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Abstract: The structure-activity relationship of mono-ion complexes (MICs) for plasmid DNA
(pDNA) delivery by muscular injection is demonstrated. MICs were formed between pDNA and
monocationic poly(ethylene glycol) (PEG) macromolecules. As monocationic PEGs, the ω-amide-
pentylimidazolium (APe-Im) end-modified PEGs with a stable amide (Am) and hydrolytic ester (Es)
bond, that is, APe-Im-Am-PEG and APe-Im-Es-PEG, respectively, are synthesized. The difference
between the APe-Im-Am-PEG and APe-Im-Es-PEG was only a spacer structure between a terminal
cation and a PEG chain. The resulting pDNA MICs with APe-Im-Am-PEG at a charge ratio (+/−)
of 32 or 64 were more stable than those with APe-Im-Es-PEG in the presence of serum proteins.
The highest gene expression by muscular injection was achieved using the APe-Im-Am-PEG/pDNA
MIC at a charge ratio (+/−) of 32 with a smaller particle diameter of approximately 50 nm, as com-
pared to that charge ratio of 64. Consequently, the pDNA MIC with the monocationic PEG with a
stable amide spacer, as compared to a hydrolytic ester spacer, is considered to be suitable for the
highest gene expression by muscular injection.

Keywords: mono-ion complex; monocationic poly(ethylene glycol); plasmid DNA delivery; muscular in-
jection; amide bond spacer; ester bond spacer

1. Introduction

Recently, in 2019, plasmid DNA (pDNA) encoding the human hepatocyte growth
factor (HGF) gene was first approved for peripheral arterial disease in Japan. From the
first human clinical trial of HGF gene therapy, the approval took approximately 15 years.
The intramuscular injection of naked pDNA encoding the HGF gene was tolerated [1,2].
pDNAs have advantageously produced many therapeutic RNAs by transcription and
many therapeutic proteins by translation [3–5]. Clinical application generally desires
that the gene expression from pDNA is preserved in vivo for sustainable production of
therapeutic RNAs and proteins [6–8]. However, since pDNA is a polyanion with a high
molecular weight of approximately 106, pDNA has many barriers to the application of
effective medicine. An effective pDNA delivery system is therefore necessary to realize
clinical therapy.

The pDNA delivery system widely used the various polyion complexes (PICs) between
pDNA and polycations by electrostatic interaction for pDNA transfection in vitro [9,10],
as well as our previous PICs [11–17], and in vivo [18,19]. In Asayama’s recent review [20],
various molecular designs of polymer-based carriers for pDNA delivery in vitro and in vivo
have been reported. The pDNA PICs with polycations usually have positive-charged surfaces,
which often result in fast elimination of the pDNA PICs from blood circulation and off-
target delivery of pDNAs. Furthermore, the positive-charged surfaces cause aggregation
with serum albumin, coagulation of red blood cells, and cytotoxicity. These disadvantages
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are considered to be the reason why polycations are difficult to use for pDNA delivery
in vivo [21].

From a more anatomical point of view, especially, the tumor stromal barrier is one
of the critical factors that make it difficult to translate the pDNA expression efficiency
from in vitro to in vivo, including pDNA muscular injection in our recent study [22],
because intratumoral extravasation and penetration of pDNA PICs are very limited [23,24].
The most common strategy to improve these undesirable properties is shielding with
nonionic hydrophilic polymers such as poly(ethylene glycol) (PEG), called PEGylation [25].
The PEGylation prolongs blood circulation time [26] and mediates permeation diffusively
in tumor stroma by minimizing electrostatic interactions with an extracellular matrix [27].

