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Abstract: Human emotions are variant with time, non-stationary, complex in nature, and are invoked
as a result of human reactions during our daily lives. Continuously detecting human emotions
from one-dimensional EEG signals is an arduous task. This paper proposes an advanced signal
processing mechanism for emotion detection from EEG signals using continuous wavelet transform.
The space and time components of the raw EEG signals are converted into 2D spectrograms followed
by feature extraction. A hybrid spatio-temporal deep neural network is implemented to extract rich
features. A differential-based entropy feature selection technique adaptively differentiates features
based on entropy, based on low and high information regions. Bag of Deep Features (BoDF) is
applied to create clusters of similar features and computes the features vocabularies for reduction of
feature dimensionality. Extensive experiments are performed on the SEED dataset, which shows the
significance of the proposed method compared to state-of-the-art methods. Specifically, the proposed
model achieved 96.7%, 96.2%, 95.8%, and 95.3% accuracy with the SJTU SEED dataset, for SVM,
ensemble, tree, and KNN classifiers, respectively.

Keywords: differential entropy; emotion status recognition; spatio-temporal features; hybrid model

1. Introduction

Films are a form of visual art that can easily evoke human emotions. Depending on
the human being’s conditions and circumstances, they feel different emotions, for example,
human beings in a positive mood are more likely to feel happy emotions [1]. Effective
indexing in multimedia can enhance multimedia restoration, and make recommendations
for evoking multiple emotions [2]. It is a convenient way to describe the traces and feelings
of human emotions without disturbing other human beings. These traces are beneficial,
since there is no need for self-reporting affected by different social and personality factors.
The emotional behavior of every human is recorded through electroencephalogram signals
(EEG). The instant these emotional profiles or traces are felt, a signal is shown on the EEG,
and this has applications in video indexing and summarization [3]. There are different
types of emotions, which are categorized into three categories. One is expressed emotions
that are real human emotion, another is felt emotions, and last one is the expected emotions.
Expressed emotions are those that artists or creators try to present, irrespective of whether
they are actually feeling those emotions. Expected emotions are those felt by the audience
when watching the video content. Felt emotions are the personal feelings that are felt by
the audience members individually. This paper aims to identify felt emotions using EEG
signals extracted while watching multiple emotion-evoking movies.
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The feelings of human beings can be changed according to the responses the person
has to external and internal means that effect and alter human emotions. Most of the
existing research detected human emotions using non-physiological signals, such as speech,
body movement, facial expressions, along with physiological signals, such as functional
magnetic resonance imaging (fMRI), skin resistance, electrocardiogram, and EEG [4–8].
Physiological signals, in comparison to non-physiological signals, are not influenced by the
environment, especially EEG signals, due to their repeatability and reproducibility. Various
methods were implemented in the literature to evaluate EEG signals for emotion detection.
Traditionally, researchers performed an evaluation on four different models for emotion
detection, such as discrete, dimension, processing, and temporal models [9]. The discrete
emotion model considers multiple emotions and measures them on a scale based on the
differential measurement of emotion [10]. The dimension model is based on the conscious-
ness of the human being and considers valence, arousal, and dominance [11]. Temporal
models measure emotions based on duration, such as short term, medium, and long term
emotions [12]. In addition, the processing level models measure emotions at different levels,
such as low-level, which invokes effective signal and motor actions, mid level and high
level emotions [13]. Time-frequency analysis is performed to obtain various characteristics
because it provides salient information about the emotional states. A differential entropy
is measured for various frequency bands associated with these EEG signals for emotion
assessments through beta and gamma rhythms. Using spatial-temporal recurrent neural
networks (STRNN), the time-frequency domain features of EEG signals were categorized
into 18 multi-linear features information by a spatial and temporal dependent model [14].
A collection of multiple emotional statuses from EEG signal analysis through different
channels is used for cross domain assessment of emotion [15]. A recursive emotion feature
elimination (RFE) method is used to reduce the repetitive features dimension. However,
the problem of emotion assessment in these methods is approached in two ways. Either the
researchers used the channels that provided high accuracy but required high computations
or reduced the channels, which increased the computational speed but compromised the ac-
curacy results. In this article, an EEG-based emotion assessment model is proposed, which
uses differential entropy-based channel selection (DECS) for selecting channels that provide
high-quality features and bag of deep features (BoDF), which further reduces the feature
dimension. A 2-D spectrogram is obtained by taking the CWT of the pre-processed EEG
emotion dataset. The GoogleNet model, which takes the 2-D spectrogram as input, provides
us with the feature vector of all the subjects. The DECS algorithm allows us to select the
channels which provide high entropy features. The dimensions of the high-quality features
are reduced using BoDF by k-means clustering, and the visual vocabulary is generated.
The visual vocabulary is then fed to the multi-class classifiers, which assesses the emotions
using all kernels to classify three states of the SEED dataset: neutral, positive, and negative
emotions. The overflow of the proposed emotion detection scheme is described in Figure 1.

