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Acute exercise stimulates brain regions involved in motor and cognitive processes.
Recent research efforts have explored the benefits of aerobic exercise on brain
health and cognitive functioning with positive results reported for both healthy and
neurocognitively impaired individuals. Specifically, exercise positioned near therapeutic
(both behavioral and physical) activities may enhance outcomes associated with
treatment outcomes (e.g., depression or motor skill) through neural plasticity promoting
mechanisms (e.g., increased brain flow and oxygenation). This approach has been
termed “exercise priming” and is a relatively new topic of exploration in the fields of
exercise science and motor control. The authors report on physiological mechanisms
that are related to the priming effect. In addition, parameters related to the exercise
bout (e.g., intensity, duration) and the idea of combining exercise and therapeutic
rehabilitation are explored. This exercise-based priming concept has the potential to be
applied to many areas such as education, cognitive therapy, and motor rehabilitation.
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INTRODUCTION

A lack of cardiovascular fitness has been linked with cognitive dysfunction and learning deficits in
various clinical populations (Katz et al., 2012; Alosco et al., 2014); for this reason, recent research
efforts have explored the benefits of aerobic exercise on brain health and cognitive functioning
with positive results reported for both healthy and neurocognitively impaired individuals (Stoykov
et al., 2017). For example, aerobic exercise has been shown to improve memory, processing speed
and executive functioning among those with mental deficiencies (Altmann et al., 2016; Zhu et al.,
2018), along with facilitating learning in healthy adults (Young et al., 2015; Venckunas et al., 2016;
Stern et al., 2019) and adolescents (Berse et al., 2015).

While it appears that aerobic exercise enhances cognitive and motor abilities in humans, it is
less well known if gains associated with exercise transfer into improved learning of skills (both
motor and cognitive) and learning that many rehabilitation therapies rely heavily upon (e.g.,
stroke neurorehabilitation, cognitive behavioral therapy). Improved skill learning, such as coping
in cognitive behavioral therapy or muscle coordination in physical therapy would ultimately lead to
better clinical outcomes. Aerobic exercise may facilitate improvements in treatment outcomes (e.g.,
abstinence, anxiety, depression, motor skill development) through neural stimulation and plasticity
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promoting mechanisms (e.g., increased blood flow and
oxygenation). Cognitive performance components including
information processing and memory may be of particular
importance for skill acquisition in various rehabilitation
programs (Taubert et al., 2015). Therefore, brain activation
through aerobic exercise may lead to downstream retention
(i.e., memory recall) of cognitive and motor skills taught during
therapy or sport coaching. This would be beneficial for those
with mood disorders, substance abuse disorders, stroke patients,
athletes, and those with neuromuscular injuries. This concept has
been defined as “exercise priming” and involves acute exercise
stimulation prior to, or after one’s engagement in therapy or
motor skill training (Charalambous et al., 2018). In practice,
performing a brief bout of aerobic exercise prior to cognitive
or physical therapy, or before a practice session may lead to
improvements in therapeutic or practical outcomes.

Efforts to understand the neuropsychological mechanisms of
exercise priming is of vital importance to establish exercise as an
adjunct treatment for various therapeutic or learning outcomes.
Here, we focus on acute aerobic exercise and its priming effects
on cognitive function, learning, and motor skill acquisition. For
review papers on the benefits of aerobic, resistance, and combined
aerobic and resistance exercise on cognitive performance, please
see the reviews of Brunt et al. (2019), Landrigan et al. (2019),
Smith et al. (2010), Wilke et al. (2019), and Zheng et al. (2016).

NEUROPSYCHOLOGICAL MECHANISMS
OF AEROBIC EXERCISE PRIMING

Brain Blood Flow and Oxygenation
Global brain blood flow remains relatively constant during acute
aerobic exercise; although, there may be a shift in resources
(i.e., oxygen consumption) from areas required for cognitive
function to areas required for motor control and maintenance
of vital function (e.g., blood pressure and thermoregulation)
(Ide and Secher, 2000; Dietrich and Sparling, 2004). In specific
cortical regions, blood flow and oxygenation (i.e., activation) are
influenced by the intensity of the exercise bout. For example,
activation in the prefrontal cortex (PFC), measured by brain
oxygenation, increased during submaximal aerobic exercise (up
to 80% of peak ability) but then decreased when intensity reached
very hard or maximal effort (Rooks et al., 2010).

