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Background: The management of gastric cancer (GC) still lacks tumor markers with high
specificity and sensitivity. The goal of current research is to find effective diagnostic and
prognostic markers and to clarify their related mechanisms.

Methods: In this study, we integrated GC DNA methylation data from publicly available
datasets obtained from TCGA and GEO databases, and applied random forest and
LASSO analysis methods to screen reliable differential methylation sites (DMSs) for GC
diagnosis. We constructed a diagnostic model of GC by logistic analysis and conducted
verification and clinical correlation analysis. We screened credible prognostic DMSs
through univariate Cox and LASSO analyses and verified a prognostic model of GC by
multivariate Cox analysis. Independent prognostic and biological function analyses were
performed for the prognostic risk score. We performed TP53 correlation analysis, mutation
and prognosis analysis on eleven-DNA methylation driver gene (DMG), and constructed a
multifactor regulatory network of key genes.

Results: The five-DMS diagnostic model distinguished GC from normal samples, and
diagnostic risk value was significantly correlated with grade and tumor location. The
prediction accuracy of the eleven-DMS prognostic model was verified in both the training
and validation datasets, indicating its certain potential for GC survival prediction. The
survival rate of the high-risk group was significantly lower than that of the low-risk group.
The prognostic risk score was an independent risk factor for the prognosis of GC, which
was significantly correlated with N stage and tumor location, positively correlated with the
VIM gene, and negatively correlated with the CDH1 gene. The expression of CHRNB2
decreased significantly in the TP53 mutation group of gastric cancer patients, and there
were significant differences in CCDC69, RASSF2, CHRNB2, ARMC9, and RPN1 between
the TP53 mutation group and the TP53 non-mutation group of gastric cancer patients. In
addition, CEP290, UBXN8, KDM4A, RPN1 had high frequency mutations and the function
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of eleven-DMG mutation related genes in GC patients is widely enriched in multiple
pathways.

Conclusion:Combined, the five-DMS diagnostic and eleven-DMS prognostic GCmodels
are important tools for accurate and individualized treatment. The study provides direction
for exploring potential markers of GC.

Keywords: gastric cancer, tumor marker, diagnosis, prognosis, DNA methylation, mutation

INTRODUCTION

According to the statistics released by the World Health
Organization in 2018, the incidence and mortality rate of
gastric cancer (GC) ranked fifth and third, respectively, among
cancers worldwide. GC is a characteristic cancer in East Asia with
an incidence rate of 32.1/100,000 and a mortality rate of 13.2/
100,000 (1). Among Eastern Asian countries, Japan, South Korea,
and China have the highest GC morbidity and mortality rates in
the world (Bray et al., 2018). Therefore, the prevention and
treatment of GC are essential for improving patient outcomes.
Although advances in surgery, radiotherapy, chemotherapy,
molecular targeting, and immunotherapy have improved
overall prognosis, diagnosis of GC is often delayed, resulting
in unsatisfactory outcomes (Bang et al., 2017; Cats et al., 2018;
Sundar et al., 2019). It is, thus, urgent to explore effective
biomarkers for early diagnosis and prognosis prediction of GC.

Epigenetic markers have been widely recognized in recent
years, particularly promoter hypermethylation. Compared with a
wide range of mutational variations in a specific gene, promoter
hypermethylation occurs in the same defined region of a gene in
all forms of cancer (Fu, 2015). Therefore, diagnosis and prognosis
prediction of patients with GC can be reliably obtained at the
epigenetic level via differential expression of common DNA
methylation (DNAm). DNAm is a major epigenetic
modification that participates in many important life activities,
such as cell proliferation, differentiation, development, apoptosis,
tumor development, and occurrence of other diseases, and it is
also one of the earliest discovered DNA modifications. DNAm
can cause changes in chromatin structure and DNA stability,
thereby regulating gene expression (Neri et al., 2017). Abnormal
DNAm located in the promoter region usually leads to silencing
of tumor suppressor genes or high expression of proto-
oncogenes, thereby promoting tumor progression (Das and
Singal, 2004). Among them, hypermethylation of tumor
suppressor genes is the most common and can be used as an
early tumor marker. Some specific DNAm sites are closely related
to GC, such as cell cycle-related genes P16 and MDGA2 (Hibi
et al., 2003; Wang et al., 2016), tumor suppressor genes,
apoptosis-related genes PCDH10 and BCL6B (Yu et al., 2009;
Xu et al., 2012), signal transduction-related genes FOXF2 and
RUNX3 (Sakakura et al., 2005; Higashimori et al., 2018), and
proto-oncogenes RAS and c-myc (Nishigaki et al., 2005; Licchesi
et al., 2010). The discovery of these DNAm sites has broad
application value in the early diagnosis, prognosis, and even
treatment of GC. However, only a small number of DNAm
sites have been approved for use as basic tumor markers

(NDRG4, BMP3, and SEPTIN9) (Imperiale et al., 2014; FDA).
There are many reasons for this, such as small numbers of test
samples, patient selection bias, lagging research design and data
analysis methods, lack of substantial clinical value, and other
factors have prevented thorough evaluation of the clinical value of
GC biomarkers. With the development of bioinformatics,
enabling the establishment of GC diagnostic and prognostic
models based on big data, the above problems can be resolved.

Few studies have described the application of a differential
methylation site (DMS) scoring system to construct
individualized GC diagnostic and prognostic models. In this
study, we integrated publicly available GC DNAm datasets
obtained from The Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO) databases to construct a diagnostic
model and verify its ability to distinguish GC from normal tissues.
The DMSs were then matched with overall survival (OS) data and
a prognostic model was constructed. Finally, the prognostic
model was analyzed to explore its clinical application and
potential molecular mechanisms in patients with GC. The
correlations between clinical correlation analysis of the
diagnostic and analysis of independent prognostic factors will
help achieve accurate and individualized treatment in a clinical
setting.

MATERIALS AND METHODS

Obtaining DNAm Data of Gastric Cancer
We downloaded TCGA GC DNAm profiles (Illumina Human
Methylation 450 BeadChip, Illumina Human Methylation 27
BeadChip), expression profiles, and corresponding clinical data
through the UCSC Xena database (https://xena.ucsc.edu/) (Wang
et al., 2019). The Illumina Human Methylation 450 BeadChip
DNAm dataset contained two normal samples and 395 GC
samples, while the Illumina Human Methylation 27 BeadChip
DNAm dataset contained 25 normal samples and 48 GC samples.
The expression profile dataset contained 32 normal samples and
372 GC samples. Table 1 lists the clinicopathological
characteristics of the patients with GC. We downloaded the
GC DNAm profile dataset GSE30601 from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/) (Kurashige et al., 2016). The
GSE30601 dataset was based on the GPL8490 platform (Illumina
Human Methylation 27 BeadChip), containing 94 normal
samples and 203 GC samples. The data from TCGA GC
DNAm profiles were sorted and merged as the training
dataset; the GEO GC DNAm profile dataset was used as the
validation dataset. Because of the availability of public data in
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TCGA and GEO databases, this study did not require ethical
approval or informed consent.