To cross the barrier of tumor stroma by the diffusion-mediated PIC permeation,
our original strategy of the mono-ion complex (MIC) formation between pDNA and the
mono-cationic PEG has been established [28,29]. As the mono-cationic PEG, the alkylimida-
zolium end-modified PEG (R-Im-PEG) has been designed for the tuning of the electrostatic
interaction with pDNA by the length of the alkyl chain [28]. Based on the molecular
design of the R-Im-PEG, the pDNA MIC formation with the R-Im-PEG has been achieved,
resulting in the suppression of the increase in the particle size by the avoidance of the
multivalent electrostatic interaction of the PIC formation. The resulting smaller particle
size is considered to be suitable for the diffusion-mediated permeation by the PEGylation.
Furthermore, to stabilize the pDNA MIC with the R-Im-PEG by hydrogen bond formation,
we synthesizedω-amide-pentylimidazolium end-modified PEG (APe-Im-PEG) by mim-
icking an asparagine residue of a DNA binding protein to form the hydrogen bond with
pDNA via a base of adenine [29].

Including our MIC, although PEGylation enhances biocompatibility to suppress non-
specific interaction with mainly serum proteins, PEGylation often blocks the accessibility
to target cells [30,31]. To access target cells in spite of pDNA protection by PEGylation,
we have already synthesized APe-Im-PEG with an ester bond [32], instead of an amide
bond in our previous MICs [28,29], to be gradually hydrolyzed for cleavage of PEG, that is,
APe-Im-E-PEG, resulting in sustainable gene expression under optimal conditions. No-
tably, the morphology of the resulting pDNA MIC seems to be not spherical and less
condensed, suggesting flexible structure [32]. The in vivo transfection activity mediated by
our pDNA/PEG MIC is higher than that mediated by naked pDNA to exhibit no in vitro
significant protein expression. The above background led us to examine whether the ester
bond is superior to the amide bond for muscular injection by our previous MIC.

In this study, the structure-activity relationship of MICs for pDNA delivery by mus-
cular injection is demonstrated. As monocationic PEGs, the APe-Im-PEGs with a stable
amide (Am) and hydrolytic ester (Es) bond, that is, APe-Im-Am-PEG and APe-Im-Es-PEG,
respectively, were synthesized. The difference between the APe-Im-Am-PEG and APe-Im-
Es-PEG was only a spacer structure between a terminal cation and a PEG chain, so that we
could easily focus on the importance of the spacer structure, Am or Es, for the MIC activity.
The properties of the resulting MICs, such as particle size, morphology, stability in serum
protein, cell viability, and pDNA expression in skeletal muscle were compared between the
APe-Im-Am-PEG and APe-Im-Es-PEG.

2. Materials and Methods

2.1. Materials

α-Aminoethyl-ω-methoxy, polyoxyethylene (aminoethyl-PEG) (Mw 2000) was purchased
from NOF corporation (Tokyo, Japan). Poly(ethylene glycol) methyl ether (hydroxyethyl-
PEG) (average Mn ~ 2000) was purchased from Sigma-Aldrich (St. Louis, MO, USA). 1-
Imidazoleacetic acid was purchased from Tokyo Chemical Industry Co., LTD. (Tokyo, Japan).
6-Bromohexanamide was purchased from Combi-Blocks Inc. (San Diego, CA, USA). All other
chemicals of a special grade were used without further purification.
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2.2. Synthesis of APe-Im-Am-PEG and APe-Im-Es-PEG

A typical procedure to synthesize APe-Im-Am-PEG is as follows (Figure 1): 1-Imidazolea-
cetic acid (126.53 mg: 1.0 mmol), N-hydroxysuccinimide (NHS) (115.72 mg: 1.0 mmol),
and N,N-dicyclohexylcarbodiimide (DCC) (206.69 mg: 1.0 mmol) were mixed in 10 mL of
N,N-dimethylformamide (DMF) in the presence of 139 µL (1.0 mmol) of triethylamine (TEA),
followed by the incubation at 50 ◦C for 20 h to synthesize an active ester (NHS-Im). After the in-
cubation, aminoethyl-PEG (400.72 mg: 0.2 mmol) was added to the resulting mixture, followed
by further incubation at 50 ◦C for three days. The resulting mixture was dialyzed against
distilled water using the Spectra/Por CE membrane (molecular weight cutoff of 100–500),
followed by filtration with a 0.22 µm cellulose acetate filter to remove undesirable precipitates.
After freeze-drying, the mixture of the resulting sample (Im-Am-PEG) (138.19 mg: 0.063 mmol)
and 6-bromohexanamide (244.85 mg: 1.26 mmol) in 5 mL of DMF in the presence of 8.66 µL
(0.063 mmol) of TEA was incubated at 50 ◦C for three days. Then, the dialysis of the resulting
mixture against distilled water using the Spectra/Por CE membrane (molecular weight cutoff
of 100–500) was carried out, followed by freeze-drying to obtain APe-Im-Am-PEG.
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Figure 1. Synthesis scheme of APe-Im-Am-PEG and APe-Im-Es-PEG.

