.88
2.3.1.128

1TIQ Coenzyme A
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PF00590 TP_methylase 22 247 2.1.1.98
2.1.1.107
2.1.1.130
2.1.1.131
2.1.1.132
2.1.1.133
2.1.1.152
2.1.1.151
4.2.1.75
4.99.1.4

1S4D S-adenosyl-L-homocysteine

PF00755 Carn_acyltransf 22 867 2.3.1.6
2.3.1.7
2.3.1.21
2.3.1.137

1NDI Coenzyme A

PF00871 Acetate_kinase 12 405 2.7.2.1
2.7.2.7
2.7.2.15

1TUY Adenosine-5'-diphosphate

PF00896 Mtap_PNP 13 288 2.4.2.1
2.4.2.28

1V48 9-(5,5-difluoro-5-phosphonopentyl)guanine

PF00962 A_deaminase 17 475 3.5.4.4
3.5.4.6

1NDZ 1-((1r)-1-(hydroxymethyl)-3-(6-((3-(1-methyl- 1h-
benzimidazol-2-yl)propanoyl)amino)-1h- indol-1-
yl)propyl)-1h-imidazole-4-carboxamide

PF01048 PNP_UDP_1 16 276 2.4.2.1
2.4.2.3
2.4.2.28
3.2.2.4
3.2.2.9

1PK7 Adenosine

PF01112 Asparaginase_2 7 365 3.5.1.1
3.5.1.26

1SEO Aspartic acid

PF01135 PCMT 9 232 2.1.1.77
2.1.1.36

1R18 S-adenosyl-L-homocysteine

PF01202 SKI 100 263 2.7.4.3
2.7.1.12
2.7.4.14
2.7.1.71
4.2.3.4

1WE2 Adenosine-5'-diphosphate

PF01234 NNMT_PNMT_TEMT 7 289 2.1.1.1
2.1.1.28
2.1.1.49

2AN4 S-adenosyl-L-homocysteine

PF01467 CTP_transf_2 66 302 2.7.7.1
2.7.7.3
2.7.7.14
2.7.7.15
2.7.7.18
2.7.7.39

1N1D [Cytidine-5'-phosphate] glycerylphosphoric acid 
ester

PF01712 dNK 14 174 1.6.99.3
2.7.1.21
2.7.1.74
2.7.1.76
2.7.1.113
2.7.1.145

2A2Z Uridine-5'-diphosphate, 2'-deoxycytidine

Table 1: Statistics of the benchmark datasets: diverse dataset, two or more EC numbers per family (Continued)
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PF02274 Amidinotransf 32 455 2.1.4.1
3.5.3.6
3.5.3.18

2A9G Arginine

PF03061 4HBT 153 102 3.1.2.2
3.1.2.23

1LO7 2-oxyglutaric acid, 2-aminoethanesulfonic acid

PF03171 2OG-FeII_Oxy 147 183 1.14.11.2
1.14.11.4
1.14.11.7
1.14.11.9
1.14.11.1

1
1.14.11.1

3
1.14.11.1

9
1.14.11.2

0
1.14.11.2

3
1.14.11.2

6
1.14.17.4
1.14.20.1
1.21.3.1

2FDJ 4-hydroxyphenacyl coenzyme A

PF03414 Glyco_transf_6 6 341 2.4.1.87
2.4.1.40

1LZJ Succinic acid

Table 1: Statistics of the benchmark datasets: diverse dataset, two or more EC numbers per family (Continued)
For instance, in the Protein-L-isoaspartate(D-aspartate)
O-methyltransferase (PCMT, PF01135) and Thioesterase
(4HBT, PF03061) families, the CP-based cluster is located
distant from the active site, whereas addition of SDPs res-
cues the prediction leading to the correct site. In the C-ter-
minal domain of Pyridoxal-dependent decarboxylases
(Orn_DAP_Arg_deC, PF00278), bacterial transferase hex-
apeptide (Hexapep, PF00132) and Asparaginase
(Asparaginase_2, PF01112) families, SDPs rescue the clus-
ter for λ = 0.5. In contrast, for the Shikimate kinase family
(SKI, PF01202) a heavier reliance on SDPs skews the pre-
diction, whereas more equal considerations of SDPs and
CPs, or of CPs only, perform considerably better.

The Carboxylesterase (COesterase; PF00135) family is the
only clear failure of the method, i.e. its active site is not
identified by either variant of the method. Even the cata-
lytic triad, Ser198, His438 and Glu197 (numbering from
ChlE_Human), is not among either SDPs or CPs. The fact
that the catalytic residues are not conserved in the align-
ment is puzzling. This could be because the alignment
from Pfam contains many uncharacterized paralogs from
C. elegans and D. melanogaster, which could perform a
different function or be non-functional. Indeed, catalytic
residues are often substituted in these proteins: Ser198 to
alanine, asparagine, glycine or valine, His438 to asparag-
ine, glutamic acid, leucine, lysine, tyrosine or valine, and
Glu197 to asparagine, glutamic acid, glutamine, histidine,
isoleucine, proline, threonine, tryptophane or tyrosine.

Such changes mean that these residues are ignored in the
prediction procedure, and highlights the need for some
caution when building alignments to predict function.

We overlook details of quaternary structure when making
predictions, and this can have interesting consequences,
as discussed previously (e.g. ref. [25]). For instance, for
the Thiolase N-terminal domain (Thiolase_N, PF00108)
family, we found the minimal and the average distance to
be rather large. From the structure of a protein from this
family (biosynthetic thiolase from Z. ramigera, 1NL7), it is
evident that the best cluster is located on the contact inter-
face between two subunits of a dimer. Indeed, the mini-
mal and the average distance to the second subunit are
2.73 Å and 6.90 Å, respectively. The second best cluster is,
however, in the active pocket with the distances below the
threshold. The family of Gcn5-related acetyltransferases
(Acetyltransf_1, PF00583) is a similar case: for λ = 0.5 the
best cluster is located on subunit contact interface and the
second best in the active site, for λ = 1 vice versa. This
highlights the need to consider quaternary structure
explicitly when making and interpreting predictions using
this or similar approaches.