Upon cessation of low-moderate intensity aerobic exercise,
cerebral oxygenation remains elevated for up to 30 min
(Faulkner et al., 2016; Stavres et al., 2017; Tsubaki et al.,
2018). Performing a cognitive task after exercise is potentially
ideal as it takes advantage of the heightened cortical activity
during recovery. Twenty to 30 min of moderate intensity
(50–60% VO2max) cycling increased post-exercise cortical
oxygenation (i.e., activation), which aligned with improvements
in post-exercise executive function performance (Stroop task)
(Yanagisawa et al., 2010; Stavres et al., 2017; Tsubaki et al., 2018).
Increased PFC oxygenation may be indicative of higher cortical
activity and, therefore, greater mental effort leading to improved
cognitive processes such as working memory and attention
(Herold et al., 2018). However, a negative association between

left-PFC activation and processing speed has been recently
reported among middle aged adults after acute bouts of both low
and high intensity aerobic exercise, along with yoga (Moriarty
et al., 2019). This acute response may be interpreted as increased
neural efficiency, more specifically defined as reduced mental
input (lower PFC activation) for mental processing (Causse et al.,
2017). The differing results might be in response to the cortical
region monitored and the cognitive task performed. For example,
neural efficiency improvements for processing speed indicates
less PFC neural input required to process information (Rypma
et al., 2006). Higher PFC activation during executive function
tasks is logical because these measures require memory and
attention (Albinet et al., 2014).

In summary, evidence suggests that cerebral blood flow
rises during low- to moderate-intensity exercise, and translates
to post-exercise alterations in PFC activity, which lead to
improvements in various cognitive domains (e.g., executive
function and processing speed).

Plasticity and Neurotrophic Factors
Acute exercise can also enhance the immediate induction of
markers of brain plasticity. More specifically, a single 20–30-min
bout of moderate and high intensity aerobic exercise led to a
transient decrease in short-interval intracortical inhibition and
M1 excitability, which are indicators of plasticity in the motor
cortex (Smith et al., 2014; Mang et al., 2016a; Singh et al., 2016;
Neva et al., 2017). Exercise-induced plasticity has been linked to
improvements in cognitive function, such as processing speed
(Singh et al., 2016). The plasticity mechanism may be through
exercise-induced release of neurotrophins (McDonnell et al.,
2013). For the purpose of this review we have decided to focus on
two neurotrophins, vascular endothelial growth factor (VEGF)
and brain-derived neurotrophic factor (BDNF), both of which
have been shown to be upregulated after various types of physical
exercise (Maass et al., 2016; Heisz et al., 2017).

Vascular endothelial growth factor is a well-known growth
factor and an important signaling molecule involved in
angiogenesis and vasculogenesis (Amaral et al., 2001; Lee and
Son, 2009). Interestingly, VEGF-A, which is a gene from the
VEGF family, increased following either high-intensity exercise
or a lactate injection among C57BL/6 mice (Lezi et al., 2013).
Gustafsson et al. (1999) also reported that a single bout of
dynamic exercise increased VEGF and that there was a graded
VEGF response directly related to the metabolic stress of exercise
in humans. Therefore, it has been proposed that the VEGF
response is from lactate production during exercise. It has been
suggested that activation of the lactate receptor (HCAR1) in the
brain enhances the effect of VEGF-A and brain angiogenesis,
thereby providing a link between aerobic exercise and brain
nourishment (Morland et al., 2017). Lactate has also been linked
with promoting the expression of plasticity genes (including
BDNF) and being required for long-term memory formation and
processing (Newman et al., 2011; Schiffer et al., 2011; Suzuki
et al., 2011; Yang et al., 2014). Moreover, intravenous infusion
of 100 mM L-lactate has been shown to ameliorate cognitive
impairment in rats after traumatic brain injury (Holloway
et al., 2007). Since brain dysfunctions are associated with
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hypoperfusion and vascular complications, lactate release as a
result of exercise may facilitate VEGF expression and act as a
potential mechanism for treatment against cognitive decline and
other brain conditions.