A typical procedure to synthesize APe-Im-Es-PEG, which is almost the same as the above
scheme except for the use of hydroxyethyl-PEG, is as follows (Figure 1): 1-Imidazoleacetic
acid (126.33 mg: 1.0 mmol), N-hydroxysuccinimide (NHS) (115.61 mg: 1.0 mmol), and N,N-
dicyclohexylcarbodiimide (DCC) (207.50 mg: 1.0 mmol) were mixed in 10 mL of N,N-
dimethylformamide (DMF), followed by incubation at 50 ◦C for 20 h to synthesize the active
ester (NHS-Im). After the incubation, hydroxyethyl-PEG (400.42 mg: 0.2 mmol) was added to
the resulting mixture, followed by further incubation at 50 ◦C for three days. The dialysis of
the resulting mixture against distilled water with the Spectra/Por CE membrane (molecular
weight cutoff of 100–500) was carried out, followed by freeze-drying. The mixture of the
resulting sample (Im-Es-PEG) (80.87 mg: 0.038 mmol) and 6-bromohexanamide (147.70 mg:
0.76 mmol) in 5 mL of DMF in the presence of 5.22 µL (0.038 mmol) of TEA was incubated
at 50 ◦C for three days. Then, the dialysis of the resulting mixture against distilled water
using the Spectra/Por CE membrane (molecular weight cutoff of 100–500) was carried out,
followed by freeze-drying to obtain APe-Im-E-PEG.
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2.3. 1H NMR Spectroscopy

The resulting polymer (5 mg) was dissolved in 600 µL of D2O (99.8 atom% deuterium;
Acros, NJ, USA). The 1H NMR spectra (500 MHz) were measured by a Bruker AV500
spectrometer (Billerica, MA, USA).

2.4. Gel Filtration Chromatography

Gel Filtration Chromatography (GFC) was carried out by use of a JASCO PU-980
pumping system (Tokyo, Japan) at the flow rate of 1.0 mL/min with a Shodex OHpak
SB-804 HQ column (Showa Denko K. K., Tokyo, Japan). As a mobile phase, phosphate-
buffered saline without divalent cations, PBS(−), was used. One hundred microliters of
1 mg/mL samples were injected into the column during the incubation of the samples at
37 ◦C for seven days in PBS(−). The detection of the eluate was carried out with both a RI
detector (RI-1530; Jasco) and a UV detector (UV-2077; Jasco).

2.5. Agarose Gel Retardation Assay

A stock solution of the APe-Im-Am-PEG or APe-Im-Es-PEG (1.0–8.6 µL) and the dilution
(300 ng of pDNA) of pDNA stock solution with H2O were mixed where the final volume was
adjusted to 13.5 µL at various [ω-Amide-pentylimidazolium (Cation)]PEG/[Phosphate]pDNA
ratios, followed by incubation at 37 ◦C for 24 h. After mixing with a loading buffer (1.5 µL),
the resulting sample was loaded onto a 1% agarose gel containing 1 µg/mL ethidium bromide.
Gel electrophoresis (50 V, 30 min) was performed at room temperature in a TAE buffer (Tris-
acetate, EDTA), followed by the visualization of the pDNA bands under UV irradiation. For the
stability assay of the MIC, the electrophoresis was performed after the MICs were incubated at
37 ◦C for 5 min or 10 min in the presence of 10% fetal bovine serum (FBS).

