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Abstract: Nitric oxide donors (NO-donors) have been shown to have therapeutic potential (e.g.,
ischemia/reperfusion injury). However, due to their release rate/antiplatelet properties, they
may cause bleeding in patients. We therefore studied the antiplatelet effects of the two differ-
ent NO-donors, i.e., S-NO-Human Serum Albumin (S-NO-HSA) and Diethylammonium (Z)-1-
(N,N-diethylamino)diazen-1-ium-1,2-diolate (DEA-NONOate) in whole blood (WB) samples. WB
samples were spiked with S-NO-HSA or DEA-NONOate (100 µmol/L or 200 µmol/L), and the
NO release rate (nitrite/nitrate levels via HPLC) and antiplatelet efficacy (impedance aggregom-
etry, platelet function analyzer, Cone-and-platelet analyzer, thrombelastometry) were assessed. S-
NO-HSA had a significantly lower NO release compared to equimolar concentrations of DEA-
NONOate. Virtually no antiplatelet action of S-NO-HSA was observed in WB samples, whereas DEA-
NONOate significantly attenuated platelet function in WB. Impedance aggregometry measurements
revealed that Amplitudes (slope: −0.04022 ± 0.01045 ohm/µmol/L, p = 0.008) and Lag times (slope:
0.6389 ± 0.2075 s/µmol/L, p = 0.0051) were dose-dependently decreased and prolonged by DEA-
NONOate. Closure times (Cone-and-platelet analyzer) were dose-dependently prolonged (slope:
0.3738± 0.1403 s/µmol/L, p = 0.0174 with collagen/ADP coating; slope: −0.5340 ± 0.1473 s/µmol/L,
p = 0.0019 with collagen/epinephrine coating) by DEA-NONOate. These results in WB further sup-
port the pharmacological potential of S-NO-HSA as an NO-donor due to its ability to presumably
prevent bleeding events even at high concentrations up to 200 µmol/L.

Keywords: nitric oxide donors; platelet function; impedance aggregometry

1. Introduction

The free radical nitric oxide (NO) is a biological signaling molecule regulating a wide
range of important cellular functions [1–3]. Administration of exogenous NO as inhalation
therapy has received considerable attention, mainly due to its therapeutic ability to exert
profound hemodynamic effects [4,5]. A systematic review analyzed the biomedical litera-
ture to determine the effects of NO-donor agent administration on ischemia/reperfusion
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(I/R) injury in human subjects. In most of the studies, patients treated with NO-donor
agents experienced reduced I/R injury compared with controls [6].

Besides their most prominent function, vasorelaxation, NO-donors have been shown
to act as anti-inflammatory and neuroprotective agents and are able to influence cellular ox-
idative status [7]. Moreover, NO-donors have been found to reduce platelet activation [8,9].
NO inhibits platelets by elevating cyclic GMP [10]. NO-mediated elevation of cGMP results
in a marked decrease in the number of fibrinogen molecules bound to the platelet [11,12], to
an inhibition of intracellular calcium flux [13,14], and an inhibition of platelet secretion [15].

Particularly, the damping effect of NO-donors on platelet aggregation might shift
the (NO-treated) patients’ hemostatic system toward hypocoagulability and, thus, toward
bleeding. It has been shown in adults with ARDS (acute respiratory distress syndrome)
that inhaled NO (iNO) caused prolonged bleeding times, inhibition of platelet aggregation,
and reduced P-selectin expression and fibrinogen binding [16,17]. However, iNO has
an extremely short half-life (i.e., few seconds), impairing its clinical use in pulmonary
diseases [18]. A higher incidence of intracranial hemorrhages has been shown in NO-treated
preterm infants with RDS (respiratory-distress syndrome) [19]. Therefore, administration
of NO-donors, particularly of iNO or the common low-molecular-weight NO-donors that
rapidly release relatively high amounts of NO, can be associated with a bleeding tendency.

We speculate that administration of donors that release low amounts of NO over a
long period of time dampen platelet function to a much lesser degree, and, thus, may
not provoke bleeding events in patients. One example of such a donor is S-NO-Human
Serum Albumin (S-NO-HSA) by virtue of its long-lasting release of limited amounts of
NO. S-NO-HSA at dosages of 0.1–0.2 µmol/kg/h provides vasodilatory activity without a
decrease in systemic blood pressure [20]. The underlying mechanism is the prevention of
uncoupling of endothelial nitric oxide synthase by NO released from S-NO-HSA [20].