A natural question is how well the predicted grouping of
the sequences agrees with the EC numbers of the proteins
considered. For most families there was a good agree-
ment, with EC numbers segregating into discrete branches
of the trees derived from the alignments. There were two
Page 6 of 24
(page number not for citation purposes)

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2A9G
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1LO7
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2FDJ
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1LZJ
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=4HBT
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1NL7


BMC Bioinformatics 2009, 10:174 http://www.biomedcentral.com/1471-2105/10/174

Page 7 of 24
(page number not for citation purposes)

Assessment of the prediction quality for the diverse datasetFigure 1
Assessment of the prediction quality for the diverse dataset. In each plot, the green and the blue bars represent SDP-
site predictions with λ = 0.5 and λ = 1, respectively. Yellow bars represent prediction based solely on conserved positions. (a) 
Minimal distance from the best cluster to the bound ligand. (b) Average distance from residues of the best cluster to the bound 
ligand. (c) Significance of the average distance.
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Table 2: Averages for the best cluster over all families from the Datasets, Å.

Diverse dataset Homogeneous dataset

λ = 0.5 λ = 1 No SDPs λ = 0.5 λ = 1 No SDPs

minimal distance 4.22 5.37 4.56 3.81 2.95 4.84

average distance 8.89 9.95 7.14 9.83 8.39 8.47

Table 3: Sensitivity and false positive rate over all families from the Datasets, Å.

Diverse dataset Homogeneous dataset Combined dataset

λ = 0.5 λ = 1 No SDPs λ = 0.5 λ = 1 No SDPs λ = 0.5 λ = 1 No SDPs

Sensitivity 0.13 0.14 0.06 0.13 0.16 0.07 0.14 0.15 0.07

False positive rate 0.03 0.02 0.008 0.05 0.04 0.01 0.04 0.03 0.01

families where proteins with one EC number would split
between two groups that contain proteins with other EC
numbers (alpha-amylase, PF00128, and polyprenyl syn-
thetase families, PF00348). For both, the same enzymatic
activity seems to evolve independently on two separate
branches of the phylogenetic tree.

b. The homogeneous dataset: protein families with a single EC 
number
The 18 families with a single EC number are listed in
Table 5. Again, we applied SDPsite with λ = 0.5, λ = 1 and
without prediction of SDPs (Fig. 2). For all studies fami-
lies, except Eukaryotic phosphomannomutases (PMM,
PF03332), at least one of these variants puts the best clus-
ter to the active site of the enzyme according to the
described criteria. For 9 out of 18, the best cluster identi-
fied by either procedure is located in the active site. These
results are significant (p < 0.01) for all families, except
Adenylylsulphate kinases (discussed below).

The remaining nine families, for which active sites were
not identified by all variants of SDPsite, can be split into
four categories: (1) λ = 0.5 fails (Thymidylate synthases,
Thymidylat_synt, PF00303; thymidine kinases from Her-
pesviridae, Herpes_TK, PF00693); (2) both λ = 0.5 and λ
= 1 fail (GTP cyclohydrolases II, GTP_cyclohydro2,
PF00925; Phosphoenolpyruvate carboxykinases,
PEPCK_ATP, PF01293; Adenylylsulphate kinases,
APS_kinase, PF01583); (3) CP-only prediction fails
(Queuine tRNA-ribosyltransferases, TGT, PF01702; Pyru-
vate formate lyases, PFL, PF02901); and (4) at least two of
the three fail (oxygenase domain of Nitric oxide syn-
thases, NO_synthase, PF02898; Eukaryotic phosphoman-
nomutases, PMM, PF03332).

SDPs are expected to perform worse for this dataset,
because in theory there are no specificity differences
within each family as defined by the EC system. However,
CP-based clusters significantly skew the predictions in two
cases out of eighteen. One explanation of this observation
could be inaccuracy or ambiguity in the assignment of the
EC numbers, which would mean that we have identified
some real differences the specificity. It might also be that
a substitution to an amino acid with similar properties
(e.g. size, polarity, charge) occurred, which can perform
an equivalent enzymatic role. Another possibility is the
functional convergence to a single specificity at the molec-
ular level: SDPs indicate different residues that distant
species or distant paralogs evolved to perform the same
function (e.g. [44]). Alternatively, as discussed below,
SDPs may indicate differences specific to certain phyloge-
netic clades.

Similarly to the diverse dataset, there are two families for
which the best cluster is located on the subunit contact
interface: Thymidylate synthases and Adenylylsulphate
kinases. The minimal and average distances to the second
subunit of the dimer are 3.30 Å and 5.73 Å for Thymi-
dylate synthases and 2.65 Å and 6.55 Å for Adenylylsul-
phate kinases. For both, the second best cluster is in the
active site.

For two families, all three versions of SDPsite produce
poor results. For the oxygenase domain of Nitric oxide
synthases the average distance of the residues from the
best cluster to the ligand is between 10 and 15 Å for all
three versions, and for Eukaryotic phosphomanno-
mutases it even exceed 15 Å in two out of three versions.
However, for both families, the second best cluster is
located in the active site. In the case of the oxygenase
Page 8 of 24
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Table 4: Assessment of SDPsite versions, diverse dataset.

Family SDPsite
(λ = 0.5 AND λ = 1)

SDPsite
(λ = 0.5 OR λ = 1)

SDPsite (no SDPs)

PF00108 - - +
PF00128 - - +
PF00135 - - -
PF00215 + + -
PF00278 - + -
PF00293 + + +
PF00348 + + +
PF00351 - + +
PF00579 + + +
PF00583 - -* -
PF00590 + + -
PF00755 + + +
PF00871 + + +
PF00896 - + +
PF00962 - + +
PF01048 - + -
PF01112 - + -
PF01135 + + -
PF01202 - + +
PF01234 - + +
PF01467 -* - -*
PF01712 + + +
PF02274 + + +
PF03061 -* -* -
PF03171 + + -
PF03414 - + +

Accuracy 0.42 (11/26) 0.78 (20/26) 0.58 (15/26)

'+': successful prediction (average distance to ligand <10 Å, p-value in Mann-Whitney test against all amino acids of the protein < 0.01), '-*': 
moderately successful prediction (average distance to ligand <10 Å, p-value in Mann-Whitney test against all amino acids of the protein < 0.1), '-' 
otherwise.

domain of Nitric oxide synthases the alignment contains
only 8 sequences, which split into phylogenetic groups of
insects and vertebrates. These groups are too distant, and
it seems that the method cannot remove the phylogenetic
trace completely, thus producing many SDPs that are
probably not functionally important. A more representa-
tive set of sequences may improve the predictions and
probably place the best cluster in the right position. For
the Eukaryotic phosphomannomutases, the best cluster is
located in the core domain close to the magnesium ion,
which is a part of the active site, but distant from the sub-
strate in the open conformation of the protein.