2.6. Particle Size Measurement

A dynamic light scattering (DLS) method by an electrophoresis light scattering spec-
trophotometer (ELS-Z2, Otsuka Electronics Co., Ltd., Tokyo, Japan) determined the size of
the pDNA (5 µg) incubated at 37 ◦C for 24 h with the APe-Im-Am-PEG or APe-Im-Es-PEG
at various [ω-Amide-pentylimidazolium (Cation)]PEG/[Phosphate]pDNA ratios in 100 µL
of PBS(−). The zeta potential of the resulting sample was measured by ELS with electrodes.

2.7. Transmission Electron Microscopy (TEM) Observations of the MIC Structures

The mixture of 2 µL of a twice-diluted MIC solution with 2 µL of 2% uranyl acetate on
ice was used for a TEM sample solution to observe the resulting MIC. After a TEM grid
(Nisshin EM Co., Tokyo, Japan) was hydrophilized by an Eiko IB-3 ion coater (Eiko Engi-
neering Co., Ltd., Shimane, Japan), the hydrophilized grid was dipped into the sample
solution for 40 s. The excess solution was blotted away. The observation of the resulting
grids was carried out by a JEM-1400 Bio-TEM (JEOL Ltd., Tokyo, Japan) operated at an
acceleration voltage of 120 kV.

2.8. Cell Viability Assay

As a representative cell, human hepatoma cell line HepG2 cells (from Riken Biore-
source Center Cell Bank) were cultured in tissue culture flasks in Dulbecco’s modified
Eagle’s medium supplemented with 10% heat-inactivated FBS. The cells were seeded
at 1 × 104 cells/well in a 96-well plate, followed by incubation overnight at 37 ◦C in a
5% CO2 incubator. The cells were treated with the APe-Im-Am-PEG or APe-Im-Es-PEG
(0–10 mg/mL), followed by incubation for 24 h at 37 ◦C. By additional incubation for 4 h,
the cell viability was measured by the Alamar Blue assay [33] in triplicate.

2.9. In Vivo Gene Delivery to the Skeletal Muscles by MICs

In vivo gene delivery to the skeletal muscles of mice with the APe-Im-Am-PEG
or APe-Im-Es-PEG was carried out using previously described methods [34]. Briefly,
ICR mice (five weeks old, male) were anesthetized with pentobarbital. The MICs of pDNA
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(5 µg) with the APe-Im-Am-PEG or APe-Im-Es-PEG at the [ω-Amide-pentylimidazolium
(Cation)]PEG/[Phosphate]pDNA ratios of 32 and 64 in 35 µL of PBS(−) were incubated at
37 ◦C for 24 h, followed by injection into the tibialis muscles of the ICR mice. One week or
two weeks after the injection, the whole tibialis muscles were collected and homogenized in
a lysis buffer (0.1 M Tris-HCl (pH 7.8), 0.1% Triton X-100, and 2 mM EDTA). Luciferase ac-
tivity was measured with a luminometer (LB96V, Belthold Japan Co. Ltd., Tokyo, Japan)
according to a luciferase assay system (Promega, Madison, WI, USA). The luciferase activity
is normalized by relative light units (RLU) per mg of protein. The pcDNA3-Luc plasmid
was derived from pGL3-basic (Promega, Madison, WI, USA) and used as a pDNA encoding
the firefly luciferase gene under the control of a cytomegalovirus promoter.

2.10. Animals

The use of animals and relevant experimental procedures were approved by the Tokyo
University of Pharmacy and Life Science Committee on the Care and Use of Laboratory
Animals. The animal experiment protocol approval number is P20–54.

2.11. Statistical Analysis

Statistical analysis was performed using the two-sample equal variance student’s
t-test.