Conventionally, platelet function testing is performed in platelet-rich plasma samples.
However, while plasma contains many of the coagulation factors implicated in the coagula-
tion process, WB includes phospholipid-bearing cells that support coagulation. In addition,
it is also known that hemoglobin present in erythrocytes can scavenge NO [21]. We, there-
fore, comparatively evaluated the antiplatelet actions of S-NO-HSA and DEA-NONOate
in WB samples by applying: (i) impedance aggregometry, (ii) Platelet function analyzer
200, (iii) Cone and Platelet Analyzer (Impact®, Linz, Austria), and (iv) Thrombelastometry.
The NO release from the two donors was estimated by measurement of nitrite, as well
as nitrate, the end products of NO metabolism. Therefore, the aim of our study was to
compare the antiplatelet action of S-NO-HSA with that of the fast-releasing NO-donor
DEA-NONOate (Diethylammonium (Z)-1-(N,N-diethylamino)diazen-1-ium-1,2-diolate).
We speculate that administration of S-NO-HSA, due to its presumed limited antiplatelet
action, might be associated with a significantly lower risk of bleeding in patients compared
to administration of common fast NO-releasing donors.

2. Materials and Methods
2.1. Reagents

S-NO-HSA was prepared as previously described [20,22]. In brief, HSA was processed
to yield a maximal free thiol group at position Cys-34 (SH > 0.8 mol/mol protein). In-
termolecular disulfides (mixed disulfides) were disassembled prior to nitrosation. The
starting material (20% HSA; Biotest, Vienna, Austria) was reduced by mercaptoethanol (10
to 20-fold molar excess; buffer [mmol/L]: sodium phosphate 1, ethylenediaminetetraacetic
acid 2, and sodium chloride 150 adjusted to pH = 6.0–6.2 with hydrochloric acid (HCl); 12
to 48 h at 4 ◦C under nitrogen) and purified by means of gel-permeation chromatography
(TSK-HW40F; mobile phase: H2O).

Thiol nitrosation was affected with sodium nitrite at a ratio of 1:1 to 1:1.5 of freely
available thiol groups to nitrite in 0.2 mol/L HCl (pH = 1.5–2.5) for 30 min at 25 ◦C.
After neutralization with 1 mol/L sodium hydroxide, S-NO-HSA was purified by gel-
permeation chromatography (TSK-HW40F; mobile phase: H2O) and lyophilized. HSA
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(control) was also purified by gel-permeation chromatography (TSK-HW40F; mobile phase:
H2O) and lyophilized. S-NO-HSA was dissolved in 0.9% sodium chloride solution. Stock
solutions containing 1 mmol/L of S-NO-HSA and HSA in 0.9% sodium chloride solution
were prepared.

DEA-NONOate was purchased from Cayman Chemicals Co. (Ann Arbor, MI, USA),
and a stock solution was prepared containing 1 mmol/L of DEA-NONOate in 0.9% sodium
chloride solution.

Recombinant human Tissue Factor (TF) thromboplastin (Innovin®) was obtained
from Dade Behring Marburg GmbH (Marburg, Germany). The lyophilized product was
dissolved in 10 mL of distilled water and subsequently diluted at a ratio of 1:1000 in 0.9%
sodium chloride solution (TF-stock solution).

2.2. Subjects

A total of 22 healthy men (age 27 to 47 years) were recruited. The study was con-
ducted in accordance with the Declaration of Helsinki and was approved by the local
ethics committee (31-279 ex 18/19, 2 July 2020). Exclusion criteria were characterized as
medication within the last two weeks, which might influence coagulation, as well as renal
or liver disease and coagulation disorders. Subjects’ characteristics were 36.4 ± 6.9 years,
81.8 ± 7.3 kg body weight, 1.8 ± 0.1 m height, and 25.5 ± 3.7 kg/m2 body mass index.

2.3. Blood Collection and Preparation

Seven mL of blood from the antecubital vein were collected into pre-citrated Vacuette®