The means of the minimal and the average distances to
the ligand and the significance of the average distance are
summarized in Table 2. It is not surprising that giving
SDPs and CPs equal weight (λ = 1) leads to better results
than λ = 0.5 for this dataset: since all the proteins have the
same EC number, one might not expect to find anything
accounting for differences in specificity among these pro-
teins. As discussed above, the identified SDPs could,
instead, reflect different ways that different groups of pro-

teins evolved to perform the same function. Again, build-
ing the best cluster from only CPs does not improve the
prediction quality, and all the distances used as the per-
formance measures are larger than for λ = 1. This is
another indication that proteins, even though they have
the same function and specificity, have evolved quite dif-
ferent ways to perform it, and this must be taken into
account when predicting functional sites.

In contrast to the diverse dataset, the success rate is similar
for different versions of SDPsite (Table 6). In 10 out of 18
families the best cluster identified by taking into account
both CPs and SDPs is significantly closer to the ligand (p-
value < 0.01 in Mann-Whitney test), which indicates that
specificity determinants predicted for homogeneous fam-
ilies, even when they do not illuminate the binding of a
specific ligand, play some other important role in their
function. In this regard, it is important to stress that this
dataset is only homogenous as defined by EC numbers,
and it is well established that these do not always
uniquely define molecular function [45]. In other words,
Page 9 of 24
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Table 5: Statistics of the benchmark datasets: homogeneous dataset, strictly one EC number per family

Family ID Family name # sequences Alignment length EC PDB Bound ligand equivalent to natural substrate/product

PF00303 Thymidylat_
synt

19 384 2.1.1.45 2G8O 2'-deoxyuridine 5'-monophosphate, 10-propargyl-5,8-dideazafolic acid

PF00693 Herpes_TK 15 305 2.7.1.21 1VTK Adenosine-5'-diphosphate, thymidine-5'-phosphate

PF00925 GTP_
cyclohydro2

16 193 3.5.4.25 2BZ0 Phosphomethylphosphonic acid guanylate ester

PF01014 Uricase 17 196 1.7.3.3 2FXL 1-(2,5-dioxo-2,5-dihydro-1h-imidazol-4-yl)urea

PF01227 GTP_
cyclohydroI

16 107 3.5.4.16 1A8R Guanosine-5'-triphosphate

PF01293 PEPCK_ATP 12 495 4.1.1.49 1YTM Adenosine-5'-triphosphate, oxalic acid

PF01583 APS_kinase 20 166 2.7.1.25 1M7G Adenosine-5'-phosphosulfate, adenosine-5'-diphosphate-2',3'-vanadate

PF01656 CbiA 80 372 6.3.3.3 1A82 Adenosine-5'-triphosphate, 7,8-diamino-nonanoic acid

PF01702 TGT 13 256 2.4.2.29 1Q2S 9-deazaguanine

PF01747 ATP-
sulfurylase

19 397 2.7.7.4 1G8H Adenosine-5'-phosphosulfate, pyrophosphate 2-

PF02110 HK 9 282 2.7.1.50 1ESQ Adenosine-5'-triphosphate, 4-methyl-5-hydroxyethylthiazole phosphate

PF02223 Thymidylate_
kin

26 209 2.7.4.9 1E9E Adenosine-5'-diphosphate, thymidine-5'-phosphate

PF02277 DBI_PRT 28 398 2.4.2.21 1L5L 7-alpha-d-ribofuranosyl-purine-5'-phosphate, nicotinic acid

PF02353 CMAS 12 304 2.1.1.79 1KPI S-adenosyl-Ll-homocysteine

PF02569 Pantoate_
ligase

7 311 6.3.2.1 2A86 Adenosine monophosphate, beta-alanine

PF02898 NO_synthase 8 374 1.14.13.39 1Q2O L-n(omega)-nitroarginine-2,4-L-diaminobutyric amide

PF02901 PFL 11 734 2.3.1.54 1MZO Pyruvic acid

PF03332 PMM 9 248 5.4.2.8 2FUE Alpha-d-mannose 1-phosphate
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Assessment of the prediction quality for the homogeneous datasetFigure 2
Assessment of the prediction quality for the homogeneous dataset. Color code as in Fig. 1. (a) Minimal distance from 
the best cluster to the bound ligand. (b) Average distance from residues of the best cluster to the bound ligand. (c) Significance 
of the average distance.
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substantial sequence and structure diversity is possible
even among sets of protein sharing the same EC number.

For example, the alignment of the queuine tRNA-ribosyl-
transferase family contains 9 bacterial and 4 archaeal pro-
teins. When predicting SDPs, SDPsite clearly divides the
family into these two groups. A closer analysis of the pre-
dicted SDPs reveals that some positions that are conserved
within the two groups but differ between them bind sub-
strate or tRNA in the bacterial enzyme from Zymomonas
mobilis [46]. For example Cys 158 binds queuine precur-
sor (substituted to proline in archaea), and Arg 286 binds
tRNA (substituted to leucine).

c. Overall performance in the benchmark and guidelines for 
predictions
We analyzed the performance of SDPsite by calculating,
for the diverse, homogenous and combined datasets, sen-
sitivity (the ratio of number of true positives to the
number of true positives plus false negatives) and false
positive rate (ratio of number of false positives to the
number of false positives plus true negatives) (Table 3).
For a perfect prediction, sensitivity should be close to 1
and the false positive rate close to 0. As a gold standard set
of residues in active sites, we considered all amino acids
located within a distance of 10 Å from the bound ligand.
Note that not all these residues are functionally impor-
tant, which makes the reported false positive rate lower
than it would be if we had perfect information on real
functional importance of all residues in the proteins con-
sidered.

In all datasets the inclusion of SDPs in the predictions
leads to a higher sensitivity. There is no significant differ-
ence between the diverse and homogeneous datasets,
though this is probably due to the diverse nature of the
underlying EC and sequence data as mentioned above:
functional diversity is also likely present in the homoge-
neous dataset making SDPs beneficial to the prediction of
functional sites.