3. Results and Discussion

3.1. Synthesis and Hydrolysis Properties of APe-Im-Am-PEG and APe-Im-Es-PEG

Figure 1 shows the synthesis scheme of APe-Im-Am-PEG and APe-Im-Es-PEG to
form MICs. First, we reacted aminoethyl-PEG and hydroxyethyl-PEG for the synthesis of
Im-Am-PEG and Im-Es-PEG, respectively, with 1-imidazoleacetic acid by condensation
reaction using NHS and DCC. The resulting Im-Am-PEG and Im-Es-PEG were subse-
quently reacted with 6-bromohexaneamide for the quaternization of the imidazole group
of PEGs. The 1H NMR spectrum indicated the characteristic signal of the methylene pro-
tons neighboring an amide (Am) or ester (Es) group as well as a ω-amide-pentyl group
(APe), an imidazolium group (Im), and a PEG (PEG) (see Figure S1 in the Supplementary
Materials). From the suitable signal ratio, we confirmed the successful synthesis of the
ω-amide-pentylimidazolium end-modified PEGs with an amide (Am) and ester (Es) bond,
that is, APe-Im-Am-PEG and APe-Im-Es-PEG, respectively.

To examine the hydrolysis properties of the resulting APe-Im-Am-PEG and APe-Im-
Es-PEG, we carried out a GFC experiment under physiological conditions (see Figure S2
in the Supplementary Materials). During the incubation of APe-Im-Es-PEG for seven
days, the retention time (RT) of imidazolium detected by absorbance (ABS) at 300 nm
was gradually delayed. Namely, the later peak from the dissociated imidazolium group
(RT 9.8 min) gradually increased against the earlier peak from the intact APe-Im-Es-PEG
(RT 9.0 min) (Figure S2B). Conversely, in the case of APe-Im-Am-PEG, the later peak from
the dissociated imidazolium group (RT 9.8 min) was almost constant against the earlier
peak from the intact APe-Im-Am-PEG (RT 8.9 min) (Figure S2A). These results suggest
that the APe-Im-Es-PEG is considered to be gradually hydrolyzed under physiological
conditions with APe-Im-Am-PEG being stable.

3.2. Formation of the pDNA MIC with APe-Im-Am-PEG and APe-Im-Es-PEG

To compare the pDNA MIC formation ability of the resulting APe-Im-Am-PEG and
APe-Im-Es-PEG, as shown in Figure 2, we carried out agarose gel electrophoresis after
one-day incubation with pDNA because of the monovalent electrostatic interaction to
form the MIC, although most PIC formation by multivalent electrostatic interaction is
examined after a shorter time (approximately 1 h) incubation [35]. In the presence of
the APe-Im-Am-PEG or APe-Im-Es-PEG, the migration of a super-coiled pDNA band
(“sc” in Figure 2) was almost completely retarded above the [ω-Amide-pentylimidazolium
(Cation)]PEG/[Phosphate]pDNA ratio of 32, suggesting the pDNA MIC formation with
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the APe-Im-Am-PEG or APe-Im-Es-PEG. Although the pDNA MIC formation ability
of APe-Im-Es-PEG seems to be a little higher than that of APe-Im-Am-PEG, because of
the lower intensity of the remaining super-coiled pDNA band (“sc” in Figure 2) at the
[Cation]PEG/[Phosphate]pDNA ratio of 4 in case of APe-Im-Es-PEG, it is difficult to conclude
whether the most suitable ability to form the pDNA MIC is with the APe-Im-Am-PEG
or with APe-Im-Es-PEG at present. The retardation properties, which did not exist at
the loading site (solid arrowhead), are considered to be characteristic of the MIC with
negative zeta potential (Table 1). The resulting negative zeta potential is considered to
be stable in the anionic serum-containing environment because the zeta potential val-
ues of the pDNA PICs with poly(L-lysine) (PLL: polycation)-PEG block copolymers are
approximately 2–6 mV to work in anionic serum proteins [36]. Especially, the APe-Im-
Am-PEG/pDNA and APe-Im-Es-PEG MICs mixed at the charge ratio ([ω-Amide-pentyl-
imidazolium (Cation)]PEG/[Phosphate]pDNA) (+/−) of 32 have a small particle size below
50 nm (Table 1), as compared to the above PLL-PEG/pDNA PICs with an approximately
90–100 nm particle size [36].
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Figure 2. The pDNA MIC formation with APe-Im-Am-PEG or APe-Im-Es-PEG assessed by
agarose gel electrophoresis. The mixing charge ratios of the ω-amide-pentylimidazolium group of
APe-Im-Am-PEG or APe-Im-Es-PEG to phosphate group of pDNA ([ω-amide-pentylimidazolium
(Cation)]PEG/[Phosphate]pDNA) (+/−) are indicated. The solid arrowhead indicates the well where
each sample was loaded. The migration band of super-coiled pDNA is indicated by “sc”.