marked tubes (Greiner Bio-one GmbH, Kremsmünster, Austria) containing 3.8% sodium
citrate. WB measurements (impedance aggregometry, platelet function tests, TEM) were
performed within 3 h of blood sampling. S-NO-HSA, DEA-NONOate, and HSA levels
were adjusted to 100 or 200 µmol/L by the addition of respective amounts of the stock
solutions (50 µL, 100 µL) to 500 µL WB prior to the measurements. WB samples without
any addition except 100 µL physiological sodium chloride were used as controls. One
aliquot of the remaining WB was centrifuged (room temperature, 12 min, 150 g) in order
to obtain platelet-rich plasma (PRP). Another blood aliquot was centrifuged (room tem-
perature, 15 min, 500 g) in order to obtain (autologous) platelet-poor plasma (PPP). After
counting, PRP was diluted with PPP to contain 100,000 platelets/µL. S-NO-HSA, DEA-
NONOate, and HSA levels in the diluted PRP samples (1 mL) were adjusted to 10 µmol/L
or 20 µmol/L by addition of respective amounts of stock solutions (10 µL, 20 µL) prior to
the measurements. PRP samples without any addition were measured as absolute controls.
Platelet counts were measured by means of the Sysmex KX-21 N Automated Hematology
Analyzer (Sysmex, Illinois, IL, USA).

2.4. Sampling

The blood (7 mL) was drawn from the antecubital vein from the seated subject into
pre-citrated Vacuette® marked tubes (Greiner Bio-one GmbH, Kremsmünster, Austria)
containing 3.8% sodium citrate. WB measurements (impedance aggregometry, platelet
function tests, TEM) were performed within 3 h of blood sampling. One aliquot of the
remaining WB was centrifuged (room temperature, 12 min, 150 g) in order to obtain
PRP. Another aliquot was centrifuged (room temperature, 15 min, 500 g) in order to
obtain (autologous) PPP. PRP was prepared to contain 100 000 platelets/µL by addition of
appropriate volumes of PPP. S-NO-HSA, DEA-NONOate, and HSA levels were raised to
10 µmol/L or 20 µmol/L by addition of the respective amounts of stock solutions (10 µL,
20 µL) to 1 mL of PRP. Platelet counts were measured by means of the Sysmex KX-21 N
Automated Hematology Analyzer (Sysmex, IL, USA).

2.5. Analysis of Nitrite and Nitrate

Five hundred µL aliquots (WB or PRP) were taken immediately after impedance
aggregation measurements and centrifuged at room temperature for 15 min at 500× g.
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Subsequently, 200 µL of the supernatant (diluted plasma) were ultrafiltered (mol weight cut
off: 10 kDa) by centrifugation at 4 ◦C for 20 min at 2000× g using Microcon®-10 Centrifugal
filters from Merck Chemicals and Life Sciences GmbH (Vienna, Austria). In addition, some
WB and PRP samples were processed immediately after the addition of the NO-donors.
Subsequently, the sample ultrafiltrates (100 µL) were diluted with double-distilled water
(1:2, v/v). Determination of nitrate in the diluted sample ultrafiltrates was performed in
principle according to a previously published method [23] with some modifications. In
brief, HPLC consisted of an L-2200 autosampler, two L-2130 HTA pumps, and an L-2450
diode array detector (all: VWR Hitachi, VWR, Vienna, Austria). Separation was performed
on a Hypersil ODS (5 µmol/L; 250 × 4 mm I.D.) with 10.0 min isocratic elution (buffer A:
0.1 mol/L NaH2PO4, pH = 5.5, containing 5.9 mmol/L tetrabutylammonium hydrogen
sulphate), followed by a linear gradient to 20% buffer B (buffer B: 0.1 mol/L NaH2PO4,
pH = 5.5, containing 5.9 mmol/L tetrabutylammonium hydrogen sulphate/acetonitrile
−75/25%; vol/ vol) within another 10 min. The detector signals (absorbance at 205 nm)
were recorded, and the program EZchrom Elite (VWR) was used for data acquisition
and analysis.

The injection volume of samples and standard solutions was 40 µL. Retention time
for nitrite was ~7.80 min for nitrate and ~14.5 min for nitrate. The simultaneous de-
termination of nitrite and nitrate in the samples utilizing this method was impossible
due to an interfering substance eluting with nitrite. We therefore analyzed nitrite by a
second method, as described below. Nitrite was determined in principle according to a
previously described fluorometric HPLC method [24] utilizing the reaction of nitrite with
2,3-diaminonaphthalene (DAN; obtained from Sigma-Aldrich, Vienna, Austria).

In brief, 25 µL diluted sample ultrafiltrate was further diluted with 75 µL 0.9% NaCl,
and the so-produced 100 µL sample was incubated at 24 ◦C with 10 µL of 316 µmol/L
DAN (in 0.62 mol/L HCl) for 10 min, followed by the addition of 10 µL of 2.8 mol/L
NaOH. This reaction mixture was directly used for chromatographic separation (injection
volume: 5–20 µL) of the formed 2,3-naphthotriazole (NAT). Nitrite standards (range: 0–2
µmol/L) were derivatized accordingly. Sodium phosphate, sodium hydroxide, and sodium
nitrite were purchased from Roth (Karlsruhe, Germany). Our HPLC separation conditions
have been previously reported [25]. The sum of nitrite and nitrate was calculated from the
obtained results.