As discussed above for the phosphomannomutase family,
proteins often undergo conformational changes upon
binding ligands, which means that any method tested on
structures in complex with a ligand might unfairly profit
from the use of a bound structure, which will differ from
the unbound or apo form of the protein. To test for this
effect, we identified 16 apo protein structures (of 26) from
the diverse dataset and 14 (of 18) from the homogeneous
dataset and found no significant difference in the pre-
dicted residues. This effectively means that the method is
relatively insensitive to minor conformational changes
that occur upon binding. It is worth noting, however, that
the enzyme sites considered here might not be represent-
ative of other types of interactions that can lead to more
substantial conformational re-arrangements (e.g. protein-
protein interactions), or contain much larger functional
sites than the tight constellations of functional residues
normally found in enzymes.

The results from the above benchmark provides a guide
for how to interpret predictions, which we used for the
unannotated families below. Based on inspection of the

Table 6: Assessment of SDPsite versions, homogeneous dataset.

Family SDPsite
(λ = 0.5 AND λ = 1)

SDPsite
(λ = 0.5 OR λ = 1)

SDPsite (no SDPs)

PF00303 - - +
PF00693 - + -
PF00925 - - +
PF01014 + + +
PF01227 + + -
PF01293 - - +
PF01583 - - +
PF01656 + + +
PF01702 + + -
PF01747 + + +
PF02110 + + +
PF02223 + + +
PF02277 + + +
PF02353 + + -
PF02569 + + +
PF02898 - + -
PF02901 + + -
PF03332 - + -

Accuracy 0.61 (11/18) 0.78 (14/18) 0.55 (10/18)

'+': successful prediction (average distance to ligand <10 Å, p-value in Mann-Whitney test against all amino acids of the protein < 0.01), '-' otherwise.
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results, we found the ratio of the total number of pre-
dicted SDPs and CPs to the length (i.e. (SDP+CP)/length)
of alignment to be a useful measure of performance. For
29 of 44 families this ratio was below 0.2. For 17 of these
29 families all three versions of SDPsite predict the best
cluster with an average distance to ligand less than 10 Å,
and for 8 of these the p-value is < 0.01 in all three versions
of the method. However, the set of families with success-
ful predictions is not enriched with those with low
(SDP+CP)/length ratio compared to all predictions. We
also calculated the ratio of the number of residues in the
best cluster to the length (best cluster/length) of align-
ment and applied the cutoff of 0.1. For 35 of total 44
(80%) families the best cluster/length ratio is below 0.1,
whereas among families, for which average distance is <10
Å, and p-value < 0.01 for all three versions of SDPsite, this
fraction is 10 out of 12 (83%). Thus it is practical first to
consider predictions with a low best cluster/length. Still,
as we discuss below, even more disperse predictions can
lead to interesting insights.

As noted above, sometimes the best cluster can be situated
on the inter-subunit contact interface, and the second best
cluster in the active site. No clear strategy can be suggested
to distinguish these situations in the absence of prior
knowledge. In practice one should analyze the composi-
tion of the best cluster for the presence of amino acids typ-
ical for enzyme active sites (potential electron donors/
acceptors) or for protein-protein contact interface (hydro-
phobic patches, etc.). These considerations, however, tend
to be family-specific and thus cannot be included into a
prediction algorithm intended for a general use.

It is worth noting that SDPsite performs best when the
alignment is sufficiently long, the sequences are suffi-
ciently diverse in terms of sequence identity and the phy-
logenetic tree is biologically sound. As a guideline, it
performs best with alignments of at least 50 positions,
and at least 10 proteins with identities between 30 and
90%. The diversity of possible sequences sets and func-
tions for which SDPsite is applicable is great. From our
benchmark, we were unable to distinguish between a sin-
gle-EC and a multiple-EC family in a blind test. This is
probably the major drawback of the method: in absence
of additional information, one cannot conclude whether
the identified SDPs pinpoint the real functional diversity
within the family, or simply reflect the phylogenetic trace.
It is impossible to say which of the three functional site
prediction approaches is generally best. In practice, one
should always run all three approaches, and then interpret
based on what, if anything, is known about the function,
and how the functional sites look on the structure.

2. Application to protein families lacking functional 
annotation
We focused on 193 Pfam families that included at least
one protein with resolved 3D structure, and where all
structures come from Structural Genomics Projects. After
removing families with fewer than 6 sequences in the
Pfam seed alignment, we were left with 124 (Additional
file 2), for which potential functionally important sites
could be identified. Of these, 54 families include poten-
tial or proven enzymes; 5 are transcription factors; 3 are
involved in translation; 15 participate in various cellular
processes in a fashion that is not completely understood;
and the functional role for 47 is unknown. The full
description of the predictions is available from the SDP-
site web-site. We calculated SDP+CP/length and best clus-
ter/length ratios for these families. For 50 of 124 families
SDP+CP/length ratio was below 0.2 and the predicted
cluster lies on the surface or in a pocket of the protein
structure. For another 44 families predictions were
weaker, but acceptable: SDP+CP/length ratio exceeds 0.2,
but the cluster still lies in a pocket or on the surface. For
the remaining 30, no reasonable predictions were made.
Taken together, 76% of the predictions seem to provide a
reasonable hint about the location of the actual func-
tional site of the protein. The best cluster/length ratio is
below 0.1 in 91 of 124 (73%) families. This fraction is
lower than for the benchmark dataset, which can be due
to the fact that the considered dataset includes proteins of
various functions as opposed to the benchmark that con-
sists solely of enzymes. The predictions made for these 91
families are the most promising candidates for experi-
mental validation. Five promising examples are discussed
below. These examples were chosen according to the crite-
ria above, and our own visual inspection of the results.

a. YCII-related domain (PF03795)
This family was first identified during an analysis of the
Streptomyces coelicolor genome by a domain hunting proc-
ess [47]. The authors confined the annotation to a remark
that it is "probably enzymatic". The study of this domain
continued, when the first (and to date only) structure of a
protein from this family, HI0828 from Haemophilus influ-
enzae, was solved (PDB ID 1mwq, [48]). The protein was
shown to adopt a ferrodoxin-like α/β-fold, and a catalytic
mechanism involving a histidine-aspartate pair was pro-
posed. However, biochemical assays have to-date failed to
suggest a substrate for the enzyme.