EEG Signals Wavelet
Transforms

Features
Extraction Classifiers

Classified 
Emotion

Figure 1. Overview of the proposed framework.

The reminder of the paper is organized as follows: Section 2 presents previous work
performed on EEG signals for emotion detection. Section 3 presents the formulation of the
proposed emotion detection framework. Section 4 illustrates experimental results and an
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evaluation, and makes a comparison with previous methods. Section 5 concludes the paper
and provides further research directions for emotion detection.

2. Related Work

Emotion detection gained a lot of attention in the last few years due to its direct
links with multiple fields such as psychology, cognitive sciences, computer science, life
sciences, physiology, and marketing [16,17]. There are a lot of techniques proposed to
extract EEG signals from the brain and process them through computer-aided design to
detect human emotions. For the last few decades, researchers have been trying to develop
different methods for the human being’s brain–computer interface to collect emotional
data. The brain–computer interface is used to control various devices and actions by
brain signals [18]. Multiple human emotions are felt while watching movies, and the
corresponding brain signals are recorded for further investigation. These brain signals
are categorized and recognized through EEG signals. The EEG signals are retrieved from
the brain with an electrode placed on the skull [19]. Although numerous researchers have
attempted emotion detection through EEG signals, the detection process still requires
much improvement and better measurement. A normalization of common spatial patterns
(CSP) [20] is helpful in the reduction of noise and artifacts. An attempt at real-time emotion
detection is achieved through virtual reality and the Internet of Things, which are used to
provide users with a virtual and physical environment [21]. A classification framework
is used that applies optimal and learning filter ratio criterion for emotion detection [22].
The optimal filters are used that helps in the automatic understanding of data. Most of the
previous methods use time-frequency analysis and sparse distribution, namely discrete
wavelet transform [23] and Fourier transform [19]. However, the emotional states are
subjective and complex in nature.