2.6. Impedance Aggregation Assay

Platelet aggregation in both WB and PRP samples was performed using a Chrono-Log
Aggregometer Model 590 from Probe and Go (Endingen, Germany), which is based on the
impedance method [26]. WB or PRP samples were incubated with increasing concentrations
of S-NO-HSA or DEA-NONOate for 2 min at 37 ◦C prior to measurement. Impedance
aggregometry results are expressed as amplitude (or maximum aggregation) in ohm at
six minutes after reagent addition and as lag time (or aggregation time) in seconds, the
time interval until the onset of platelet aggregation. The rate of platelet aggregation is
expressed as the slope in ohm/min. Collagen (2 µg/mL final concentration), purchased
from Probe and Go (Endingen, Germany), was used as a platelet agonist, as previously
described [27,28].

2.7. Platelet Function Analyzer 200

Using the PFA 200 from Siemens Healthcare Diagnostics (Vienna, Austria), primary
hemostasis is simulated with an in vitro quantitative measurement of platelet adhesion
and aggregation in WB. The system uses citrated WB (800 µL, spiked with increasing
concentrations of S-NO-HSA or DEA-NONOate) that is aspired under high shear stress
rates through an aperture cut into a membrane coated with collagen (a subendothelial
protein generally believed to be the initial matrix for platelet attachment) and either ADP
or epinephrine. In response to the local shear stress and the agonists in the membrane,
platelets are activated, adhere to collagen in the membrane surrounding the aperture,
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and aggregate until a stable platelet plug occludes the blood flow through the aperture.
This time period recorded by the instrument is designated as the closure time (CloT),
representing a measure of platelet-dependent hemostasis, in particular platelet activation,
adherence, and aggregability [29].

2.8. Whole Blood Platelet Adhesion/Aggregation Assay

Platelet adhesion and aggregation were assessed using a Cone and Platelet Analyzer
(CPA) (DiaMed, Linz, Austria) as described previously [30]. Briefly, 130 µL of citrated WB
(spiked with S-NO-HSA or DEA-NONOate) was placed in polystyrene tubes and allowed
to flow (1300 s−1) for two minutes using a rotating Teflon cone. Subsequently, the wells
were washed with PBS, stained with May-Grünwald solution, and analyzed with an image
analysis system. Surface coverage (SC) and average size (AS) were determined to elucidate
platelet function. SC, representing platelet adhesion, is expressed as the percentage of total
area covered by platelets. AS, representing platelet aggregation, is defined as the average
size of the surface-bound objects.

2.9. Whole Blood Tissue Factor-Triggered TEM Assay

The clot formation process was monitored using the TEM coagulation analyzer
(ROTEM®05) from Matel Medizintechnik (Graz, Austria). The period of time from adding
the trigger to initial fibrin formation is designated as the “Coagulation time” (CT); the time
until the amplitude reaches 20 mm refers to the “Clot formation time” (CFT). “Maximum
clot firmness” (MCF) reflects clot stability, and the “alpha angle” indicates the velocity of
fibrin built-up and cross-linking. The final sample volume was 340 µL. Clot formation was
initiated by the addition of 40 µL of “trigger solution” (containing 0.35 pmol/L TF and
3 mmol/L CaCl2, final concentration) to 300 µL of citrated WB (spiked with increasing
concentrations of S-NO-HSA or DEA-NONOate). This method has been described in detail
previously by Sorensen et al. [31].

2.10. Statistics

The GraphPad 8.0 Prism package was used for statistical evaluation. ANOVA and
Bonferroni post-test were used to evaluate differences in plasma levels of nitrite/nitrate.
The Mann–Whitney test was used to compare nitrite levels (pre vs. post aggregation) in WB
samples. Linear regression was used for statistical evaluation of the effects of increasing
concentrations of S-NO-HSA and DEA-NONOate on coagulation parameters. All p-values
of ≤0.05 were considered statistically significant. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.