Table 1. Particle size and zeta potential of APe-Im-Am-PEG and APe-Im-Es-PEG MICs.

Cation)]PEG/[Phosphate]pDNA Particle Size/nm Zeta Potential/mV

APe-Im-Am-
PEG/pDNA

32 48.2 ± 0.8 −6.04 ± 2.0
64 65.1 ± 0.0 −10.8 ± 2.2

APe-Im-Am-
PEG/pDNA

32 54.1 ± 11.7 −7.0 ± 1.1
64 73.8 ± 11.3 −12.6 ± 3.0

As shown in Figure 3, TEM observations revealed that the morphology of the pDNA
in the MIC seems to be less condensed [32] and not spherical [22], suggesting the flexible
structure of both the APe-Im-Am-PEG/pDNA and APe-Im-Es-PEG MICs.
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As shown in Figure 4, to confirm the formation stability of the APe-Im-Am-PEG/pDNA
and APe-Im-Es-PEG MICs in serum protein, in the viewpoint of pDNA delivery using the
MIC by monovalent ionic interaction, we performed the agarose gel electrophoresis of the
MICs in the presence of FBS. Although the digestion time with nuclease in FBS is shorter,
as compared to many cases such as the use of deoxyribonuclease I (15 min) [37], the short
digestion time is considered to be allowed from a viewpoint of human blood circulation
time (approximately 1 min). The MIC bands were almost retained at the charge (+/−)
ratios of 32 and 64 and no super-coiled pDNA bands (“sc” in Figure 4) were observed
during the incubation of the APe-Im-Am-PEG/pDNA MIC with FBS even for 10 min.
These results suggest the stable formation of the APe-Im-Am-PEG/pDNA MICs in the
presence of FBS. During the incubation of the APe-Im-Es-PEG/pDNA MIC at the charge
(+/−) ratios of 32 and 64, on the other hand, the MIC bands were slightly migrated into
the plus pole and resultant slight bands appeared at the migration site of the super-coiled
pDNA band (“sc” in Figure 4). These results suggest a little hydrolysis of the ester bond of
the APe-Im-Es-PEG to form an unstable MIC.

Pharmaceutics 2021, 13, x FOR PEER REVIEW 8 of 12 
 

 

 

Figure 4. Stability assay of the APe-Im-Am-PEG/pDNA or APe-Im-Es-PEG/pDNA MICs ([ω-am-
ide-pentylimidazolium (Cation)]PEG/[Phosphate]pDNA (+/−) = 32 or 64) in serum protein by agarose 
gel electrophoresis. The MIC was incubated for 5 min or 10 min in the presence of 10% FBS, fol-
lowed by loading to the gel. The solid arrowhead indicates the well where each sample was 
loaded. The migration band of super-coiled pDNA is indicated by “sc”. 