Identification of Differential Methylated
Sites
We performed background correction and normalization on the
DNAm data in the training set (Zhang et al., 2019). Using normal
samples as controls, we screened the DMSs in GC samples using
the Wilcoxon test (Xu et al., 2017), with |log2 fold change (FC)| >
1 and false discovery rate (FDR) < 0.01 set as the threshold
considered to have biological significance. The “pheatmap”
package in R software was used to draw a DNAm heatmap of
DMSs in GC.

Screening of Diagnostic DNAm Markers
We used the random forest method in R software to predict key
DNAm sites in GC. The DNAm sites were sorted from high to
low according to their calculated “Mean Decrease Accuracy”
value, and 10-fold cross validation was performed five times to

screen representative DNAm markers in GC. We also used the
“glmnet” package in R software to predict key DNAm sites in GC
through LASSO regression analysis. DMSs that could distinguish
tumors from normal samples were defined as representative
DNAm markers in GC. Finally, shared DNAm markers
predicted by both methods were selected as reliable DNAm
markers for GC diagnosis (Zhou et al., 2019a).

Construction of DNAm Diagnostic Model
The “glm” package in R software was used to construct a
diagnosis prediction model with five reliable DNAm markers
through multivariate logistic regression analysis. The constructed
GC diagnosis prediction model was applied to distinguish GC
from normal samples in the training and validation datasets, and
the model’s accuracy was evaluated. Unsupervised hierarchical
clustering was used to show the DNAm status of five credible
diagnostic DNAm markers in the training set and validation set.

Correlation Analysis of DNAm Diagnostic
Model With Clinical Indicators
To evaluate the clinical application of the DNAm diagnostic
model in GC, we calculated the scores of patients with GC in
TCGA dataset using the constructed DNAm diagnostic model.
Samples with missing clinical characteristics were removed, and
correlations between diagnostic score and clinical characteristics
of patients were analyzed. The t-test was used for comparisons
between two groups, and the Kruskal–Wallis test was used for
comparisons between two or more groups. p < 0.05 was
considered statistically significant.

Construction of Prognostic Model Based on
Differential Methylated Sites
The “survival” package in R software was used to determine
DNAm sites of differential methylation associated with survival
of patients with GC through univariate Cox regression analysis,
and the random forest map was plotted for the top 20 DNAm
sites with the most significant differences (p < 0.01). Based on the
selected prognosis-related DNAm sites, the “glmnet” package in
R software was used to perform 10,000 simulations through
LASSO regression analysis, and key DNAm sites were
obtained after removing overlap through cross validation.

We used multivariate Cox regression analysis to construct the
following risk score formula for each patient (cg07990939Methylation
levels*(−8.908))+(cg08317263 Methylation levels*(−1.739))+(cg10301990
Methylation levels *(−4.088))+(cg10968649 Methylation levels
*(−20.267))+(cg13801416 Methylation levels *(−1.009))+(cg19614321
Methylation levels*(−1.779))+(cg20074795 Methylation levels
*(12.778))+(cg21052164 Methylation levels *(−0.941))+(cg26069252
Methylation levels *(7.734))+(cg26089280 Methylation levels
*(−8.569))+(cg27662379 Methylation levels *(−7.672)). Patients
were divided into low-risk and high-risk groups according to the
risk score formula using the median risk as the cut-off point. We
assessed survival differences between the two groups using the
Kaplan–Meier method, and compared these survival differences
using log-rank statistics. Receiver operating characteristic (ROC)

TABLE 1 | The clinicopathological characteristics of GS patients.

Alive (n = 216) Dead (n = 107) Total (n = 323)

Gender
FEMALE 89 (41.2%) 34 (31.8%) 123 (38.1%)
MALE 127 (58.8%) 73 (68.2%) 200 (61.9%)
Age
Mean (SD) 63.9 (10.7) 65.8 (10.3) 64.5 (10.6)
Median [MIN, MAX] 65 [30,90] 67 [41,90] 66 [30,90]
Grade
G1 5 (2.3%) 2 (1.9%) 7 (2.2%)
G2 74 (34.3%) 34 (31.8%) 108 (33.4%)
G3 137 (63.4%) 71 (66.3%) 208 (64.4%)
Stage
Stage I 30 (13.9%) 8 (7.5%) 38 (11.8%)
Stage II 84 (38.9%) 26 (24.3%) 110 (34.0%)
Stage III 94 (43.5%) 62 (57.9%) 156 (48.3%)
Stage IV 8 (3.7%) 11 (10.3%) 19 (5.9%)
T
T1 13 (6.0%) 1 (0.9%) 14 (4.3%)
T2 41 (19.0%) 16 (15.0%) 57 (17.6%)
T3 106 (49.1%) 56 (52.3%) 162 (50.2%)
T4 56 (25.9%) 34 (31.8%) 90 (27.9%)
M
M1 209 (96.8%) 99 (92.5%) 308 (95.4%)
M2 7 (3.2%) 8 (7.5%) 15 (4.6%)
N
N0 84 (38.9%) 24 (22.4%) 108 (33.5%)
N1 52 (24.1%) 30 (28.0%) 82 (25.4%)
N2 42 (19.4%) 25 (23.4%) 67 (20.7%)
N3 38 (17.6%) 28 (26.2%) 66 (20.4%)
Race
ASIAN 63 (29.2%) 21 (19.6%) 84 (26%)
BLACK 3 (1.4%) 6 (5.6%) 9 (2.8%)
WHITE 150 (69.4%) 80 (74.8%) 230 (71.2%)
Position
Body of stomach 54 (25%) 18 (16.8%) 72 (22.3%)
Cardia, NOS 49 (22.7%) 29 (27.1%) 78 (24.1%)
Fundus of stomach 33 (15.3%) 14 (13.1%) 47 (14.6%)
Gastric antrum 77 (35.6%) 40 (37.4%) 117 (36.2%)
Stomach, NOS 3 (1.4%) 6 (5.6%) 9 (2.8%)
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curve analysis was used to determine the accuracy of model
predictions (Xu et al., 2017).

Analysis of Independent Prognostic Factors
and Prognostic Risk Model
To evaluate the prognostic model and the effect of different
clinical characteristics of patients with GC on prognosis and
survival, we obtained phenotypic information of all samples from
the clinical data in TCGA dataset and extracted the risk model
samples separately, as well as the corresponding age, gender, and
other phenotypic and clinical information. We combined the
information in the risk model with the survival status of patients,
then used the “survival” package in R software to perform
univariate and multivariate independent prognostic analyses to
test the ability of the prognostic risk model and the clinical
characteristics of patients with GC to predict the prognosis
(Vasiljević et al., 2014).