SDPsite identifies a small cluster of potentially important
residues (Fig. 3a), located in a pocket, which contains a
coordinated ZnCl3, a ligand supposed to play a role in the
catalysis. The method splits the family into three specifi-
city groups (Fig. 3b). As the family includes a number of
paralogues from the same species, which fall into different
specificity groups, the identified sub-groups might reflect
Page 13 of 24
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the real specificity differences within the family. The pre-
dicted SDPs might thus account for binding of different
substrates in the active pocket.

b. CobW/HypB/UreG, nucleotide-binding domain (PF02492), and 
Cobalamin synthesis protein cobW C-terminal domain (PF07683)
These two protein families represent the two domains of
CobW protein, a hypothetical protein, involved in cobala-
min biosynthesis and possibly required to store cobalt
ions as an intermediary between the cobalt transport and
chelation systems [49]. The N-terminal part of CobW is a
member of PF02492, which also contains nucleotide-
binding domains of HypB and UreG, GTPases involved in
binding of nickel to apoenzymes [50,51]. The only known
3D structure in both families belongs to a hypothetical
protein YjiA from E.coli [31] (PDB ID 1nij). YijA is a
homolog of CobW and has the same domain structure,
but a much shorter linker between the domains, and also
lacks the histidines required for metal binding, and thus
cannot serve as a metal repository. YijA is believed to be a
GTP-dependent regulator, however its biological role is
unclear [52]. The N-terminal domain of YjiA (which cor-
responds to PF02492) has a fold typical to P-loop NTP-
binding proteins, and a number of motifs responsible for
GTP binding can be found in it. The C-terminal domain
has a ferrodoxin-like fold.

SDPsite identified two potential functionally important
sites, one for each domain (Fig. 4). Both clusters are
exposed to solvent and the cluster in the N-terminal
domain is located close to the possible nucleotide-bind-
ing pocket, identified by Walker A and B motifs, as dis-
cussed in ref. [49] (arrow in Fig. 4). The arrangement of
the clusters suggests their possible role in communication
between the two domains. Indeed, in the structure used
the minimal distance between residues of the N-terminal
and the C-terminal domain cluster is 5.5 Å. As the
domains are rather mobile relative to each other due to
the flexible linker, under certain conditions the two clus-
ters could potentially interact directly.

c. PHP domain (PF02811)
This family corresponds to a catalytic domain with a phos-
phoesterase activity found both as a stand-alone protein
and fused to DNA polymerase domains. PHP domains are
often found in the N-terminal part of bacterial DNA
polymerase III α subunit and in the C-terminal part of
DNA polymerase of the X family in some archaea. In this
role, the PHP domain is proposed to hydrolyze pyrophos-
phate, shifting reaction equilibrium to polymerization
[53]. The family also includes a number of tyrosine-pro-
tein phosphotases and histidinol phosphatases and many
uncharacterized proteins. 3D structures are available for
two proteins of the family, both with unknown function:
YcdX from E.coli and tm0559 from Thermotoga maritima.

A. Structure of HI0828 from Haemophilus influenzae (1 mwq)Figure 3
A. Structure of HI0828 from Haemophilus influenzae (1 mwq). SDPs are marked yellow, CPs are marked orange, best 
cluster is shown in spheres. Cl ions are shown in green, Zn ions in brown. B. Phylogenetic tree of the YCII-related 
domain (PF03795) family. The predicted specificity groups are shown as gray ovals.
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We mapped the predicted positions on the structure of
YcdX from E.coli [54] (PDB code 1m68) (Fig. 5), since the
predicted clusters in all available structures are formed by
equivalent residues (data not shown). YcdX is usually
present as a trimer in solution, each monomer possessing
its own catalytic site [54] (Fig. 5A, B and 5C show a closer
view of one monomer of the complex). A cluster of three
zinc ions is located in a cleft of the structure, indicating a
possible location of the active site (marked with an arrow
in Fig. 5A). The predicted cluster of functionally impor-
tant residues lies close to the zinc cluster and has a layered
form: a more compact layer of CPs and a fuzzier layer of
SDPs. CPs might represent the catalytic core of the active
site and SDPs, a less spatially defined recognition periph-
ery. Some SDPs even protrude to the back of the mono-
mer, where they can participate in the ligand recognition
in another active site.

It was previously noted [53] that proteins of the PHP fam-
ily appear as single domain proteins or as domains in
multi-domain proteins involved in a variety of cellular
processes, possibly exhibiting diverse specificity. Indeed,
one can find proteins annotated as "DNA polymerase III
subunit alpha", "DNA-dependent DNA polymerase fam-
ily X", "Histidinol-phosphatase", "Tyrosine-protein phos-
phatase" and "Protein trpH" in this family. Many of the
family members are still uncharacterized. Along with the
identification of a cluster of possible functionally impor-
tant residues, SDPsite extracts a number of specificity
groups, which are shown on the phylogenetic tree on the
family in Fig. 6. Proteins with similar annotation always
fall into same group, and, with a certain degree of caution,
this annotation can be transferred onto other proteins of
the same group. For example, YcdX falls into the same
group with a sequence from Methanobacterium thermoau-
totrophicum (O26650), which is annotated as a DNA-

Structure of YjiA from E.coli (1nij)Figure 4
Structure of YjiA from E.coli (1nij). N-terminal domain is shown in pink, linker is shown in light green, C-terminal domain 
is shown in light blue. SDPs are marked yellow, CPs are marked orange in the N-terminal domain and cyan and magenta, 
respectively, in the C-terminal domain, best cluster is shown in spheres. The red arrow indicates the position of the nucle-
otide-binding pocket.
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dependent DNA polymerase family X, known to be
involved in DNA repair. Analysis of gene expression level
in stress conditions indicates that YcdX might also be
involved in DNA repair [55].

d. Possible lysine decarboxilase (PF03641)
According to Pfam, this family includes proteins anno-
tated as lysine decarboxylases, but the evidence for this
annotation is not clear. Three structures from this family
are available (YvdD from Bacillus subtilis, 1t35; tm1055
from Thermotoga maritima, 1rcu; and at5g11950 from Ara-
bidopsis thaliana, 1ydh), none of them with clear func-
tional annotation. One can clearly see a cleft lined with
CPs with SDPs on its periphery (Fig. 7A, B and 7C show
different possible oligomeric states), which could form an
active pocket. It is also possible that there is one active
pocket per every two subunits (see Fig. 7C).

e. YqeY-like proteins (PF09424)
YqeY-like proteins are widespread, but the largest portion
of the family comes from bacteria (341 sequences vs. 17
in Eukarya, 1 in viruses and none in Archaea). Predomi-
nantly, there is only one copy per genome. Despite the
great number of proteins in the family, their function
remains unclear. A number of SDPs and CPs were identi-
fied in this protein (Fig. 8). The best cluster is a tight clus-
ter of four SDPs at the C-terminal end of the second α-
helix, and exposed to solvent. This positioning might sug-
gest its involvement in some protein-protein interactions.
The functional role of these residues, if any, remains to be
tested.