In addition, BDNF is emerging as a key mediator of
synaptic plasticity in the central computational hub for memory
processing (i.e., the hippocampus), and is thought to be
modulated by insulin growth factor-1 (IGF-1) (Ding et al.,
2006). At the cellular level, increases in BDNF may be the link
between exercise and learning; however, BDNF induction in
response to acute exercise is mixed, and may be influenced by the
intensity of exercise, along with the level of cognitive impairment
among research participants (Charalambous et al., 2018). BDNF
is thought to regulate synaptic proteins (e.g., synapsin I and
synaptophysin) within the hippocampus thereby improving
axonal branching and allowing for an increased effectiveness
in synaptic transmission (Danzer et al., 2002; Vaynman et al.,
2004). Korte et al. (1995) blocked the expression of BDNF in
mice and found them to have a significantly reduced long-term
potentiation (a measure of synaptic plasticity). Heldt et al. (2007)
found that BDNF deletion from the hippocampus impaired novel
object recognition and spatial learning in mice. Importantly,
these impairments are reversed when exogenous BDNF is given
to a BDNF-deficient animal (Patterson et al., 1996), further
providing support for the importance of this neurotrophic factor
in neural and cognitive function (Cotman and Berchtold, 2002).

In humans, serum BDNF is commonly measured as an
indirect indicator of neurogenesis. This is based on evidence
that BDNF produced in the brain accounts for 70–80% of
circulating BDNF in response to aerobic exercise in humans
(Rasmussen et al., 2009). The increase in serum BDNF has
been reported in response to acute bouts of aerobic exercise
and also linked with better hippocampal function (Griffin et al.,
2011). The magnitude of the increase in serum BDNF in
humans may be exercise intensity dependent. Ferris et al. (2007)
reported a 13 and 30% increase in serum BDNF following
cycling above ventilatory threshold or graded exercise test
to volitional fatigue, respectively. More recently, Ross et al.
(2019) reported a direct linear relationship between exercise
intensity and post-exercise serum BDNF among both healthy
and moderately depressed individuals. The intensity-dependent
increase in serum BDNF has also been positively associated with
improved prefrontal cognitive functioning in humans (Hwang
et al., 2016). Conversely, Tsai et al. (2014, 2016, 2018) found
no relationship between increased BDNF concentrations and
improved cognitive performance following 30-min of moderate-
intensity exercise in both healthy adults and older adults with
mild cognitive impairment. Accordingly, these results purport
that the circulating BDNF response to exercise is not linked to
post-exercise cognitive performance. The transient increase in
BDNF after acute exercise may explain the lack of correlations
with cognitive performance. Therefore, it is possible that the
post-exercise timing of the serum BDNF measurements align
with the cognitive testing influenced outcomes (Tsai et al.,
2018). Alternately, non-BDNF mechanisms (neurotrophins,
arousal, hormones) could be responsible for the cognitive
changes after exercise.

While conflicting, these data indicate that acute aerobic
exercise can improve cognitive function concomitant with
increased serum BDNF concentrations, thereby suggesting a
functional role for this neurotrophic factor in acute exercise-
induced cognitive enhancement in humans. However, the BDNF
changes may not be the only potential factor that drives
improvements in cognitive performance after aerobic exercise.

In summary, motor plasticity in response to acute
aerobic exercise may induce the release of neurotrophins,
VEGF and BDNF, which, are linked to cognitive
performance improvements.