Functional Analysis of Prognostic Risk
Score
To evaluate the clinical application and important functions of
the DNAm prognostic model in GC, we first calculated the risk
scores of patients with GC in TCGA dataset using the constructed
DNAm prognostic model and combined the risk scores with their
clinical data. Samples with missing clinical traits were removed,
and the correlation between risk scores and clinical characteristics
was analyzed. We used the t-test to compare two groups and the
Kruskal–Wallis test to compare two or more groups. p < 0.05 was
considered statistically significant. We then extracted the
expression levels of regulatory, cytotoxic, and
epithelial–mesenchymal transition (EMT) factors of known
immune checkpoint sites from the GC samples in TCGA
dataset and correlated these levels with the risk scores of these
samples to investigate whether the risk scores played an
important regulatory role in GC by influencing the above
factors. Finally, patients were divided into low-risk and high-
risk groups according to the prognostic risk model using the
median risk as the cut-off point. The low-risk group was used as
the control. We used the Wilcoxon test to screen significant
differentially expressed genes in the high-risk group, using the
standard threshold |log2FC| > 0 and FDR <0.05. The
“clusterProfiler” package in R language was used to perform
gene set enrichment analysis (GSEA) for the potential mechanism
of c2 (c2.cp.kegg.v7.1.entrez.gmt, c2.cp.biocarta.v7.1.entrez.gmt)
and c5 (c5.bp.v7.1.entrez.gmt) in the molecular signature
database (MSigDB). The number of random sample
arrangements was set to 1,000, and the significance threshold
was set to p < 0.05 (Zhou et al., 2019a).

Analysis of the Correlation Between Eleven
Prognostic-Related DMG and TP53
Mutations
UALCAN (http://ualcan.path.uab.edu/analysis.html) is a
comprehensive, user-friendly and interactive online data

analysis website based on relevant cancer data found in TCGA
database. We used the UALCAN database to evaluate the
expression levels of eleven prognostic-related DMG in gastric
cancer and normal gastric tissues (Chandrashekar et al., 2017).
Considering the unequal variances, the significance of differences
in the transcriptional levels was evaluated using the Student’s
t-test, and a p value of <0.05 was considered statistically
significant.

Mutation and Prognostic Analysis of Eleven
Prognostic-Related DMG
The cBioPortal (http://www.cbioportal.org) integrates data from
large-scale cancer research projects, such as TCGA and the
International Cancer Genome Consortium (ICGC), whose
gene data types cover somatic mutations, DNA copy number
changes, mRNA and microRNA expression, DNA methylation,
protein and phosphorus protein abundance, and provides visual
and multidimensional cancer genomic data (Cerami et al., 2012;
Gao et al., 2013). This study based on TCGA database, gene
expression data of 412 GC patients were included. We obtained
the relevant module information about 11-DMG mutation from
the cBioPortal. Set the parameters: “Enter a z-score threshold±1.
8”, then enter DMG to generate a mutation frequency
visualization chart, and then select the top 10 genes
significantly related to each gene mutations in “Co-expression”
module, delete duplicates and import them into Metascape.
Metascape (https://metascape.org/gp/index.html#/main/step1)
is a gene list analysis tool. It integrates data from over 40
types of biological information databases for gene annotation
and analysis, and provides a unique protein–protein interaction
(PPI) network analysis function.We used the “Multiple Gene list”
module of the Metascape tool to perform gene annotation and
enrichment analyses on the genes obtained from the cBioPortal
that were highly related to DMG mutations(27), and set the
parameters: “enrichment factorMin overlap � 3,” “p-value cut-off
value <0.01,” “Min enrichment >1.5” is considered statistically
significant, then select Gene Ontology (GO) enriching “Biological
Processes,” “Cellular Components” and “Molecular Functions”
and “KEGG pathways” classification. To further capture the
relationships between the terms, a subset of enriched terms
was selected and rendered as a network plot, where terms with
a similarity >0.3 were connected by edges. We selected the terms
with the best p-values from each of the 20 clusters, with the
constraint that there were no more than 15 terms per cluster and
no more than 250 terms in total. The network was visualized
using Cytoscape (Shannon et al., 2003), where each node
represented an enriched term and was colored first by its
cluster ID, and then by its p-value. For each given gene list,
PPI enrichment analysis was carried out using the following
databases: STRING (Szklarczyk et al., 2019), BioGrid
(Oughtred et al., 2019), OmniPath (Li et al., 2017), and
InWeb_IM (Li et al., 2017). Only physical interactions in
STRING (physical score >0.132) and BioGrid were used
(details). The molecular complex detection (MCODE)
algorithm (Bader and Hogue, 2003) was applied to identify
densely connected network components.
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Construction of Multi-Factor Regulatory
Network of Key Genes
In order to predict the regulatory factors of key genes related to
the prognostic model constructed in gastric cancer, we predicted
the upstream regulated miRNAs of key genes through Starbase
(http://starbase.sysu.edu.cn/index.php) and TargetScan (http://
www.targetscan.org/vert_71/), and intersected the prediction
results to obtain reliable miRNAs. After that, we further
predicted the lncRNA upstream regulated by the trusted
miRNA through the Starbase database, and predicted the
transcription factors (TF) that can regulate key genes through
the TRRUST (https://www.grnpedia.org/trrust) database. Finally,

the regulatory network among mRNA, miRNA, lncRNA and TF
was constructed by Cytoscape v3.6.1 software.

RESULTS

Identification of Differential Methylated
Sites in Gastric Cancer
To construct the diagnostic and prognostic GC models, we
performed background correction and normalization on the
DNAm data from 27 normal samples and 443 GC samples in
the training dataset. Among them, 1842 hypermethylated and 899

FIGURE 1 | Heat map of the top 20 significanly different methylation sites in gastric cancer (Arranged in p-value order).

FIGURE 2 | Screening of diagnostic DNA methylation (DNAm) markers in gastric cancer. (A)Multi-dimensional scaling plot of the proximity matrix generated from
random forest analysis in the training dataset. Red dots represent normal samples and blue dots indicate tumor samples. (B)Misclassification error for different numbers
of variables revealed by the LASSO regression model. Red dots represent the value of misclassification error, grey lines represent the standard error (SE), the two vertical
dotted lines on the left and right represent optimal values by the minimum and 1-SE criteria, respectively. “Lambda” is the tuning parameter. (C) Screening of DNAm
markers for reliable diagnosis. The green circle represents representative DNAmmarkers selected by random forest analysis, and the blue circle indicates representative
DNAm markers screened by LASSO regression analysis.
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hypomethylated sites were screened out in the GC samples.We used
R software package pheatmap to draw the methylation heat map of
the top 20 significanly different methylation sites in gastric cancer,
arranged in p-value order (Figure 1) (Supplementary Table S1).