3. Results
3.1. Nitrite/Nitrate Amounts in the Presence of Increasing Concentrations of NO-Donors in WB

WB samples (n = 6) were spiked to contain 100 µmol/L or 200 µmol/L of either S-NO-
HSA or DEA-NONOate. Sodium chloride solution or HSA served as controls, respectively.
The associated increase in the sum of nitrite and nitrate concentrations reflects the NO
release from the donors. Addition of sodium chloride solution or HSA had no influence on
the sum of nitrite and nitrate, which remained within the normal physiological range [32],
as shown in Figure 1. The NO release from S-NO-HSA was significantly lower than that
from equimolar concentrations of DEA-NONOate. For example, the sum of nitrite and
nitrate median amounts increased from 21.89 µmol/L (physiological sodium chloride) to
51.19 µmol/L in the presence of 200 µmol/L S-NO-HSA but to 219.9 µmol/L in the pres-
ence of 200 µmol/L DEA-NONOate in WB (p < 0.0001, Figure 1). In WB, the read out was
the sum of nitrite and nitrite, as due to the presence of oxygen (erythrocytes). The initially
formed nitrite is further converted to nitrate. This conversion was also determined by mea-
suring the nitrite values at the concentration of 200 µmol/L of the NO-donors 2 min after
addition of the compounds (start point of measurement in the adhesion/aggregation assay)
and after 6 min aggregation (endpoint of measurement). The nitrite median values with
200 µmol/L S-NO-HSA dropped slightly but not significantly from 3.37 to 2.29 µmol/L
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(n = 6, p = 0.1797). In the presence of 200 µmol/L DEA-NONOate the nitrite median
amounts dropped significantly from 64.74 to 26.56 µmol/L (n = 6, p = 0.0022) within the
6 min aggregation measurement period.
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Figure 1. Nitrite/nitrate amounts in the presence of increasing concentrations of S-NO-HSA or
DEA-NONOate in WB. The increase in the sum of nitrite and nitrate amounts in µmol/L served as a
measure for NO release from the NO-donors in WB. Significantly higher amounts of NO were released
by DEA-NONOate (100 and 200 µmol/L final concentration) than by equimolar amounts of S-NO-
HAS after 6 min aggregation. ANOVA and Bonferroni post-test were used to evaluate differences in
plasma levels of nitrite/nitrate. The results are presented as median with range (n = 6). *** p ≤ 0.001.

3.2. Effects of Increasing Concentrations of NO-Donors on Impedance Aggregometry Values in WB

Addition of S-NO-HSA had no significant effect on platelet aggregation values in WB
samples (n = 16). Amplitudes (slope: −0.003864 ± 0.004019 ohm/µmol/L, p = 0.3440),
Slopes (slope: −0.001477 ± 0.002886 ohm/µmol/Lmin, p = 0.6125), and lag times
(slope: 0.07654 ± 0.04850 s/µmol/L, p = 0.1257) were not significantly altered in the
presence of increasing NO-donor concentrations, Figure 2, panels A, B, and C. In contrast,
significant antiaggregatory effects of DEA-NONOate were observed in WB
samples (n = 13). Amplitudes (slope: −0.04022 ± 0.01045 ohm/µmol/L, p = 0.008), Slopes
(slope: −0.009545 ± 0.004513 ohm/µmol/L·min, p = 0.0460), and Lag times (slope:
0.6389 ± 0.2075 s/µmol/L, p = 0.0051) were dose-dependently decreased and prolonged in
the presence of increasing concentrations of DEA-NONOate (Figure 2, panels A, B, and C).
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Figure 2. Effects of increasing concentrations of S-NO-HSA or DEA-NONOate on impedance aggre-
gometry values in WB. Panel (A): Addition of S-NO-HSA had no effect on amplitudes, while the
addition of equimolar amounts of DEA-NONOate led to decreased amplitudes. Linear regression
analysis showed that slopes differed significantly (p = 0.0009. Panel (B): Addition of S-NO-HSA
had no influence on Slopes while the addition of equimolar amounts of DEA-NONOate caused a
dose-dependent decrease of Slopes. Linear regression analysis showed that slopes differ significantly
(p = 0.0009). Panel (C): Addition of S-NO-HSA had no effect on Lag times, while the addition of
equimolar amounts of DEA-NONOate led to prolonged lag times. Linear regression analysis showed
that the slopes differ significantly (p = 0.0061). The results are presented as mean ± SD; n = 16
(S-NO-HSA), n = 13 (DEA-NONOate). The data at 0 µmol/L represent the values of the appropriate
controls (no NO-donor added).
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3.3. Effects of Increasing Concentrations of NO-Donors on PFA 200 Values in WB