Recent studies used machine learning tools due to the development and advance-
ment in machine learning techniques for classification and detection tasks [24]. Various
machine learning techniques were proposed to analyze and detect human emotion from
EEG signals. The selection process of channels and features is critical for accurate detection.
The computational cost tends to be high if there is a large dataset and vast training data.
Different techniques were proposed for object detection and segmentation through deep
learning classifiers [25,26]. The decomposition is performed with multiple traditional
time-frequency decomposition methods, such as empirical mode decomposition (EMD)
and discrete wavelet transform (DWT) to fragment the signals. Similar techniques, such
as naive bayes, k-nearest neighbors, and multi-layers perceptron are applied to extract
13 different facial expressions [27]. Various feature extraction methods were used in the
literature to improve the performance on emotion detection [28–30]. These feature extrac-
tion methods are based on extracting and measuring the dimension of facial landmarks.
They use multi-model learning of Electromyography (EMG) and EEGs to conceive and
extract information from the brain, and other sources of extracting information are texts,
images, and videos. However, it is complicated to decipher the information retrieved from
these images, texts, and videos. A differential entropy is measured from the respective EEG
pulses where gamma and beta are applied as informative pulses to improve the learning of
EEG signals for emotion detection [14]. In total, 18 different linear and non-linear vibrations
through spatio-temporal neural networks were collected. Additionally, a database of EEG
signals and emotion analysis was proposed for cross-target facial emotion assessment [15].
Motor imagery classification (MIC) used Hilbert transform and wavelet decomposition
in combination with CapsNets backbone to achieve a better understanding of the EEG
signals [25]. Cross-subject generalizability was accomplished through flexible analytic
wavelet transform with machine learning classifiers [31]. A novel natural language pro-
cessing was implemented for emotion detection through sentiment analysis [32]. A survey
was performed on using sentiment analysis on social media data and presented a new
direction in predicting human behavior [33]. Similarly sentiment analysis was applied to
obtain human experiences such as finding the obesity rate by observing twitter data [34],
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investigation of tourist attractions [35], twitter sentiment and expressions [36], and overall
happiness and patterns of life [37]. Multi-model learning (MM) with a bag of deep fea-
tures is applied with machine learning classifiers using all the data collection channels for
emotion detection [38]. A comparison of these methods and a corresponding number of
channels used and backbone network is presented in Table 1. However, detecting emotions
through EEG signals is quite challenging due to its undefined margins and boundaries.
Traditionally, the assessment of EEG signals in these methods is approached in two ways;
either using a high frequency that increases computational complexity or reduced channels
that drop the accuracy. Furthermore, these methods are expensive in terms of cost and
installation, making them unstable and infeasible in real-world situations. The difficult task
is to design a novel method for detecting multiple emotions. The frequency components
tend to change with respect to time, so the information is inadequate for detecting human
emotions. Therefore, this paper uses a continuous wavelet transform (CWT) to study
non-stationary EEG signals.

Table 1. Comparison of our proposed work with the previous studies.

Methods Features Dataset No. of Channels Classifier

MIC [25] MFM DEAP 18 CapsNet

ER-WTF [31] MFCC
SEED

SVM

Random Forest

DEAP 6 Random Forest

EMD [23] MEMD DEAP 12
ANN

KNN

STRNN [14] STRNN SEED 62 CNN

CS [15] RFE
SEED 18 SVM

DEAP 12 SVM

EC [39] DE DEAP 32 PNN

MM [38] BODF

SEED 62
SVM

KNN

DEAP 32
SVM

KNN

Our Work DEFS SEED 26

SVM

KNN

Tree

Ensemble

3. Proposed Methodology

This section presents the proposed architecture for emotion detection through EEG
signals. The block diagram of the proposed method is illustrated in Figure 2. For sparse
representation, the EEG signals are passed by continuous wavelet transform. GoogleNet
further processes the sparsed signals for feature extraction. These features are divided
based on the entropy of every feature through differential entropy-based feature selection.
The redundant features are reduced by the BoDF and further classified by SVM, KNN,
decision trees, and ensemble networks classifiers, resulting in a classified emotion. Each
section of the proposed method is explained below.
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Figure 2. The proposed framework for classification of Emotions form the EEG signals of the
SEED Dataset.

3.1. Decomposition into Time-Frequency Spectrum

In real-life situations, the behavior of emotional states are subjective, complex, and non-
stationary. To localize the subject of interest , time-frequency analysis is implemented to
present sparse representation. The traditional way to transform the EEG signals x(t) to
spectrograms is through short-time Fourier transform (STFT) Xst f t(τ, ω), where τ, ω ε R,
τ 6= 0, and R is the set of real number. The Xst f t(τ, ω) transforms x(t) through window
function w(t), such as

Xst f t(τ, ω) =
∫ ∞

−∞
x(t)(w(τ − t))e−jωtdt. (1)

As the short window size of STFT results in more concise and provide sufficient
understanding for time but ultimately degrading frequency information. However, a bigger
window size has the opposite effect to a shorter window. To achieve a better analysis for
both time and frequency domain, we applied continues wavelet analysis to extract necessary
features and develop an image of the one-dimensional (1D) EEG signals. The continues
wavelet analysis provides a better relationship between the decomposed version and the
parent wavelet.