Screening of Diagnostic DNAm Markers
Key DNAm sites in GC were predicted through random forest
analysis, combined with five repeated ten-fold cross validations,
resulting in 35 representative DNAmmarkers (Figure 2A). At the
same time, we also predicted 15 key DNAm sites in GC by LASSO
regression analysis (Figure 2B). The intersection of the
representative DNAm markers predicted by both methods
yielded five reliable diagnostic DNAm markers in GC
(Figure 2C).

Construction of a DNAm Diagnostic Model
Using multivariate logistic regression analysis, we established a
GC diagnosis prediction model with the five selected DNAm
markers (Table 2). Applying the model to the training dataset

yielded a sensitivity of 99.1% and specificity of 81.5% samples
(Figure 3A) and a sensitivity of 87.2% and specificity of 63.8% in
the validation dataset (Figure 3B). We also demonstrated this
model could differentiate GC from normal samples both in the
training dataset (AUC � 0.994) and the validation dataset (AUC �
0.829) (Figures 3C,D). Unsupervised hierarchical clustering of
these five markers distinguished GC from normal samples with
high specificity and sensitivity (Figures 3E,F). These results
indicated that the DNAm diagnostic model could be a
significant tool for distinguishing GC from normal samples.

Correlation Between DNAm Diagnostic
Model and Clinical Indicators
After excluding samples with missing clinical data, we analyzed
correlations between the diagnostic risk score and the clinical
characteristics of 323 patients obtained from TCGA dataset. The
results indicated that diagnostic risk score was significantly
correlated with grade and tumor location in patients with GC,
but not with age, gender, stage, extent of the tumor (T), presence
of metastasis (M), extent of spread to the lymph nodes (N), or
race of the patient (Figures 4A–I).

Prognostic Model Based on Differential
Methylated Sites
We combined the DNAm values of the DMSs in GC samples with
the survival data of the corresponding patients, using p < 0.01 as
the threshold standard to perform univariate Cox proportional
hazard regression analysis. We found that 137 DMSs significantly
affected the survival of patients with GC, among which the top 20

TABLE 2 | Characteristics of five methylation markers and their coefficients in GC
diagnosis.

Markers Ref.Gene Coefficients SE z.value P.value

12.209 3.242 3.766 <0.001
cg14383135 NPAS2 −2.609 7.309 −0.357 0.721
cg08797471 DAPK1 −19.390 5.950 −3.259 0.001
cg26619317 CNN3 −2.969 7.454 −0.398 0.690
cg17028039 FGFR2 −6.982 9.783 −0.714 0.475
cg25764464 PLEKHA5 −2.097 6.914 −0.303 0.762

SE: standard errors of coe-cients; z value: Wald z-statistic value.

FIGURE 3 | Construction of a diagnostic model of DNA methylation (DNAm) in gastric cancer. (A,B) Confusion tables of binary results of the diagnostic prediction
model in the training (A) and validation datasets (B). (C,D) Receiving operating characteristics curve analysis of the diagnostic prediction model with DNAm markers in
the training (C) and validation datasets (D). (E,F) Unsupervised hierarchical clustering of five DNAm markers selected for use in the diagnostic prediction model in the
training (E) and validation data sets (F).
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DNAm sites with the most significant differences are shown
(Figure 5A). We used LASSO regression analysis to remove
redundant DNAm sites, performed 10,000 simulations,
removed overlaps through cross validation, and finally
obtained 25 prognostic-related DMSs (Figures 5B,C). We
constructed a prognostic risk score formula for each patient
based on these 25 prognosis-related DMSs (Table 3). The
DNAm heatmap demonstrated the DMSs in the low-risk and

high-risk groups based on the prognostic (Figure 5D). The
corresponding ROC curve analysis demonstrated that the area
under the curve (AUC) value of the constructed prognostic model
was 0.747, which indicated the predictive power of the prognostic
model based on the expression of DMSs in GC (Figure 5E).
Further, the Kaplan–Meier curves suggested that the survival rate
of patients in the high-risk group was significantly lower than that
in the low-risk group (Figure 5F).

FIGURE 4 | Correlation analysis of DNA methylation (DNAm) diagnostic model and clinical indicators in gastric cancer (GC). (A–I) Correlation analysis between
diagnostic risk score and age, gener, tumor grade, T, M, N stage, race, and tumor site of gastric cancer.
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Analysis of Independent Prognostic Factors
in the Prognostic Risk Model
To further evaluate the prognostic model and the impact of
different clinical characteristics of patients with GC on
prognosis and survival, we obtained the corresponding
age, gender, phenotype, and clinical information for 315
patients with GC from TCGA dataset. We performed
univariate and multivariate independent prognostic analyses

(Figures 6A,B), revealing that the prognostic risk score value
and tumor site were significant high-risk factors and were
significantly correlated with the survival status of patients with
GC (p < 0.05). The corresponding ROC curve analysis
demonstrated that the constructed prognostic model had
the largest AUC value of 0.782, which also indicated the
predictive power of the prognostic model based on DMSs in
GC (Figure 6C).

FIGURE 5 | Prognostic model based on differential methylation sites (DMSs). (A) Random forest plot of the top DMS with the most significant differences through
univariate Cox proportional hazard regression analysis. (B) Results of LASSO regression analysis and 10,000 simulations. (C) Corresponding coefficient values of each
DMS in LASSO regression analysis. (D) DNAm heatmap of DMSs in the low-risk and high-risk groups with increasing prognostic risk score value. (E) Receiver operating
characteristics curve analysis of the prognostic model. (F) Kaplan–Meier survival analysis of DMSs related to prognostic model, abscissa for survival time, ordinate
for survival rate, blue curve for low-risk patients, red curve for high-risk patients. The number of high-risk and low-risk patients at each time point are located on the
bottom axis of the graph.

TABLE 3 | Characteristics of eleven methylation markers and their coefficients in GC prognosis prediction.