3. Comparison to other functional site prediction methods
We compared the performance of SDPsite to several other
techniques which also aim to predict functionally impor-
tant residues from protein sequence and structure infor-
mation: 1) the Evolutionary Trace (ET) method [11,12],
2) the ConSurf method [9], and 3) the three methods
from the TreeDet package [30]. To produce predictions
with the ET method, we used the TraceSuite II server http:/
/www-cryst.bioc.cam.ac.uk/~jiye/evoltrace/
evoltrace.html. For ConSurf we used the Rate4site imple-
mentation [56], which assigns an evolutionary rate to
each position of the alignment. The more a position is
conserved, the more important for the function it is con-
sidered to be. As the algorithm produces a rating, rather
than a set of functionally important positions, we consid-
ered the two most conserved of the nine output categories
as the prediction.

We used the two benchmark datasets and the assessment
procedure described in the above to assess the predictions
of different methods. The minimal distance to the ligand,
the average distance and the significance of the average
distance are presented in Additional file 3. The predictions
of the ET method usually show low minimal distance to
the ligand, but due to the fact that ET renders too many
positions as potentially important (up to 60% of the
alignment length), which is impractical in experimental
studies. We performed Mann-Whitney tests comparing
the distribution of distances for the predictions produced
by SDPsite to various other methods (Table 7). In 32 and
34 of 44 cases at least one of the three versions of the
method (λ = 0.5, λ = 1 or no SDPs) performed signifi-
cantly better (p-value < 0.01) than ET. and Rate4Site,

Structure of YcdX from E.coli (1m68)Figure 5
Structure of YcdX from E.coli (1m68). A. YcdX trimer. Putative location of the active site is indicated with an arrow. SDPs 
are marked in yellow, CPs in orange, the best cluster is shown in spheres. B. YcdX monomer. Side view. C. YcdX monomer. 
Front view.
Page 16 of 24
(page number not for citation purposes)

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1m68
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1m68
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1t35
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1rcu
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1ydh
http://www-cryst.bioc.cam.ac.uk/~jiye/evoltrace/evoltrace.html
http://www-cryst.bioc.cam.ac.uk/~jiye/evoltrace/evoltrace.html
http://www-cryst.bioc.cam.ac.uk/~jiye/evoltrace/evoltrace.html


BMC Bioinformatics 2009, 10:174 http://www.biomedcentral.com/1471-2105/10/174
respectively. FASS, MB and S methods perform well, but
frequently identify too few amino acids to make the test
reliable, or are not applicable at all due to the methods'
limitations. SDPsite thus achieves a good balance between
the quality and quantity of the predicted residues and the
general applicability of the method to further investiga-
tions.

Discussion
We have presented a new approach for automated identi-
fication of functional sites in protein structures, SDPsite.
Its main advantage is that it considers not only conserva-
tion, but also specific differences among proteins from a
protein family. A number of approaches aim to predict
specificity determinants [25-41] and/or conserved func-
tionally important sites [9-24], but they almost never
combine structural and sequence information. The closest
attempt to apply this kind of analysis to prediction of
functional sites was the Evolutionary Trace (ET) method
[11,12]. However, the ET approach takes into account all
positions conserved within groups that arise when cutting
the phylogenetic tree of the family at a certain distance
from the root, thus often leading to too many predicted

positions. SDPsite also extracts all possible groups of pro-
teins corresponding to different identity cutoffs, but,
unlike ET, it selects the least probable to arise by chance,
i.e. the most probable functional grouping.

We tested SDPsite on two benchmark datasets of enzyme
families, for which details of function and binding mode
of ligands were known, and specificity of proteins was, in
one case, differing within the family, and in the other case,
same for all proteins of the family. The tests show that for
almost all cases SDPsite succeeds to predict the functional
site (i.e. the active cleft of the enzyme) with a good accu-
racy. The average values of the minimal and average dis-
tances from the best cluster to the ligand over all families
(Table 2) demonstrate that the predicted best cluster is
compactly situated in the active site of the enzymes in
most families. As noted above, the prediction of specifi-
city determinants is the main novel feature of our method,
but ignoring them and using only conserved positions to
build the best cluster can lead to a decrease of the sensitiv-
ity of the method (Additional file 1, Table 3). Using this
strategy some residues crucial for the function are missed
(e.g., substrate-binding residues in tRNA-ribosyltrans-

Phylogenetic tree of the PHP domain (PF02811) familyFigure 6
Phylogenetic tree of the PHP domain (PF02811) family. Specificity groups are shown as gray ovals. The predominant 
annotation for certain groups is indicated beside them. When only one protein of a group has a functional annotation, it is put 
in italics and indicated by an arrow.
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ferases, see Results). Thus clusters that include SDPs often
define a more practically useful set of functional residues.
Comparisons to other methods for functional site predic-
tions show that SDPsite is marginally or substantially bet-
ter than the previous approaches, supporting the notion
that the inclusion of specificity determining residues gen-
erally augments predictions of functional sites.

We provide predictions of functional sites for a large
number of proteins, whose structures were solved in a
high-throughput manner and lack functional annotation.
In some cases (e.g. YCII-related domain, PHP domain, see
Results section) we provide evidence that a family of
homologous proteins includes proteins of different spe-
cificity and suggest composition of specificity groups.
When specificity of some members of these groups is
known, one can transfer it, with caution, to uncharacter-
ized proteins, assisting their annotation (see the example
of PHP domain).

Conclusion
We have introduced a novel approach to identification of
functionally important sites in protein structures. It
bridges the gap between two existing categories of meth-

ods dealing with the same problem: sequence-centric
comparative techniques and the structure-centric tech-
niques that incorporate some physico-chemical consider-
ations. Sequence data are already overwhelming, and
structures lacking functional annotation are likely to
increase in number for many years to come. Thus practical
tools like that described will be of great benefit for those
interested in inferring function directly from structure.