The addition of S-NO-HSA had no significant antiplatelet effect in WB samples (n = 12).
CloT was not significantly altered (slope: 0.05939 ± 0.06422 s/µmol/L, p = 0.3651, for
cartridges coated with collagen/ADP; slope: −0.1059 ± 0.1616 s/µmol/L, p = 0.5191, for
cartridges coated with collagen/epinephrine) by increasing concentrations of S-NO-HSA,
as shown in Figure 3 (panels A and B). In contrast, DEA-NONOate exerted significant
antiplatelet action in WB samples (n = 8). CloT was dose-dependently prolonged (slope:
0.3738 ± 0.1403 s/µmol/L, p = 0.0174 for cartridges coated with collagen/ADP; slope:
−0.5340 ± 0.1473 s/µmol/L, p = 0.0019 for cartridges coated with collagen/epinephrine)
in the presence of increasing concentrations of DEA-NONOate (Figure 3, panel A and B).
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Figure 3. Effects of increasing concentrations of S-NO-HSA or DEA-NONOate on PFA 200 values in
WB. Panel (A): Utilizing cartridges coated with collagen/ADP, addition of S-NO-HSA (n = 12) had
no effect on CloTs, while the addition of equimolar concentrations of DEA-NONOate (n = 8) led to
dose-dependently prolonged CloTs. Linear regression analysis showed that slopes differ significantly
(p = 0.02639). Panel (B): Utilizing cartridges coated with collagen/epinephrine, addition of S-NO-
HSA (n = 12) had no effect on CloTs, while the addition of equimolar amounts of DEA-NONOate
(n = 10) led to prolonged CloTs. Linear regression analysis showed that the slopes differ significantly
(p = 0.006435). The results are presented as mean ± SD. The data at 0 µmol/L represent the values of
the appropriate controls (no NO-donor added).

3.4. Effects of Increasing Concentrations of NO-Donors on CPA Values in WB

The addition of S-NO-HSA had no significant effects on CPA values in WB sam-
ples (n = 19). SC (slope: −0.01594 ± 0.008340%/µmol/L, p = 0.0640) and AS (slope:
−0.0414 ± 0.02130 µm2/µmol/L, p = 0.0620) were not significantly altered by increasing
concentrations of S-NO-HSA. Similarly, the addition of DEA-NONOate had no significant
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effect on CPA values in WB samples (n = 17). SC (slope: 0.01046 ± 0.01120%/µmol/L,
p = 0.3575) and AS (slope: −0.1019 ± 0.05909 µm2/µmol/L, p = 0.0944) were not altered by
increasing the concentrations of DEA-NONOate.

3.5. Effects of Increasing Concentrations of NO-Donors on TEM Values in WB

The addition of S-NO-HSA had no significant effect on CT (slope: 0.1425 ±
0.1092 s/µmol/L, p = 0.2026), CFT (slope: 0.3269 ± 0.1772 s/µmol/L, p = 0.0757), and
alpha (slope: −0.0477 ± 0.02120◦/µmol/L, p = 0.0647) in WB samples (n =15). How-
ever, MCF dose-dependently decreased in the presence of increasing concentrations of
S-NO-HSA (slope: −0.02188 ± 0.01042 mm/µmol/L, p = 0.0449). The addition of DEA-
NONOate had no significant effect on all TEM values in WB samples (n = 17). CT
(slope: −0.1252 ± 0.08235 s/µmol/L, p = 0.1353), CFT (−0.1653 ± 0.08895 s/µmol/Lol/L,
p = 0.0697), MCF (slope: 0.009038 ± 0.006832 mm/µmol/L, p = 0.1924), and alpha (slope:
0.02779 ± 0.01444 ◦/µmol/L, p = 0.0605) were not affected by DEA-NONOate addition.