3.3. Gene Expression of the APe-Im-Am-PEG/pDNA and APe-Im-Es-PEG MICs by Muscular 
Injection 

The cytotoxicity of a mono-cationic PEG is an important factor for clinical applica-
tion. Free mono-cationic PEGs exist solely when there is a release of pDNA from the MICs. 
Furthermore, the overall cytotoxicity of free mono-cationic PEGs is considered to be 
higher than that of the corresponding MICs. Therefore, we carried out the cytotoxicity 
assay of the free mono-cationic PEGs to give a worst-case interaction of the mono-cationic 
PEGs with cells rather than that of the MICs with pDNA. Figure 5 shows the effect of the 
APe-Im-Am-PEG or APe-Im-Es-PEG on the cell viability of human hepatoma HepG2 as a 
representative cell. The APe-Im-Am-PEG and APe-Im-Es-PEG maintained almost 100% 
cell viability, whereas branched poly(ethylenimine) (b-PEI) decreased cell viability. These 
results are consistent with our previous study that the ω-amide-pentylimidazolium group 
was a noncytotoxic cation [29,30]. Although toxicity in the liver, kidneys, etc., should be 
checked by hematological parameters [38], no damage of cellular membranes by cation 
species was emphasized because of the use of a local muscular injection, and not an intra-
venous injection, in this study. 

 

Figure 5. Effect of the APe-Im-Am-PEG or APe-Im-Es-PEG on the cell (HepG2) viability: APe-Im-
Am-PEG (red), APe-Im-Es-PEG (blue), and bPEI (black: rapidly decreasing). Symbols and error 
bars represent the mean and standard deviation of the measurements made in triplicate wells. 

0

20

40

60

80

100

120

140

0 2 4 6 8 10

C
el

l v
ia

bi
lit

y 
%

 

Concentration /mg.mL−1

Figure 4. Stability assay of the APe-Im-Am-PEG/pDNA or APe-Im-Es-PEG/pDNA MICs ([ω-
amide-pentylimidazolium (Cation)]PEG/[Phosphate]pDNA (+/−) = 32 or 64) in serum protein by
agarose gel electrophoresis. The MIC was incubated for 5 min or 10 min in the presence of 10%
FBS, followed by loading to the gel. The solid arrowhead indicates the well where each sample was
loaded. The migration band of super-coiled pDNA is indicated by “sc”.
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3.3. Gene Expression of the APe-Im-Am-PEG/pDNA and APe-Im-Es-PEG MICs by
Muscular Injection

The cytotoxicity of a mono-cationic PEG is an important factor for clinical application.
Free mono-cationic PEGs exist solely when there is a release of pDNA from the MICs.
Furthermore, the overall cytotoxicity of free mono-cationic PEGs is considered to be higher
than that of the corresponding MICs. Therefore, we carried out the cytotoxicity assay of the
free mono-cationic PEGs to give a worst-case interaction of the mono-cationic PEGs with
cells rather than that of the MICs with pDNA. Figure 5 shows the effect of the APe-Im-Am-
PEG or APe-Im-Es-PEG on the cell viability of human hepatoma HepG2 as a representative
cell. The APe-Im-Am-PEG and APe-Im-Es-PEG maintained almost 100% cell viability,
whereas branched poly(ethylenimine) (b-PEI) decreased cell viability. These results are
consistent with our previous study that the ω-amide-pentylimidazolium group was a
noncytotoxic cation [29,30]. Although toxicity in the liver, kidneys, etc., should be checked
by hematological parameters [38], no damage of cellular membranes by cation species
was emphasized because of the use of a local muscular injection, and not an intravenous
injection, in this study.
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Figure 5. Effect of the APe-Im-Am-PEG or APe-Im-Es-PEG on the cell (HepG2) viability: APe-Im-
Am-PEG (red), APe-Im-Es-PEG (blue), and bPEI (black: rapidly decreasing). Symbols and error bars
represent the mean and standard deviation of the measurements made in triplicate wells.