Markers Ref.Gene Coefficients HR Cl SE z.value P.value

cg07990939 CEP290 −8.908 1.35E-04 2.05e-07–8.94e-02 3.313 −2.689 7.17E-03
cg08317263 CCDC69 −1.739 1.76E-01 3.38e-02–9.13e-01 0.841 −2.068 3.86E-02
cg10301990 UBXN8 −4.088 1.68E-02 1.99e-04–1.41e+00 2.263 −1.807 7.08E-02
cg10968649 KDM4A −20.267 1.58E-09 1.73e-17–1.44e-01 9.352 −2.167 3.02E-02
cg13801416 AKR1B1 −1.009 3.65E-01 1.65e-01–8.05e-01 0.404 −2.496 1.26E-02
cg19614321 RASSF2 −1.779 1.69E-01 3.55e-02–8.02e-01 0.795 −2.237 2.53E-02
cg20074795 KDELR3 12.778 3.54E+05 1.54e+01–8.15e+09 5.124 2.494 1.26E-02
cg21052164 CHRNB2 −0.941 3.90E-01 1.22e-01–1.24e+00 0.592 −1.59 1.12E-01
cg26069252 EGR1 7.734 2.29E+03 1.69e+02–3.08e+04 1.327 5.826 5.67E-09
cg26089280 ARMC9 −8.569 1.90E-04 1.60e-09–2.25e+01 5.96 −1.438 1.51E-01
cg27662379 RPN1 −7.672 4.66E-04 1.65e-07–1.31e+00 4.053 −1.893 5.84E-02

HR: Hazard Ratio; CI: 95.0% confidence interval; SE: standard errors of coe-cients; z value: Wald z-statistic value.
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Functional Analysis of Prognostic Risk
Score
To evaluate the clinical application and important functions of
the DNAm prognostic model in GC, we calculated the prognostic
risk score of patients with GC from TCGA dataset and then
analyzed correlations with patient clinical characteristics. The
prognostic risk score was significantly correlated with extent of
spread to the lymph nodes (N) and tumor site in patients with GC
but not significantly correlated with other clinical features
(Figure 7A). We also analyzed correlations between
prognostic risk score and expression levels of regulatory,
cytotoxic, and EMT factors of immune checkpoint sites. The
results indicated that prognostic risk score was significantly
positively correlated with VIM, which was significantly
positively correlated with PDCD1, CTLA4, LAG3, TIGIT,
GZMB, and TNF and significantly negatively correlated with
CDH1 (Figure 7B). We screened 6,172 significant differentially
expressed genes in the high-risk group samples. GSEA on the
potential mechanism of c2 (c2.cp.kegg.v7.1.entrez.gmt,
c2.cp.biocarta.v7.1.entrez.gmt) and c5 (c5.bp.v7.1.entrez.gmt)
in the MSigDB (Figures 7C–E) revealed that highly expressed
genes in the high-risk group were significantly enriched in
multiple biological processes, such as the “calcium signaling
pathway,” “cytokine receptor interaction,” “focal adhesion,”

“neuroactive ligand receptor interaction,” and “regulation of
actin cytoskeleton,” indicating that these pathways may play
important roles in the development of GC.

Analysis of the Correlation Between Eleven
Prognostic-Related DMG and TP53
Mutations
We further analyzed the relationship between DMG mRNA
expression levels and TP53 mutation status in patients with
gastric cancer using the UALCAN data mining website. In the
correlation analysis of TP53 mutation status, it is worth noting
that the expression of CHRNB2 decreased significantly only in
the TP53 mutation group of gastric cancer patients. CCDC69,
RASSF2, CHRNB2, ARMC9, and RPN1 were significantly
different in the TP53 mutation group and TP53 non-mutation
group of gastric cancer patients (Figure 8).

Mutation and Prognostic Analysis of Eleven
Prognostic-Related DMG
We analyzed eleven prognostic-related DMGmutations and their
relationship with OS and PFS in gastric cancer patients using the
cBioportal website. Among 412 patients with gastric cancer, 242

FIGURE 6 | Analysis of independent prognostic factors in the prognostic risk model. (A) Random forest plot of univariate independent prognostic analysis; the left
side indicates clinical characteristics of gastric cancer (GC), the middle is the p-value. The hazard ratio indicates the risk rate with hazard ratio >1 indicating high-risk
clinical features, and hazard ratio <1 indicating low-risk clinical features. (B) Random forest plot of multivariate independent prognostic analysis; the left side represents
clinical characteristics of GC, the middle is the p-value. The hazard ratio represents the risk rate with hazard ratio >1 indicating high-risk clinical features, and hazard
ratio <1 indicating low-risk clinical features. (C) Receiver operating characteristics curve analysis of the prognostic model constructed with eleven differential methylation
sites (DMSs) in GC.
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had gene mutations, with a mutation rate of 59%. The mutation
rates of CEP290, CCDC69, UBXN8, KDM4A, AKR1B1, RASSF2,
KDELR3, CHRNB2, EGR1, ARMC9, RPN1 were 10, 5, 12, 11, 8,
2.9, 6, 7, 6, 7, and 13%, respectively. We observed that the
mutation rates of CEP290, UBXN8, KDM4A, and RPN1 were
more than 10% (10, 12, 11, 13%) (Figure 9A). In addition, high
mRNA expression was an important factor leading to high
mutation frequency in gastric cancer (Figure 9B). However,
Kaplan-Meier plotter and log-rank test analysis showed that
SMYD family mutations had no significant correlation with
OS and PFS in patients with gastric cancer (OS: p value �
0.887, PFS: p value � 0.548) (Figure 9C). Next, we used the
cBioportal to search for genes that were significantly related to
gastric cancer and DMG mutations (the top 10, respectively).
After deduplication, a total of 108 genes were obtained,
ZDHHC17, ARID4A, ATRX, ARID4B, UPF2, ZNF37BP,
CEP162, MDM4, CCDC66, PHIP, ASB2, PRKCB, GYPC,
SLC9A9, RASGRP2, JAM2, FNBP1, MAP3K3, PLEKHO,
GTF2E2, MAK16, CNOT7, PPP2CB, CCDC25, DCTN6,
INTS10, PPP2R2A, LEPROTL1, ELP3, AGO1, PTPRF,
COMMD6, NCOA2, COPS9, MRPL53, POLR3A, UHMK1,
CSNK1G1, AIDA, ADAP2, NRROS, HVCN1, LY86, TM6SF1,
TRPV2, MAP7, CSF1R, CHST11, TNFAIP8L2, FLI1, ARHGEF6,
ZEB2, RCSD1, MEF2C, FMNL3, ARHGAP31, CYRIA, SYNE1,

GIMAP8, CREB3L1, ARF4, AGR2, KCNK1, SEC13, BACE2,
CD55, KDELR2, S100P, BSN, RUNDC3A, CHGB, SCG3,
AP3B2, SYP, CACNA2D2, SEZ6, CELF3, GNG4, FOS, FOSB,
ZFP36, DUSP1, CSRNP1, NR4A1, JUNB, EGR3, CCN1, ATF3,
COL8A1, MAP1A, PKD2, EDNRA, AEBP1, TIMP2, SYDE1,
KANK2, SCARF2, DDR2, SEC61A1, COPG1, SRPRB, TFG,
P4HB, COPB2, UMPS, TMEM39A, RUVBL1 and PDIA5,
respectively. The 108 genes significantly related to 11-DMG
mutation obtained from the cBioportal were used through the
Meatascape website to perform GO and KEGG enrichment
analysis (Figures 10A–C). GO enrichment was divided into
three functional groups: biological processes (15 items),
molecular functions (1 item), and cellular components (2
items), and KEGG functional group (2 items). We found that
these genes were mainly involved in cellular response to calcium,
skeletal muscle cell differentiation, blood vessel development,
cellular response to growth factor stimulus, endoplasmic
reticulum to Golgi vesicle-mediated transport, peptidyl-serine
dephosphorylation, myeloid cell differentiation, transmembrane
receptor protein tyrosine kinase signaling pathway, MAPK
cascade, placenta blood vessel development, maintenance of
protein location, positive regulation of cell-substrate adhesion,
positive regulation of phospholipase activity, multicellular
organismal movement, positive regulation of cell motility. The