3.6. Nitrite/Nitrate Levels in the Presence of Increasing Concentrations of NO-Donors in PRP

PRP samples (n = 6) were spiked to contain 10 µmol/L or 20 µmol/L of either S-NO-
HSA or DEA-NONOate. Physiological sodium chloride solution or HSA served as controls.
In PRP, the associated increase of nitrite concentrations reflects the NO release from the
donors. The addition of HSA had no significant influence on nitrite levels when compared
to physiological sodium chloride, as shown in Figure 4 (panel A). The nitrite median
levels significantly increased in the presence of 10 µmol/L of S-NO-HSA (0.585 µmol/L,
p < 0.05), as well as in the presence of 20 µmol/L S-NO-HSA (1.350 µmol/L, p < 0.001)
as compared to physiological sodium chloride. Comparable to the WB measurements,
markedly higher amounts of NO were released from DEA-NONOate. In the presence of
20 µmol/L DEA-NONOate, nitrite levels were 21.59 (16.51–32.75) µmol/L (p < 0.001 vs.
physiological sodium chloride). There was no significant difference concerning PRP nitrate
levels between HSA, S-NO-HSA and DEA-NONOate at all tested concentrations.
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Figure 4. Effects of increasing concentrations of S-NO-HSA or DEA-NONOate on nitrite levels and
on impedance aggregometry amplitudes in PRP. Panel (A): Nitrite levels dose-dependently increased
in the presence of increasing concentrations of S-NO-HSA (n = 6). At 20 µmol/L DEA-NONOate,
nitrite levels were 21.59 (16.51–32.75) µmol/L (p < 0.001 vs. physiological sodium chloride; data
not illustrated in the figure). ANOVA and Bonferroni post-test were used to evaluate differences
in plasma nitrite levels. The results are presented as median with range. * p ≤ 0.05; ** p ≤ 0.01;
*** p ≤ 0.001. Panel (B): Both S-NO-HSA (n = 17) and DEA-NONOate (n = 8) efficiently inhibited
platelet aggregation. Virtually no platelet aggregation occurred in the presence of 20 µmol/L S-NO-
HSA and 10 µmol/L DEA-NONOate (n = 8), respectively. The results are presented as mean ± SD.
The data at 0 µmol/L represent the values of the appropriate controls (no NO-donor added).

3.7. Effects of Increasing Concentrations of NO-Donors on Impedance Aggregometry Values
in PRP

Both S-NO-HSA (n = 17) and DEA-NONOate (n = 8) exerted efficient antiaggregatory
effects in PRP samples. S-NO-HSA at concentrations of 20 µmol/L and DEA-NONOate
at both tested concentrations of 10 µmol/L and 20 µmol/L completely abolished platelet
aggregation (Figure 4, panel B).

4. Discussion

The experiments presented here demonstrate that the NO-donor S-NO-HSA (at con-
centrations up to 200 µmol/L) exerts virtually no antiplatelet actions in WB samples,
whereas equimolar concentrations of the NO-donor DEA-NONOate caused significant
inhibition of platelet function.

This difference is apparently attributable to the different modes by which NO is being
released from the donors. S-NO-HSA has been shown to be a NO-donor releasing low
amounts of NO over a prolonged period of time [22,32] whereas DEA-NONOate is a potent
and fast-releasing NO donor [33].

However, to our knowledge, no study has been conducted to evaluate the antiplatelet
action of low-molecular-weight and high-molecular-weight NO-donors in WB. This was
the aim of our study.

The release of NO was quantified in our study by measuring the respective increases of
nitrite and nitrate plasma levels by HPLC methods. Depending on the environment, nitrite
can further be oxidized to nitrate (WB). Nitrate is a stable metabolite of NO. Both nitrite and
nitrate are accessible for quantitative analysis [34]. Our experiments show, as expected, that
the high-molecular-weight NO-donor S-NO-HSA releases significantly lower amounts of
NO than equimolar concentrations of the low-molecular-weight NO-donor DEA-NONOate.
In WB, mainly the increase of nitrate and to a much lesser extent nitrite reflected the NO
release of the compounds. For the quantification, the sum of nitrite and nitrate was used in
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WB. The data are in good agreement with the findings of Scorza et al., who showed that
the release of NO from low-molecular-weight donors is faster and quantitatively higher
than that from high-molecular-weight donors [35]. Consistently, it has been shown that
S-NO-HSA has a prolonged half-life in comparison to low-molecular-weight S-nitroso
thiols [22]. DEA-NONOate as a low-molecular-weight NO releasing compound was chosen
for comparison as it is a very fast NO releasing low-molecular-weight NO-donor according
to literature [36,37] and our own observation.

In accordance with our findings, significantly lower antiplatelet actions of high- com-
pared with low-molecular-weight NO-donors were reported in a previously published
paper. The exposure of platelets to low-molecular-weight donors inhibited platelet aggre-
gation by >95%, while the high-molecular-weight donor S-nitrosoalbumin was much less
effective [38]. It should be mentioned that S-nitrosoalbumin in their study was generated
in a different way in comparison with the methods and standards applied in our study.
The experiments were performed in a purified system using washed platelets. However,
our study confirms these findings in the physiologically more relevant system of WB.