As a result of there being no apparent cytotoxicity, we finally examined the pDNA
gene expression of the APe-Im-Am-PEG/pDNA and APe-Im-Es-PEG/pDNA MICs by
muscular injection. After the injection, there was no change in the animal’s health and
the appearance at the injection site, whereas turbidity was observed at the site by the use
of in vivo transfection reagent PEI (commercially available in vivo-jetPEI™) (results not
shown). These results suggest the biocompatibility based on the mono-cation property
(minimum number of cation) of APe-Im-Am/Es-PEG as well as the PEGylation [25]. In the
case of muscular injection, naked pDNAs are used for some clinical trials to mediate sig-
nificant gene expression [1,2], resulting in first approval in Japan in 2019. As shown in
Figure 6, the individual gene expression values mediated by both APe-Im-Am-PEG/pDNA
MIC and APe-Im-Es-PEG/pDNA MIC seem to be generally higher than the expression
values mediated by naked pDNA for clinical use. Therefore, we have carried out statistical
analysis (Figure S3), resulting in the statistical significance (p < 0.1) of the average gene
expression value of each MIC (+/− = 32 and 64) compared to the naked pDNA (+/− = 0).
Especially, the highest gene expression value (2.7 × 106 RLU/mg protein) was obtained
by the APe-Im-Am-PEG/pDNA MIC at the charge (+/−) ratios of 32. The highest gene
expression mediated by the APe-Im-Am-PEG/pDNA MIC at the charge (+/−) ratio of
32 was approximately 100 times higher than the average gene expression value mediated
by naked pDNA (3.9 × 104 RLU/mg protein). Furthermore, replicated data sets of the
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individual four experiments show a significant difference in gene expression mediated by
the APe-Im-Am-PEG/pDNA MICs (p < 0.1) compared with the naked pDNA (Figure S4).
Conversely, these data sets show no significant difference in those mediated by the APe-Im-
Es-PEG/pDNA MICs (p > 0.1) compared with the naked pDNA (Figure S4). Moreover, the
gene expression after one more week (total two weeks) also shows that the APe-Im-Am-
PEG/pDNA MICs at the charge (+/−) ratio of 64 have especially better performance than
the APe-Im-Es-PEG/pDNA MICs (Figure S5). These results suggest that the stable amide
spacer between an ω-amide-pentylimidazolium group and a PEG chain is suitable for
maximum gene expression in the skeletal muscles mediated by the pDNA MIC. This may
be due to the higher stability of the APe-Im-Am-PEG/pDNA MIC, as compared to the
APe-Im-Es-PEG/pDNA MIC, in the presence of FBS (Figure 4). In spite of maximum gene
expression mediated by the APe-Im-Am-PEG/pDNA MIC based on the higher stability
in the presence of FBS, the APe-Im-Es-PEG/pDNA MIC exhibited similar delivery and
efficacy as that of the APe-Im-Am-PEG/pDNA MIC (Figure S3), suggesting the effect of
the cleavage of PEG for the accessibility to target cells [30,31] and the production of a pH-
sensitive carboxyl group on the side of APe-Im-Es-PEG [32] for endosomal escape [39,40].
Although the reason why an amide spacer was better is not exactly understood, we can con-
clude that the spacer structure between a terminal cation and a PEG chain is an important
factor for the gene transfection activity of the corresponding pDNA MIC.
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Figure 6. Luciferase gene expression by muscular injection of the APe-Im-Am-PEG/pDNA MIC or
APe-Im-Es-PEG/pDNA MIC at [ω-amide-pentylimidazolium]PEG/[phosphate]pDNA (+/−) ratios of
32 and 64. Individual gene expression was determined by relative light unit (RLU) normalized by
protein concentration.

4. Conclusions

The pDNA MIC with the monocationic PEG with a stable amide (Am) spacer, as com-
pared to a hydrolytic ester (Es) spacer, is considered to be suitable for the highest gene
expression by muscular injection. In this study, the spacer structure between a terminal
cation and a PEG chain is concluded to be an important factor for the gene transfection
activity of the corresponding pDNA MIC, because the difference between the APe-Im-Am-
PEG and APe-Im-Es-PEG was only a spacer structure between a terminal cation and a PEG
chain. Consequently, the consideration of the spacer design for the monocationic PEG is
essential to form the future pDNA MIC for the effective activity of gene transfection by
muscular injection.
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