The emotional states are continuous and the frequency components ω tends to change
with respect to time t. To present a sparser representation, CWT Wx(m, n) is used to provide
further segments of the Xst f t(τ, ω), where m and n are the translating and scaling parameter
of ψ(t), respectively. If u(t) is the EEG signal in t, CWT transformation can be defined as

Wx(m, n) =
1√
|m|

∫ ∞

−∞
u(t)ψ

(
t− n

m

)
dt. (2)

where ψ(t) is the wavelet function called “mother wavelet” depending on scale value
m > 0, a ε R and translation value n > 0, n ε R. m and n are normalized such that
they stay at the same level for different values with the function of 1√

|m|
. The scaling

factor, a, controls the compression and expansion of the time but have reciprocal effect
on frequency. This benefits in recognizing the periodical trends in input signal. Whereas
the shifting factor, b, translates multidimensional decomposed components of the original
signal u(t). Continues wavelet analysis has the ability to recognize the abrupt changes in
the frequency for multi-scales of the EEG signal. The decomposed wavelet at the desired
time can obtained through applying the translated versions ψ(t) of wavelets to the original
mother wavelet.
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CWT provides an excellent opportunity to extract and investigate complicated spectral
features of a signal. Function ψ(t) is a continuous in time and frequency function which is
used to provide “daughter wavelets” for each possible time-translation and time-scaling
as follows,

ψm,n(t) =
1√
|m|

ψ

(
t− n

m

)
. (3)

To reconstruct the original signal, inverse continues wavelet transform (ICWT) can
represented as double-integral form, which used Morse wavelet and L1 normalization
as follows,

u(t) =
1

CΨ

∫ ∞

−∞

∫ ∞

−∞

1√
|m|

Wx(m, n)ψ̂
(

t− n
m

)
dbdm

m2 , (4)

where ψ̂(t) is the dual function of ψ(t), ψ̂ ε L2R, CΨ is admissible wavelet with value in
range of [0, ∞], can be defined as,

Cψ =
∫ ∞

−∞

˜̂ψ(ω)

|ω| dω. (5)

where ψ(ω) is the Fourier transform of ψ(t) and ˜̂ψ = ψ̂(ω)ψ(ω). The function Cψ has
to be integrate to zero and oscillatory. This admissibility condition is used to analyze
and reconstruct a signal without loss of information. Then, the mother wavelet, ψ(t) is
reconstructed through second inverse wavelet, such as

u(t) =
1

2π ˜̂ψ

∫ ∞

−∞

∫ ∞

−∞

1
m2 Wu(m, n)e

(
i(t−n)

m

)
dbdm. (6)

The wavelets in time domain can be obtained as,

ψ(t) = ω(t)eit, (7)

where ω(t) represents a window with a finite number of points. The low and high pass filter
banks in continuous wavelet transform represent the low and high-frequency distribution
in decomposition and reconstruction stages according to time. The translated and scaled
decomposed versions of wavelets are moved in time across the original signal that results
in estimating coefficients for multiple scales. The transformation of each recording of EEG
signal of siz 1× i are transformed to a two-dimensional matrix of size i × j, where j is
number of multiple scales and i is whole length of the signal.

Furthermore, the feature vectors are extracted from the two-dimensional matrix. These
feature vectors are combined to obtain the final feature matrix of size p× q where p represnts
the total number of recordings and q represents total number of features. In the feature
matrix p × q, the recordings are divided into three target emotions for each EEG data:
neutral, positive, and negative, as shown in Figure 3. The effect of wavelet transform is
visualized in Figure 3 that represents the time versus frequency distribution of different
classes in the SEED dataset.
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(a) (b)

(c)

Figure 3. Time frequency distribution for three classes of SEED dataset. (a) Neutral. (b) Positive.
(c) Negative.

3.2. Feature Extraction

To provide enough features for learning the whole structure of spectrograms, GoogleNet
inception model [40] is proposed as our backbone model for feature extraction. The obtained
spectrum images from continuous wavelet transform is trained by a pre-trained GoogleNet
model. This model is originally implemented on the ImageNet dataset, consisting of
1000 classes. The linear output layers consist of 1000 hidden nodes. The architecture
consists of 22 deep layers and nine inception modules, while two max-pooling layers are
used between every inception layer. The core idea of the inception module is to find the
optimal sparse structure from provided coarse components. The final softmax layer is
removed, and multiple traditional classifiers are applied to perform classification.