Methods
SDPsite algorithm
The approach takes as input the multiple sequence align-
ment of a protein family, the corresponding phylogenetic
tree and a 3D structure of one of the family members. The
algorithm is composed of three basic steps: (1) prediction
of specificity determining positions (SDPs) (at this step,
the sequences are automatically divided into a number of
specificity groups, i.e. groups of proteins with presumably
the same specificity); (2) prediction of conserved posi-
tions (CPs); and (3) identification of the best spatial clus-
ter.

Structure of YvdD from Bacillus subtilis (1t35)Figure 7
Structure of YvdD from Bacillus subtilis (1t35). A. YvdD octamer. Suggested biological unit (from PDB entry 1t35). The 
color coding is as for Fig. 5. B. YvdD monomer. C. YvdD dimer. Note that the active site might be located between the two 
subunits.
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Prediction of specificity determining positions
We previously developed an algorithm for prediction of
specificity determining positions (SDPs) [25]. Given a set
of protein sequences divided into a number of specificity
groups, this method searches for the positions of the
alignment, for which the distribution of amino acids is
best correlated with the specificity groups. We suppose
that proteins from the same specificity group have the
same specificity, and specificity differs for proteins from
different groups. Thus, the identified positions are likely
to confer the specific differences in the function.

To assess the correlation, we use mutual information of
each position p of the alignment:

where fp(α, i) is the frequency of amino acid α in position

p in specificity group i, fp(α)is frequency of the amino acid

α in position p in the whole alignment, f(i) is the fraction
of group i in the whole alignment. To account for the bio-
logical nature of the data, we introduce a number of cor-
rections, which we discuss in detail in [25]. Then we

calculate the mean  and the variance  of

the expected mutual information and the statistical signif-
icance (Z-scores) for each position:

I f i
fp i

fp f ip p= ∑ ( , ) log
( , )

( ) ( )
,α

α

ααfor all amino acids for alll specificit y groups i∑

I p
exp σ I p

exp( )

Structure of YqeY from Bacillus subtilis (1ng6)Figure 8
Structure of YqeY from Bacillus subtilis (1ng6). The 
color coding is as for Fig. 5.

Table 7: Assessment of different methods.

Family ET Rate4site FASS MB S

PF00108 C C - - no MW
PF00128 - ++C n/a n/a n/a
PF00135 - - n/a n/a n/a
PF00215 - ++ no MW - no MW
PF00278 + +C - - no MW
PF00293 ++C + n/a n/a n/a
PF00303 C C no MW + 0
PF00348 ++C ++C - ++C -
PF00351 + + n/a n/a n/a
PF00579 ++ ++ - +C no MW
PF00583 - - n/a n/a n/a
PF00590 ++ ++ no MW - -
PF00693 +C +C n/a n/a n/a
PF00755 ++C ++C n/a n/a n/a
PF00871 ++C ++C n/a n/a n/a
PF00896 + - n/a n/a n/a
PF00925 C C 0 - 0
PF00962 ++C +C no MW ++C C
PF01014 ++C ++C no MW ++C 0
PF01048 +C +C - - -
PF01112 - + n/a n/a n/a
PF01135 ++ ++ n/a n/a n/a
PF01202 - - no MW + 0
PF01227 + - - - 0
PF01234 +C +C n/a n/a n/a
PF01293 +C C n/a n/a n/a
PF01467 - - 0 - 0
PF01583 - - no MW - 0
PF01656 ++C ++C no MW - no MW
PF01702 ++ ++ n/a n/a n/a
PF01712 ++C C n/a n/a n/a
PF01747 ++C ++C ++C ++C -
PF02110 ++C +C n/a n/a n/a
PF02223 ++C + no MW - 0
PF02274 ++C ++C - C -
PF02277 C C no MW - 0
PF02353 ++ ++ n/a n/a n/a
PF02569 ++C C n/a n/a n/a
PF02898 - + n/a n/a n/a
PF02901 ++ ++ n/a n/a n/a
PF03061 - - 0 - 0
PF03171 - - no MW - 0
PF03332 - - n/a n/a n/a
PF03414 ++C +C n/a n/a n/a

Success rate 32/44 34/44 1/7 8/22 1/5

ET: evolutionary trace method [13,14]; ConSurf: ConSurf method [9]; 
FASS, MB, S: three methods from the TreeDet package [32]. '++': 
SDPsite with both λ = 0.5 and λ = 1 performs significantly better (p-
value < 0.01 in Mann-Whitney test), '+': SDPsite with either λ = 0.5 or 
λ = 1 performs significantly better, 'C': SDPsite with CPs only 
performs significantly better; 'n/a' method is not applicable, 'no MW': 
Mann-Whitney test is unreliable (less than 5 value in one of the sets), 
0: method applicable, but no positions predicted, prediction 
considered not successful.
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Then, to identify the number of highest-scoring positions,
which are most likely to be SDPs, for each k positions with
highest Z-scores, we compute the probability of getting
this many Z-scores greater or equal to the smallest of the k
by chance, assuming the normal distribution of the Z-
scores. k* positions, for which this probability is the low-
est, are the predicted SDPs:

where

The probability of these k* SDPs, P* = P{there are at least
k cases: Z ≥ Z(k)}, is called the statistical significance of the
set of k* SDPs.

Determining specificity groups for a multiple sequence alignment
To allow large-scale application of SDPsite, we developed
a procedure for automated identification of specificity
groups from a multiple sequence alignment of the family
alone. We applied the idea from Lichtarge and colleagues
[11]: we place the root of the phylogenetic tree in the mid-
point of the longest path between two leaves and consider
the sets of groupings derived from cutting the tree on dif-
ferent distances from the root (Fig. 9). We ignore groups
with fewer than three sequences. Then for each grouping
we compute the SDPs as described above and select the
grouping with the lowest P*, i.e. the least probable to arise
by chance set of SDPs.

We need to correct for the fact that larger groups tend to
produce larger Z-scores. When considering the same align-
ment and increasing the number of sequences in each
group, Z-scores can be approximated by a log function
(data not shown). Thus we divide Z-scores by the loga-
rithm of the average number of sequences in a specificity
group.