Neuroendocrine and Myokines
Catecholamines, such as norepinephrine (NE) and dopamine
(DA) have been attributed to the cognitive benefits of acute
exercise, which has been defined as the “catecholamine
hypothesis” (McMorris, 2016). According to this model, acute
short duration, moderate intensity exercise stimulates NE
synthesis in the PFC region leading to increased arousal and
attention. Conversely, during long duration, high intensity
exercise, a larger release of NE, along with DA dampen neuronal
activity causing a decline in executive functioning (McMorris,
2016). However, NE released during long duration, moderate
intensity aerobic exercise has been shown to facilitate the
synthesis of brain BDNF (McMorris, 2016). Thus, catecholamine
release supports brain function after moderate intensity exercise,
regardless of duration.

Acute aerobic exercise at approximately 60% intensity, or
higher stimulates the hypothalamic-pituitary-adrenal (HPA) axis
and increases the secretion of cortisol, which peaks around
30 min post exercise and remains elevated for 2 h (Duclos
et al., 1998; Hill et al., 2008). Evidence suggests that the
cortisol released improves learning and memory by interacting
with glucocorticoid and mineralocorticoid receptors located in
the hippocampus, amygdala, and PFC regions of the brain
(Heffelfinger and Newcomer, 2001; Yuen et al., 2009). A positive
correlation was detected between the increase in cortisol release
after exercise and vocabulary retention among healthy adults
(Hötting et al., 2016). Interestingly, cortisol released in response
to a psychosocial stress task resulted in an impaired retrieval
of words (Tollenaar et al., 2008). The differing memory
responses may be due to the higher cortisol released during the
psychological stress compared to physical stress. Large increases
in cortisol impairs memory, thus indicating a possible threshold
for cortisol mediation of cognitive function (Dominique et al.,
2000; Basso and Suzuki, 2017).

Myokines, which are released from skeletal muscle, may also
help to explain the cognitive and motor functioning benefits of
acute exercise (Kim et al., 2019). Of note, irisin has been shown to
attenuate brain damage incurred during various types of cerebral
insult (ischemia, stroke) (Asadi et al., 2018). Irisin functions via
activation of Akt and ERK1/2 pro-survival signaling pathways
thereby reducing ischemia-induced neuronal injury (Li et al.,
2017). In addition, aerobic exercise increased the expression of
FNDC5 (a membrane protein that is cleaved and secreted as
irisin), which led to upregulation of BDNF in the hippocampus,
thus demonstrating a link between exercise-induced irisin and
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neurogenesis (Wrann et al., 2013). Cathepsin B is another
recently identified myokine that is important for neural plasticity
and cognitive function (Moon et al., 2016). Aerobic exercise
has been shown to increase cathepsin B plasma levels in mice,
monkeys, and humans (Moon et al., 2016). In humans, changes
in cathepsin B positively correlated with fitness and memory
(Moon et al., 2016). Though, to date, little research has been
conducted on myokines’ effect on the brain; however, both irisin
and cathepsin B may play important roles in the beneficial effects
of exercise on brain health and function.

In summary, acute aerobic exercise appears to promote
cognitive gains which may, in part, be mediated through cerebral
blood flow and cortical activation, growth and neurotrophic
factors, as well as hormones and myokines. For this reason,
researchers are beginning to examine the role of exercise
as a cognition-stimulating mechanism to improve cognitive
performance and enhance motor skill acquisition in both healthy
and clinical populations (Lefferts et al., 2019).

ACUTE AEROBIC EXERCISE AS A
PRIMING TECHNIQUE FOR COGNITIVE
IMPROVEMENTS AND MOTOR SKILL
ACQUISITION

“Exercise priming” refers to a non-conscious process that
promotes cognitive or motor skill related learning, whereby
performing an acute exercise bout alters the response of another
stimulus (Stoykov et al., 2017). Priming relies on the transient
cognitive benefits of acute aerobic exercise and, when strategically
performed before or after a task (either motor or cognitive),
may improve learning outcomes. In humans, commonly studied
cognitive domains include information processing, reaction time,
memory, executive functioning, and attention (Chang et al.,
2012). Typical study protocols include a baseline measurement
of the specific cognitive domain(s) or motor task of interest
followed by an acute aerobic exercise session and then retesting
of the cognitive domain(s) or motor task. Acute bouts of aerobic
exercise ranging from 10 to 30 min at an intensity of 40–100%
of maximal intensity have stimulated improvements in various
cognitive domains and motor tasks.