The whole architecture of the GoogleNet model is illustrated in Figure 4. The basic
unit of GoogleNet achieves better accuracy and can parameters can be easily changed or
modified in the model. We modified the basic architecture for SEED dataset. The input
image is resized to 224 × 224 RGB color space with zero mean value. Each convolution
layer is comprised of filters that are convolved with the input data to extract features.
During the first layer, input image of size 224 × 224 is reduced to a dimension of 112 × 112
by a convolution filter of 34 × 34 and stride of 2. The formula for first layer operation is
as follows,

Yout =
Yin + 2p− k

s
+ 1, (8)

where Yin is input size, Yout is output size, p is padding size, k kernel size, and s is stride.
The next layer reduces the dimension to 56 × 56 with filter size 3 × 3. The combination
of inception module creates a bottleneck structure for GoogleNet. The output layers are
removed and features are transferred to a differential entropy-based selection of features.
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C1 P1 C4C2 C3Input

Inception modulesConvolution Layers Output

Figure 4. The overview of backbone GoogleNet model.

As the SEED dataset consist of positive, negative and neutral classes by performing
five trials on 15 subjects. The EEG collected while using only 26 channels is considered for
each subject. These 26 images are made for each of the 26 individuals EEG signals using
time-frequency representation with 1000 dimensions. The pre-trained weights are inherited
to reduce the training time and initiated for EEG signal classification. The loss function for
the proposed model is given as,

Loss(r, δ) = −
n

∑
i=1

rilog(δi), (9)

where r is 1 for true positive; otherwise, r is 0; δ is the probability of category i predicted
by softmax.

3.3. Differential Entropy-Based Features Selection

To reduce the data dimension without sacrificing the performance of emotion detection
model, a decision criteria that estimates the percentage of correlation with whole set of
features with the subset of selected features. The correlation benefits in selecting high
information features. Differential entropy (DE) divides the high information features from
low information features. Due to this division of high and low information features, we find
the boundary of uncertainty information. DE provides differences between sections created
by subsets of features and all features from spectrum images [41]. Significantly, various
essential characteristics can be derived from this difference measurement. The aim is to
find a subset with similar properties and information as the original input data. DE feature
reduction is similar to logarithm energy spectrum in a given frequency domain. The input
EEG signal comprises of 1000 data points creating a spectrum of frequency. The filters
results in multiple frequency bands: δ (1–4 Hz), θ (4–8 Hz), α (8–13 Hz), and β (13–30 Hz)
from each EEG channel.

Suppose (U, A) is a collection of features system, considering U as a set of spectrum
features, and A as a set of features. The decision table can be represented as (U, C ∪ D)
is the collective features, for C ∪ D = A, C ∩ D = ∅, C is non-empty set of conditional
features, and D is the decision attributes, respectively. For every P ⊆ C, the DE feature
vectors of P with respect to C is defined as;

E(P | U ⊕ C) = − 1
U ∑

xεU
log2
|[x]C ∩ [x]P|
|[x]P|

. (10)

The information differentiation of P in the whole subset of (U, C ∪ D) is in fact the
number of [x]c consisting of [x]p. The differentiation represents the measure of boundary
between feature subset P and entire set C.
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The [x]C and [x]P are the corresponding indistinguishable relation determined for
P and similarly for C. It must be noted that for any P ⊆ C and x ε U, is [x]C ⊆ [x]P and
Equation (10) can be simplified as;

E(P | U ⊕ C) = − 1
U ∑

xεU
log2
|[x]C|
|[x]P|

. (11)

Considering these formulations, it is observed that E(P|U ⊕ C) presents the the differ-
entiation between U/P and U/C based on their actual ability. Additionally, it shows the
importance of subset P in comparison to entire original feature set C. In fact, the higher
the E(P|U ⊕ C), the higher the difference between feature sets P in the depiction of C.
Specifically, if E(P|U ⊕ C) = 0, then U/P = U/C implies that both subset feature U/P
and whole feature set U/C have equal knowledge. Only features with high entropy are
selected to process in BoDF. Reducing the low entropy-based features can reduce features
dimensions without degrading performance and improve simulation time resulting in a
lightweight model.