FIGURE 7 | Functional analysis of prognostic risk score. (A) Correlation analysis between prognostic risk score and age, gender, tumor grade, N stage, T stage,
race, and tumor location of the patient in the prognostic risk model. (B) Correlation analysis between prognostic risk score and expression levels of regulatory, cytotoxic,
and epithelial–mesenchymal transition (EMT) factors of immune checkpoint sites. (C–E) The results of gene set enrichment analysis on the potential mechanism of c5
(c5.bp.v7.1.entrez.gmt) and c2 (c2.cp.kegg.v7.1.entrez.gmt, c2.cp.biocarta.v7.1.entrez.gmt) in the molecular signatures database.
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molecular function of these genes mainly played a role in the
activity of calcium channels. The cellular components involved in
these genes were cytoplasmic ribonucleoprotein granules and
cytoplasmic regions (Table 4). In addition, in order to better
understand the relationship between DMG mutation-related
genes and GC, we conducted protein interaction network
analysis. After pathway and process enrichment analysis for
each MCODE component, it was found that the main
component of the cell involved was the endoplasmic reticulum
lumen, and the biological function was mainly related to COPI-
coated vesicle membrane, endoplasmic reticulum to Golgi
vesicle-mediated transport, COPI-coated vesicle, P-body,
nuclear-transcribed mRNA catabolic process, mRNA catabolic
process (Figures 10D–E).

Construction of Multi-Factor Regulatory
Network of Key Genes
Using databases such as Starbase, TargetScan and other databases
to predict the miRNAs upstream regulated of 11 key genes, and
intersect the prediction results, a total of 90 reliable miRNAs
capable of regulating 11 mRNAs were obtained. By predicting the
upstream of reliable miRNA regulated lncRNAs through the
Starbase database to, a total of 2,469 lncRNAs were obtained,
and the most reliable first three lncRNAs were selected for each
miRNA, and finally 270 credible lncRNAs were obtained. The
TRRUST database predicted transcription factors that can
regulate 11 key genes, and 13 TFs were obtained. Finally, the

regulatory network between mRNA, miRNA, lncRNA and TF
was constructed (Figure 11).

DISCUSSION

Although tumor markers for different types of cancers have been
rapidly discovered in recent years, there remains a lack of specific
and sensitive tumor markers for the management of GC.With the
development and deeper understanding of epigenetics, abnormal
DNAm has become the most extensively studied epigenetic
mechanism in GC research, and the relationship between
DNAm and tumors has become a research hotspot. The
mechanism whereby DNAm promotes cancer may be related
to activation or inhibition of certain signaling pathways, and
DNAm is thus recognized as a potential tumor marker (Rashid
and Issa, 2004). However, the performance of a single DNAm site
in predicting the prognosis of GC is unreliable. A large
prospective trial with 7,941 patients with colorectal cancer was
conducted to evaluate the accuracy of screening circulating
DNAm by detecting the methylation level of SEPT9. The
results revealed a specificity of 91.5% but a sensitivity of only
48.2% (Church et al., 2014). Some studies have shown that the
prediction accuracy of GC models is improved by combining
multiple tumor markers (Li et al., 2020a; Bai et al., 2020). This is
because multiple markers can take advantage of the
complementary effects of genetic information and effectively
eliminate redundant genes through machine learning

FIGURE 8 | The relationship between 11-DMG mRNA expression levels and TP53 mutation in gastric cancer (GC) (mutation: red, non-mutation: orange, and
normal gastric tissues: blue) (UALCAN) (*p < 0.05, **p < 0.01, ***p < 0.001).
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algorithms. As a result, we developed a GC diagnostic model with
a 5-DMS signature and a GC prognostic model with an 11-DMS
signature. Through clinical correlation analysis of the diagnostic
models, independent prognostic factors analysis of prognostic
models and enrichment analysis of the high-risk prognostic risk
score group, our study provides potential targets and related
mechanisms for clinical diagnosis and treatment of GC.

The accuracy of a DNAm diagnostic model has been
confirmed for liver cancer (Luo et al., 2020). In the current
study, we developed a 5-DMS (NPAS2, DAPK1, CNN3,
FGFR2, PLEKHA5) signature diagnostic model and calculated
GC diagnostic risk scores to accurately distinguish GC from
normal tissues. The predicted results were highly consistent
with the actual results, indicating the model’s potential for
wide application. In addition, unsupervised hierarchical
clustering analysis demonstrated high specificity and
sensitivity. In subsequent analysis, the diagnostic risk score
was significantly correlated with grade and tumor site in

patients with GC. Since the disease state of gastric cancer
patients is often manifested in clinical characteristics, the
correlation analysis between the risk score calculated by this
diagnostic model and the clinical characteristics can further
understand the quality of our model and assess the clinical
status of GC patients, which is of great significance. In clinical
practice, the gold standard for GC diagnosis is pathological
results, but the diagnostic model still has high clinical value.
At the same time, this model and pathology are used for
diagnosis. If the two diagnostic results are consistent, it is
more convincing. Generally, pathological diagnosis is the main
method, andmodel diagnosis is the auxiliary method. In addition,
the model can assist in the diagnosis and classification of patients
with difficult pathological diagnosis, and can also be used for the
detection of tumor residual, recurrence and metastasis for
subsequent accurate and personalized treatment.