Prediction of conserved positions
For each position p of the alignment, we assessed its con-
servation using the Sander-Schneider conservation meas-
ure [57]:

where N is the number of sequences in the alignment, d(si,

sj) is the distance between sequences si and sj, equal to

, si(p) and sj(j) is the amino acid in position

p in sequence, si and sj respectively, M(α, β) is the

BLOSUM62 amino acid substitution matrix.

Analogous to SDPs, we calculate Z-score for each position:

 is the background distribution generated by 10000

times picking random positions from the alignment to
form the random alignment column. This corresponds to
conservation in a set of unaligned sequences. Since align-
ing itself introduces some bias, we correct for it by center-

ing Z-scores: . Then we select the least

probable set of CPs using procedures described in the pre-
vious section.

Construction of the best cluster
To compute SDPs and CPs we do not need the 3D struc-
ture of proteins of the family. We make use of it when con-
structing the best cluster for the first time. When there are
resolved 3D structures for more than one protein of the
family, the resulting best cluster may differ depending on
the structure, but our tests show that it is usually not the
case (data not shown).

We map the predicted SDPs and CPs onto the structure
and construct the best cluster using the layered clustering
based on tightness of set function algorithm [58] as fol-
lows. Consider a graph where vertices correspond to the
predicted SDPs and CPs, and an edge connects every pair
of vertices. Let H0 be the union of all vertices of the graph.

Then for each i we calculate its weight: ,
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where the sum is over all other vertices j from H0, ωij is the

weight of the edge connecting i and j, calculated as:

where dij is the Euclidian distance between closest atoms
of amino acids corresponding to vertices i and j, R = 5 Å is
the average distance between centers of atoms in contact,
D = 15 Å is the influence distance of the atom. R and D are
empirical constants. λi = 0.5 if the vertex corresponds to a
CP, 1 otherwise. Thus CPs get twice as little weight as
SDPs,. The rationale for this is the fact that in the bench-
mark datasets there is a clear tendency for more SDPs in
the active site for families from the diverse dataset (10
SDPs on average closer than 10 Å to the ligand, opposed
to 7.38 CPs). The equal measure derives from the fact that
the homogeneous dataset has no such bias, (10.11 and
11.83 SDPs and CPs, respectively). For an unknown fam-
ily then, it is logical to try both parameter settings.

We then find a subset F0 ⊂ H0, for all vertices of which μ is

minimal and equals . Let H1 = H0\F0. We repeat this

until we get an empty set at some point. Thus we construct

a series of layered clusters H0  H1  ...  HN  Ψ. We select the

cluster Hn, for which  and

call it the best cluster.

In certain cases we refer to a second best cluster. It is con-
structed analogous to the best cluster, after all amino acids
from the best cluster are excluded from the initial set.

Construction of the datasets
Benchmark datasets
To assess the performance of SDPsite, we built two bench-
mark datasets containing enzyme families with well-char-
acterized function and at least one structure with bound
natural ligands or their close analogs. The first dataset cor-
responds to the situation of a protein family, which acts
on a variety of substrates, the second accounts for the case
when all the proteins specificities are the same. We need
these two datasets, because we do not know in advance to
which of the two types the query family belongs.

ωij

ij

ij

R
dij

d D

d D
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Automated grouping procedureFigure 9
Automated grouping procedure. Two possible groupings are shown in red and in blue.
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We used alignments from the Pfam database [59]. The
first dataset, termed diverse, consists of families, for which
EC numbers differing in the last digit (usually accounting
for the enzyme specificity) were assigned to at least two
proteins. The second dataset was termed homogeneous and
includes families, where all the proteins have the same EC
number. The diverse dataset mimics the situation when
the family in question contains proteins that bind differ-
ent ligands (e.g. hydrolases of different specificity); the
homogeneous dataset approximates sets of proteins that
perform a single specific function in the cell (e.g. DNA
polymerase), though (see Results) EC number is not nec-
essarily sufficient to do this. The statistics and the bound
ligands for these dataset are given in Tables 1 and 5.

To evaluate the performance of SDPsite for these datasets,
we developed several statistical measures. Let d(i, j) be the
distance between the closest atoms of amino acids i and j
(j can represent the bound ligand or the set of bound lig-
ands as well), ψ be a set of predicted residues, either all
SDPs, all CPs, or the best cluster, n(Ψ) be the number of
elements in Ψ. We calculate:

1) Minimal distance to the ligand:

;

2) Average distance to the ligand:

;

3) Diameter of the predicted set of SDPs, CPs and the

best cluster: ;

4) Average pairwise distance between the residues
within the predicted set:

.

We also compute the significance of the average distance,
i.e. the fraction of atoms that are located this close or
closer to the ligand. This gives us an idea of which portion
of the protein our prediction covers: the smaller the signif-
icance, the more precise the predictions.

Test dataset
We selected 193 Pfam families based on the following cri-
teria: (1) the function of the family must be unknown or
poorly characterized; (2) the family must include a pro-
tein with a 3D structure resolved in the framework of the

Structural Genomics initiative or lack clear functional
annotation; and (3) there should be no proteins with
well-studied structure or function. A structure was consid-
ered as poorly annotated and coming from SG project, if
the PDB file contained the words "structural genomics",
"hypothetical protein" or "unknown function" in its
HEADER or KEYWDS sections. Then we excluded families
that consist of fewer than 6 sequences, because it not pos-
sible to predict SDPs for sets smaller than this size, and
ended up with 124 families (listed in Additional file 2).
All the alignments were downloaded from Pfam [59] and
the corresponding phylogenetic trees from Pandit [60].

A web server to use SDPsite is available at: http://sdp
site.embl.de and http://bioinf.fbb.msu.ru/SDPsite/
index.jsp. The data for all predictions discussed is also
available on this web site.
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Additional File 1
Distance measures designed to assess the quality of the predictions of 
SDPsite. A detailed list of different measures based on the distance 
between the predicted residues, designed to assess the quality of the predic-
tion.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-174-S1.doc]

Additional File 2
Poorly characterized Pfam families, used in the analysis. A list of all 
Pfam families included in the de novo prediction of functional site, 
grouped by function.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-174-S2.doc]

Additional File 3
Assessment of the quality of the predicions of SDPsite and other avail-
able methods. A detailed comparison of performance of different methods 
for prediction of functional site, using same distance measures as in Addi-
tional file 1.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-174-S3.doc]
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