3.4. Bag of Deep Features (BoDF)

BoDF is applied to minimize the collection of redundant features in classification.
The reduced features can decrease feature size and the time required to train the backbone
model. In general, many features have huge simulation time and high computational
complexity. It is observed that using only 8 to 12 channels has a detrimental effect on
the performance of the backbone model. The BoDF model comprises two stages; first,
the Google-Net and differential entropy features are extracted from each EEG channel and
are combined into a single vector. In the second stage, the cumulative set of all 26 features is
clustered with the K-mean clustering method. The K-means clustering accumulates similar
features into one region that represents the vocabulary employed in the further extraction
of the final feature vector. The vocabulary set then generates the similarity histogram of raw
feature vectors. The histogram is achieved using the euclidean distance of the vocabulary
and raw feature vectors. The frequency of vocabulary features in the raw data denotes the
final representation of the EEG data. For the SEED dataset the features of 17,550 × 1000 are
clustered to 255 × 25 features vectors. Determining the number of clusters k is crucial
for estimating decision boundary. The optimal values for choosing the suitable number
of clusters are obtained through the hit and trial method. The 255 × 25 for each class
feature vector is termed as its vocabulary. In the second phase, the vocabulary histogram
is estimated. The comparison is performed by the vocabulary of each feature vector of
255 × 25 with the EEG dataset of all channels. In SEED dataset, features of 255 × 25 were
compared with 26 channels features, and the occurrence frequency is computed. The size of
the histogram feature is 225 × 25, along with the attribute value of the histogram between
0 and 30, which reduces the large feature size. The histogram features obtain the frequency
of optimal features for each class. These features are collectively passed to classifiers.
Multiple classifiers are proposed to provide a comparison and select a better classifier.
Since the classification layer of the GoogleNet model is removed, SVM, ensemble, tree,
and KNN classifiers are used as a classification layer.

3.5. Dataset Description

An EEG signals dataset was collected by Shanghai Jiaotong University (SJTU) for ex-
amining and analysis of the EEG signals for emotion detection known as SEED dataset [42].
The dataset contains EEG signals that are taken when human beings are watching different
movies. In total, the data were collected from 15 participants (eight females and seven
males). They were subjected to 15 movie clips containing various scenes to invoke a hu-
man being’s different emotions. These emotions of these people are noted and labeled
as positive, negative, and neutral based on happy, sad, and normal mode, respectively.
Table 2 shows the names of clips from few movies and the result of invoking emotion.
The following protocols are satisfied when collecting the dataset:
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• The emotion detection was recorded for short clips in order to avoid the unnatural
behavior of the human.

• The video explains the scenario of itself.
• Only one emotion was recorded at the time of watching the video.

The human emotional data were collected according to the international standard of
the 10–20 system. The electrodes are placed on the head of the human beings to record EEG
exams, poly-monograph, sleep, and study. These standards ensure the testing, compiling,
and analysis of data for scientific purposes. To measure EEG signals, the electrodes are
placed on anatomical landmarks on the human skull. The distance between the electrodes is
10% or 20% of the total front-back and right-left distances on the skull therefore, the system
is known as the 10–20 system. The placement of electrodes is presented in Figure 5.

Table 2. Description of Clips that invoke Positive, Negative, Neutral Emotions.

No. Emotion Label Clips from Movie Source

1 Negative Tangshan Earthquake

2 Negative 1942

3 Positive Lost in Thailand

4 Positive Flirting scholar

5 Positive Just another Pandora’s Box

6 Neutral World Heritage in China

Figure 5. The placement chart of the International 10–20 System and allocation of all 62 channels.

4. Results

Extensive experiments were performed through different deep learning models with
different handcraft feature extraction classifiers. The performance is evaluated on the SEED
dataset that consists of different channels for three classes. Only 26 channels are considered,
to reduce cumbersome features while maintaining comparable accuracy. The performance
is evaluated with multiple backbone models that are GoogleNet, AlexNet, ResNet-50,
ResNet-101, and Inception-ResNet V2 with a combination of a different number of channels.
Only the channels with best results on every backbone models are presented.