The prognostic model constructed in the current study
employed an 11-DMS (CEP290, CCDC69, UBXN8, KDM4A,

FIGURE 9 | Mutation of 11-DMG in gastric cancer (GC) patients (cBioportal). (A) A visual summary of 11-DMG mutation frequency. (B) Summary of mutation
frequency of 11-DMG in gastric cancer patients. (C) Kaplan-Meier plotter was used to compare the relationship between gene mutation (red) and gene non-mutation
(blue) of 11-DMG mutation with OS and PFS (p < 0.05 statistical significance).
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AKR1B1, RASSF2, KDELR3, CHRNB2, EGR1, ARMC9, and
RPN1) signature. In this model, prognostic risk score
effectively distinguished patients with GC into high-risk and
low-risk groups. Kaplan–Meier curves also confirmed that the
survival rate of patients in the high-risk group was significantly
lower than that in the low-risk group. By univariate and

multivariate Cox analyses, prognostic risk score was proven to
be an independent prognostic risk factor for GC. Compared with
other clinical factors (age, gender, tumor grade, clinical stage, T,
N, and M stage, race, tumor location), prognostic risk score had
higher predictive potential, which indicated the reliability of the
model for predicting the prognosis of patients with GC. Although

FIGURE 10 | Enrichment analysis of genes related to 11-DMGmutation in gastric cancer (GC) (Metascape). (A)Heat maps of Go and KEGG enrichment analysis of
108 adjacent genes related to 11-DMGmutation were stained with p-value. (B) Term-enriched network: colored by cluster ID, where nodes sharing the same cluster ID
are usually close to each other, (C) colored by p-value, terms containingmore genes tend to havemore significant p-values. (D) For the MCODE components identified in
the protein-protein interaction network, (E) the three best score items divided by p-value are used as the functional description of the corresponding components,
which are represented by the grid diagram.
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TNM stage is still the gold standard for the classification and
prognosis of GC patients, from the perspective of data analysis,
this prognostic model can better reflect the prognosis of gastric
cancer patients than TNM stage. With the continuous expansion
of subsequent data, the constructed prognostic model will with
higher stability and accuracy, it is not impossible to replace TNM
stage. In clinical practice, we often encounter GC patients with
the same TNM stage and other clinical characteristics, but their
prognosis is quite different, and the subsequent treatment plans
given are not completely the same. For this situation, we can
apply this prognostic model to classify and predict the prognosis,
so that doctors can summarize the treatment plans of patients in
the high-risk group and the low-risk group, and provide
corresponding treatment plans. Therefore, this prognostic
model has great potential value in the prognosis judgment and
treatment of GC patients, which is helpful for accurate and
personalized treatment in the clinical environment.

Among the eleven DMGs in the prognostic model, five DMGs
(KDM4A, AKR1B1, RASSF2, CHRNB2, and EGR1) are known to
be closely related to the occurrence and development of GC. The
protein encoded by the KDM4A gene acts as a trimethylation-
specific demethylase, which can specifically demethylate the “Lys-9”
and “Lys-36” residues of histone H3, thereby playing a central role
in coding for histones (Bavetsias et al., 2016). This protein can also
control the growth and invasion of GC cells by inhibiting the
KDM4A/YAP1 pathway (Chen et al., 2019). The AKR1B1 gene
encodes a member of the aldose/keto reductase superfamily, which
is composed of more than 40 known enzymes and proteins. The
related pathways include acetone degradation I (conversion to
methylglyoxal) and glycerolipid metabolism (Sivenius et al.,
2004; Wolford et al., 2006). AKR1B1 plays an important role in
the occurrence and development of GC, which had a certain
reference value for the prognosis of patients with GC (Li et al.,

2020b). The protein encoded by the RASSF2 gene has been found to
be a potential tumor suppressor and can act as a KRAS-specific
effector protein. It may promote apoptosis and cell cycle arrest,
stabilizing STK3/MST2 by protecting it from proteasome
degradation (Cooper et al., 2009). Meta-analysis has shown that
RASSF2 is significantly more methylated in GC, which can predict
the risk of GC (Zhou et al., 2019c). Neuronal acetylcholine receptors
are homo- or heteropentameric complexes composed of
homologous α and β subunits, of which the CHRNB2 gene
encodes one of several β subunits. The related pathways include
nicotine addiction and chemical synaptic transmission (Chen et al.,
2009). CHRNB2 and TP53 may also play a role in Helicobacter
pylori-associated GC, but the specific mechanism is unknown (Hu
et al., 2018). The protein encoded by the EGR1 gene belongs to the
EGR family of C2H2-type zinc-finger proteins and is a
transcriptional regulator (Hu et al., 2010). Its functions are
diverse and can regulate the transcription of many target genes,
thus, playing an important role in regulating the response to growth
factors, DNA damage, and ischemia. Its role in regulating cell
survival, proliferation, and cell death cannot be ignored. EGR1
protein can directly bind to the HNF1A-AS1 promoter region and
activate its transcription to promote the GC cell cycle (Liu et al.,
2018). The relationship between the remaining six DMGs andGC is
unknown. Further exploration of the potential functions and
mechanisms of these DMGs may deepen our understanding of
GC development and provide potential tumor markers.

Regulatory, cytotoxic, and EMT factors are significantly
associated with the occurrence, development, and immunity of
tumor (Zhou et al., 2019b), and their analysis can further explore
potentially important biological phenotypes. Correlation analysis
with these three factors revealed that prognostic risk score was
significantly positively correlated with VIM. This gene encodes a
type III intermediate filament protein responsible for maintaining

TABLE 4 | The GO and KEGG function enrichment analysis of genes related to 11-DMG mutation in GC.

GO Category Description Count % Log10(P) Log10(q)

GO:0071277 GO Biological Processes cellular response to calcium ion 6 5.61 -6.05 -1.71
GO:0035914 GO Biological Processes skeletal muscle cell differentiation 5 4.67 -5.24 -1.69
hsa04010 KEGG Pathway MAPK signaling pathway 8 7.48 -5.21 -1.69
GO:0001568 GO Biological Processes blood vessel development 13 12.15 -5.13 -1.69
ko04728 KEGG Pathway Dopaminergic synapse 6 5.61 -4.97 -1.69
GO:0071363 GO Biological Processes cellular response to growth factor stimulus 12 11.21 -4.90 -1.69
GO:0006888 GO Biological Processes endoplasmic reticulum to Golgi vesicle-mediated transport 6 5.61 -4.84 -1.68
GO:0070262 GO Biological Processes peptidyl-serine dephosphorylation 3 2.80 -4.31 -1.24
GO:0030099 GO Biological Processes myeloid cell differentiation 8 7.48 -3.96 -1.01
GO:0007169 GO Biological Processes transmembrane receptor protein tyrosine kinase signaling pathway 10 9.35 -3.84 -0.92
GO:0000165 GO Biological Processes MAPK cascade 11 10.28 -3.74 -0.89
GO:0060674 GO Biological Processes placenta blood vessel development 3 2.80 -3.70 -0.86
GO:0036464 GO Cellular Components cytoplasmic ribonucleoprotein granule 6 5.61 -3.54 -0.71
GO:0045185 GO Biological Processes maintenance of protein location 4 3.74 -3.37 -0.62
GO:0099568 GO Cellular Components cytoplasmic region 6 5.61 -3.21 -0.53
GO:0005262 GO Molecular Functions calcium channel activity 4 3.74 -2.95 -0.38
GO:0010811 GO Biological Processes positive regulation of cell-substrate adhesion 4 3.74 -2.90 -0.36
GO:0010518 GO Biological Processes positive regulation of phospholipase activity 3 2.80 -2.89 -0.36
GO:0050879 GO Biological Processes multicellular organismal movement 3 2.80 -2.87 -0.36
GO:2000147 GO Biological Processes positive regulation of cell motility 8 7.48 -2.76 -0.29