A previous study also found significantly lower antiplatelet actions of high- compared
with low-molecular-weight NO donors. The exposure of platelets to low-molecular-weight
donors inhibited platelet aggregation by >95%, while the high-molecular-weight donor
S-nitrosoalbumin was much less effective [38]. It has to be mentioned that S-nitrosoalbumin
in this study has not been produced in accordance with the methods and standards applied
in our study. The experiments in the mentioned study were performed in a purified system
using washed platelets. However, our study confirms these findings in the physiologically
more relevant system of WB.

Interestingly, our experiments demonstrate that both S-NO-HSA and DEA-NONOate
exerted significant antiplatelet actions in PRP samples at the tested concentrations of
10 µmol/L and 20 µmol/L. That S-NO-HSA reveals an effect in PRP at these concentrations
is apparently attributable to the absence of erythrocytes (hemoglobin) in PRP samples.
Hemoglobin present in erythrocytes is known to be the physiological scavenger of NO
in vivo [35,39]. In the presence of hemoglobin (in WB samples), DEA-NONOate alone is
capable of releasing the required amounts of NO to dampen platelet function, whereas in
the absence of hemoglobin (in PRP samples), both donors are capable of dampening platelet
function. Correspondingly, in WB samples, approximately 100 µmol/L of DEA-NONOate
were required for a ~40% reduction of platelet aggregation (amplitude), whereas in PRP
samples, the tested concentration of 10 µmol/L of DEA-NONOate almost completely
abolished platelet aggregation.

It has to be stated that the amount of NO being released per unit of time is not the
only criterion rendering a NO donor an efficient platelet antagonist [38,40]. It has been
suggested that NO-donors must interact directly with platelets to cause physiological
responses [38,41]. Shah et al. have shown that transfer of nitroso groups from NO donors
onto exofacial thiols on the platelet surface conveys their antiplatelet action [38]. We,
therefore, conclude that the limited antiplatelet action of S-NO-HSA observed in our
experiments is attributable to the low amounts of NO being released as well as therefore a
less transmission of NO onto the platelet surface.

The findings presented herein have clinical implications. Reperfusion (re-establishing
blood flow to ischemic organs and tissues) is an essential step in many surgical proce-
dures [22,42,43]. However, reperfusion can be associated with changes in vasomotility
and increased microvascular permeability, causing massive edema formation and tissue
destruction [44–46]. Exogenous NO donors have beneficial effects in the reduction of I/R
injury by preserving the function of endothelial nitric oxide synthase, thereby stabilizing
the basal production of NO and decreasing the production of oxidized species [47,48].

However, besides these positive and desired effects, administration of NO donors,
due to their antiplatelet properties, could induce a bleeding tendency in treated pa-
tients [16,17,49,50]. The findings of our study suggest that S-NO-HAS in particular might
be an NO donor afflicted with low bleeding risk. We show herein that S-NO-HSA exerts vir-
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tually no antiplatelet effects in WB up to concentrations of 200 µmol/L. To date, S-NO-HSA
is not an approved drug for use in humans. However, preclinical studies using numerous
and different animal models suggest that infusion of S-NO-HSA can minimize/prevent
I/R-injury [20]. In an I/R model of skeletal muscle in the rabbit, it could be shown that
S-NO-HSA infusion at a dose of 0.1 µmol/kg/h leading to NO concentrations in the
nanomolar range (<250 nmol/L; measured with a porphyrinic microsensor in vivo) is a
powerful tool to prevent or reduce I/R-induced microvessel constriction and muscle perfu-
sion edema [22]. The underlying mechanism is a prevention of uncoupling of endothelial
nitric oxide synthesis and thereby prevention of detrimental excess radical formation via
peroxynitrite. S-NO-HSA application, e.g., has also been shown to have beneficial effects in
wound healing [51], pulmonary hypertension [52], and an LPS model of septic shock in
preclinical studies at doses up to 0.5 µmol/kg/h. These doses/concentrations do not affect
blood pressure [53]. The application of S-NO-HSA in these concentration ranges (and up to
200 µmol/L) is, according to the present study, not associated with antiplatelet action and,
therefore, will not induce a bleeding tendency in treated patients.

However, since the present study is an in vitro study performed in blood samples
from healthy donors, future studies in humans upon a possible drug approval are required
to further investigate the physiological effects of S-NO-HSA infusion, e.g., the antiplatelet
action. In addition, it has to be mentioned that S-NO-HSA produced from our group has
until now only been studied in preclinical situations.

5. Conclusions

S-NO-HSA even when applied at higher concentrations than required for I/R-injury
(e.g., reduction of blood pressure) seems to be a suitable candidate for NO-donor treatment
without shifting the patients’ hemostatic system toward bleeding.
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