4.1. Performance Evaluation on Different Deep Learning Models

Multiple experiments were performed on different deep learning models in combi-
nation with the handcraft classifiers. The last classification layers are removed from the
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backbone models and evaluated on different handcraft classifiers such as ensemble and
decision trees. It is compulsory to evaluate each deep learning model with different values
of k due to their direct influence on the overall accuracy. The backbone models such as
GoogleNet, AlexNet, ResNet-50, ResNet-101, and Inception V2, are combined with SVM,
KNN, ensemble, and decision trees with k = (8, 10, 12, 14) in clustering. The effect of
different k values on SVM, KNN, ensemble, and decision tree classifiers with multiple
deep learning models are presented in Figure 6. The performance of GoogleNet with the
SVM classifier is comparatively better than other backbone models. As shown in Figure 6,
the highest accuracy of SVM is 95.1% and 94.2% achieved with k = 8 and 14. However,
accuracy achieved with AlexNet is 93.3% and 93.7% for k = 10, 12, and 14. With decision
tree classifiers, GoogleNet and Inception-ResNetV2 have similar accuracy when k values
are set to 12 and 10, respectively. Both of these models achieved 94.2% accuracy while in all
other models the accuracy is between 91% and 93%. AlexNet and ResNet-50 achieve 94.6%
with the KNN classifier. While using ensemble networks, the performance of GoogleNet is
higher among all. However, as shown in Figure 6, the overall performance of GoogleNet
is better with all k values in comparison to other backbone models. Table 3 presents the
performance evaluation of different backbone models with the minimum number of chan-
nels considering different kernels in classifiers. The cubic kernel in SVM has the highest
accuracy with 96.7% among all kernels using only 26 channels. The minimum number
of channels reduces computation and cumbersome calculation. Subspace KNN kernel in
ensemble classifier achieved the second highest accuracy of 96.2% followed by tree and
KNN with 95.8% and 95.3%, respectively. Multiple experiments were performed with the
different number of channels on different kernels; however, only the best results are shown
in Table 3.

(a) (b)

(c) (d)

Figure 6. Comparison of different deep learning with (a) SVM, (b) KNN, (c)Tree, (d) Ensemble classi-
fier.
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Table 3. Analysis of accuracy following channels reduction of various deep learning models.

Neural Networks Channels Classifiers Kernals Accuracy (%)

GoogleNet 26

SVM Cubic 96.7

kNN Fine 95.3

Tree Medium 95.8

Ensemble Subspace KNN 96.2

AlexNet 28

SVM Fine Gaussian 95.3

kNN Weighted 96.2

Tree Medium/Fine 94.0

Ensemble Subspace KNN 95.8

Resnet-50 40

SVM Fine Gaussian 94.4

kNN Weighted 96.2

Tree Medium/Fine 95.3

Ensemble Subspace KNN 95.3

Resnet-101 29

SVM Fine Gaussian 94.0

kNN Weighted 94.4

Tree Medium/Fine 94.4

Ensemble Bagged Trees 94.9

InceptionresnetV2 32

SVM Cubic 94.4

kNN Weighted/Fine 94.4

Tree Medium/Fine 95.8

Ensemble Subspace KNN 95.8

4.2. Comparison with State-of-the-Art Methods

The proposed method is compared with the state-of-the-art methods for emotion
detection in Table 4. The comparison methods are motor imagery classification (MIC) [25],
emotion recognition through wavelet transforms (ER-WTF) [31], empirical mode decompo-
sition (EMD) [23], spatio-temporal recurrent neural network (STRNN) [14], cross subject
(CS) [15], Evolutionary computation (EC) [39], and multi-model (MM) [38]. The proposed
DEFS method achieved better performance on all classifiers with GoogleNet backbone in
comparison to state-of-the-art methods. Specifically, the overall accuracy on SEED dataset
is improved up to 96.7%, 95.3%, 95.8%, and 96.2% for SVM, KNN, tree, and ensemble
classifiers. ER-WTF [31] uses a minimum number of dataset channels while STRNN [14]
uses all 62 channels but the accuracy is still not satisfactory. Despite using fewer channels
on SEED dataset, the proposed method achieved satisfactory performance for detecting
various emotions. Compared to the SVM classifier of MMT [38], the proposed method’s
accuracy using SVM, KNN, ensemble, and tree classifier is improved up to 2.9%, 2.4%, 2.4%
and 2.0%, respectively. This indicates the effectiveness of the proposed method in accurate
emotion recognition and classification.
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Table 4. Comparison of our proposed work with the previous work on emotion detection.