It includes the first 20 clusters and their representative enrichment terms (one for each cluster). “Count” is the number of genes in the provided list that have membership in the given
ontology term. “%” is the percentage of all genes provided found in a given ontology term (only input genes with at least one ontology term annotation are included in the calculation).
“Log10(P)” is the p value based on Log10. “Log10(q)” is a multi-test adjusted p value based on Log10.
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cell shape and cytoplasm integrity and stabilizing cytoskeletal
interactions. VIM protein is involved in neurogenesis, cholesterol
transport, and functions as an organizer of a number of other critical
proteins involved in cell attachment, migration, and signaling. EMT
is widespread in malignant tumor cells, of which VIM is a marker
gene. The higher the risk score, the more likely EMT will occur. We
performed GSEA to clarify the potential mechanisms involved in
GC that were identified in the high-risk score group. The
differentially expressed genes were mainly distributed in five
pathways: “calculation signaling pathway,” “cytokine receptor
interaction,” “focal assignment,” “neural ligand receptor
interaction,” and “regulation of actin cytoskeleton.” This indicates
that the above pathways may be related to the origin of GC, which
concurs with the results of previously published research (Liu et al.,
2016; Zhu et al., 2017; Xu et al., 2019; Zhou et al., 2020).

In order to understand the correlation between 11-DMG and
TP53 mutation, we analyzed their correlation on the data website
throughUALCAN. In the analysis, we found for the first time that
the expression of CHRNB2 was significantly reduced only in the
TP53 mutation group of gastric cancer patients, and the mutation
of tumor suppressor gene TP53 may be involved in the regulation
of mRNA expression in CCDC69, RASSF2, CHRNB2, ARMC9,
and RPN1(Sartorio and Morabito, 1988; Hu et al., 2018; Wang
et al., 2020). In the analysis of 11-DMG mutation and prognosis,
we found that CEP290, UBXN8, KDM4A, RPN1 had high
frequency mutations. The genes related to their mutations are
mainly related to pathways such as COPI-coated vesicle
membrane, endoplasmic reticulum to Golgi vesicle-mediated
transport, COPI-coated vesicle, P-body, nuclear-transcribed
mRNA catabolic process, mRNA catabolic process.

FIGURE 11 | The construction of multi-factor regulatory network of key genes in gastric cancer (GC). Diamond represents mRNA, V-shape represents miRNA,
circle represents lncRNA, and rectangle represents TF.
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To the best of our knowledge, the 5-DMS diagnostic and 11-
DMS prognostic models of GC have not been previously
reported. The models were verified by external datasets and
demonstrated good generalization ability, which can facilitate
clinical treatment decision-making. The DMSs selected in this
study are relatively novel, and subsequent research on these
DMSs will be of great significance. However, this study also
has some shortcomings. The small normal sample size may lead
to some bias in the results. Other omics fields, such as genome,
transcriptome, proteome, and metabolome, have shown
respective advantages in GC diagnostic and prognostic models
(Li et al., 2010; Chan et al., 2016; Deng et al., 2018; Zhang et al.,
2018; Shen et al., 2019); therefore, it is too early to assert that our
model is optimal. The models should be validated in a real-world
cohort. We hope to address these concerns in our future work.

In conclusion, the GC diagnostic and prognostic models
established in the current study are low cost, highly sensitive,
specific, and may facilitate accurate and individualized treatment
for patients with GC.
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GLOSSARY

GC gastric cancer

DNAm DNA methylation

DMS DNA methylation sites

DMG DNA methylation driver gene

TCGA the cancer genome atlas

GEO gene expression omnibus

MsigDB molecular signatures database

LASSO least absolute shrinkage and selection operator

FDR false discovery rate

GSEA gene set enrichment analysis

ROC receiver operating characteristic

NPAS2 neuronal PAS domain protein 2

DAPK1 death associated protein kinase 1

CNN3 calponin 3

FGFR2 fibroblast growth factor receptor 2

PLEKHA5 pleckstrin homology domain containing A5

CEP290 centrosomalprotein290

CCDC69 coiled-coil domain containing 69

UBXN8 UBX domain protein 8

KDM4A lysine demethylase 4A

AKR1B aldo-keto reductase family 1 member B

RASSF2 ras association domain family member 2

KDELR3 KDEL endoplasmic reticulum protein retention receptor 3

CHRNB2 cholinergic receptor nicotinic beta 2 subunit

EGR1 early growth response 1

ARMC9 armadillo repeat containing 9

RPN1 ribophorin I

PDCD1 programmed cell death 1

CTLA4 cytotoxic T-lymphocyte associated protein 4

LAG3 lymphocyte activating 3

TIGIT T cell immunoreceptor with Ig and ITIM domains

GZMB granzyme B

TNF tumor necrosis factor

EMT epithelial-mesenchymal transition

CDH1 cadherin 1

TF transcription factors.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 75892619

Liu et al. DNAm Markers for Gastric Cancer

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Recognition of DNA Methylation Molecular Features for Diagnosis and Prognosis in Gastric Cancer
	Introduction
	Materials and Methods
	Obtaining DNAm Data of Gastric Cancer
	Identification of Differential Methylated Sites
	Screening of Diagnostic DNAm Markers
	Construction of DNAm Diagnostic Model
	Correlation Analysis of DNAm Diagnostic Model With Clinical Indicators
	Construction of Prognostic Model Based on Differential Methylated Sites
	Analysis of Independent Prognostic Factors and Prognostic Risk Model
	Functional Analysis of Prognostic Risk Score
	Analysis of the Correlation Between Eleven Prognostic-Related DMG and TP53 Mutations
	Mutation and Prognostic Analysis of Eleven Prognostic-Related DMG
	Construction of Multi-Factor Regulatory Network of Key Genes

	Results
	Identification of Differential Methylated Sites in Gastric Cancer
	Screening of Diagnostic DNAm Markers
	Construction of a DNAm Diagnostic Model
	Correlation Between DNAm Diagnostic Model and Clinical Indicators
	Prognostic Model Based on Differential Methylated Sites
	Analysis of Independent Prognostic Factors in the Prognostic Risk Model
	Functional Analysis of Prognostic Risk Score
	Analysis of the Correlation Between Eleven Prognostic-Related DMG and TP53 Mutations
	Mutation and Prognostic Analysis of Eleven Prognostic-Related DMG
	Construction of Multi-Factor Regulatory Network of Key Genes

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References
	Glossary