Methods Features Dataset No. of Channels Classifier Accuracy (%)

MIC [25] MFM DEAP 18 CapsNet 68.2

ER-WTF [31] MFCC
SEED 6

SVM 83.5

Random Forest 72.07

DEAP 6 Random Forest 72.07

EMD [23] MEMD DEAP 12
ANN 75

KNN 67

STRNN [14] STRNN SEED 62 CNN 89.5

CS [15] RFE
SEED 18 SVM 90.4

DEAP 12 SVM 60.5

EC [39] DE DEAP 32 PNN 79.3

MM [38] BODF

SEED 62
SVM 93.8

KNN 91.4

DEAP 32
SVM 77.4

KNN 73.6

Our Work DEFS SEED 26

SVM 96.7

KNN 95.3

Tree 95.8

Ensemble 96.2

5. Conclusions

In this article, a novel differential entropy-based feature selection technique is pro-
posed to address the correct detection of emotion. Using GoogleNet as a backbone model
can provide rich features using fewer channels. A guide to extracting multiple features
based on histograms and clusters of similar features is added to the backbone model to
improve the learning process. Different machine learning classifiers are added with mul-
tiple kernels to evaluate accurate detection. Extensive experiments on the SEED dataset
show that proposed emotion detection provides satisfactory results. Nevertheless, emotion
detection of EEG signals still requires more improvement. Further evaluation is needed
through lightweight deep learning models and handcraft classifiers to obtain excellent de-
tection accuracy. EEG-based emotion detection requires multi-disciplinary knowledge such
as neuroscience, psychology, engineering, and computer science. Multi-model learning can
be implemented to surpass the performance of current algorithms, or further discovery in
psychology and neuroscience is required to strengthen detection accuracy.

Author Contributions: Conceptualization, Q.M.u.H., F. and L.Y.; methodology, Q.M.u.H., L.Y. and
F.; software, Q.M.u.H., W.R., F. and F.I.; validation, Q.M.u.H. and L.Y.; formal analysis, Q.M.u.H.
and L.Y.; investigation, L.Y.; resources, Q.M.u.H. and L.Y.; data curation, Q.M.u.H., F., W.R. and
F.I.; writing–original draft preparation, Q.M.u.H., L.Y., F., F.I. and W.R.; writing–review and editing,
Q.M.u.H., L.Y., F., W.R. and F.I.; visualization, Q.M.u.H.; supervision, L.Y.; project administration,
Q.M.u.H. and L.Y.; funding acquisition, L.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by Ministry of Science and Technology, Republic of China under
the Grant number MOST 110-2221-E-027-054-MY3.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.



Sensors 2022, 22, 5158 14 of 16

Data Availability Statement: The SEED dataset can found at following link: Available online:
https://bcmi.sjtu.edu.cn/home/seed/seed.html (accessed on 30 May 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
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BoDF Bag of Deep Features
CS Cross Subject
CSP Common Spatial Patterns
CWT Wavelet Transform
DE Differential Entropy
DECS Differential Entropy-Based Channel Selection
DWT Discrete Wavelet Transform
EC Evolutionary Computation
EEG Electroencephalogram signals
EMD Empirical Mode Decomposition
EMG Electromyography
ER-WTF Emotion Recognition Through Wavelet Transforms
fMRI Functional Magnetic Resonance Imaging
KNN K-nearest Neighbours
MIC Motor Imagery Classification
MM Multi-model learning
1D One-Dimensional
ReLU Rectified Linear Activation
RFE Recursive Emotion Feature Elimination
SJTU Shanghai Jiaotong University
STRNN Spatial-Temporal Recurrent Neural Networks
SVM Support Vector Machine
STFT Short-Time Fourier transform
2D two-dimensional
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