For example, young adults demonstrated improved reaction
times after performing acute moderate-intensity (50–70%
of maximal heart rate) exercise for 20–30 min (Sibley et al.,
2006; Harveson et al., 2016; Wang et al., 2019). Cognitive
improvements have also been reported among clinical
populations (e.g., patients with Multiple Sclerosis, depression,
breast cancer) after acute bouts of moderate-intensity activity
(Vasques et al., 2011; Sandroff et al., 2015; Salerno et al., 2019).
Recently, Lefferts et al. (2019) found that a 30-min bout of
moderate-intensity cycling decreased reaction time in the
Eriksen Flanker task and in a memory recognition task in
middle-aged individuals with hypertension. Support for the
“priming” effect on behavioral performance has also been
illustrated in post-stroke patients following an acute 15-min
bout of cycling as reported by an improvement in the behavioral

performance of a working memory task compared with the
non-exercise control condition (Moriya et al., 2016). In addition,
acute short duration (15–20 min) exercise has also been shown
to improve motor skill learning and performance (Roig et al.,
2012; Mang et al., 2014, 2016b; Skriver et al., 2014; Stavrinos and
Coxon, 2017; Dal Maso et al., 2018). For example, Mang et al.
(2016b) and Roig et al. (2012) found that 20 min of high-intensity
interval cycling (3-min at 90% VO2peak alternating with 3-min
recovery) performed prior to motor skill practice, improved
memory recall of the skill in response to a 24-h delayed retention
test. In addition, several research groups have reported improved
motor skill retention when exercise is performed after practicing
the motor skill (Roig et al., 2012; Stavrinos and Coxon, 2017;
Dal Maso et al., 2018). The authors suggested the improvement
occurred as a result of an increased rate of motor memory
retrieval and learning (Mang et al., 2014, 2016b). More recent
evidence has also found that the effects of performing exercise
after practicing a motor task are beneficial for retention of that
particular task (Stavrinos and Coxon, 2017; Dal Maso et al.,
2018). Conversely, no improvements in cognitive and motor
function after acute exercise has also been reported (Thomas
et al., 2017; Moriarty et al., 2019). The null findings have been
attributed to the exercise stimulus administered and also to the
timing of cognitive or motor testing (Chang et al., 2012; Thomas
et al., 2016). A greater stimulus (more intense exercise), along
with administering testing at least 20 min post-exercise appear
to influence cognitive and motor results (Chang et al., 2012).
Other reported factors, include cognitive or motor construct
measured, and the health status of the participants (Chang et al.,
2012). In addition, previous research in both adolescent and
adult populations have argued that those with higher fitness
levels demonstrate greater neural efficiency, and in turn, greater
improvements in cognitive performance (Stroth et al., 2009;
Renaud et al., 2010; Chan et al., 2011; Hogan et al., 2013). In
summary, a fair amount of evidence suggests that acute exercise
leads to cognitive improvements and motor skill acquisition
among young and older adults, along with clinical populations.

The evidence presented above suggests that acute exercise
positioned proximal to (before or after) cognitive or motor
tasks leads to performance improvements (see Figure 1). Based
on these data, exercise may serve as an adjunctive therapy to
cognitive or motor (i.e., physical) therapies. Examples include an
aerobic exercise program designed to operate alongside cognitive
behavioral therapy (CBT) for treatment of substance use
disorder or severe depression or an aerobic exercise program in
conjunction with physical therapy for stroke patients. Early onset
of cognitive deficits can signal brain and behavioral disorders
such as schizophrenia and Alzheimer’s disease (Uhlhaas and
Singer, 2006). The cognitive or motor function improvements
induced by exercise may “prime” the patient to more fully
engage in and benefit from therapeutic tasks for various
treatments. Limited efforts have been made to partner exercise
with therapy; whereas, the bulk of research has compared
exercise alone to therapy (Stathopoulou et al., 2006; Zschucke
et al., 2013). We argue that exercise cannot replace cognitive
or motor therapy but may be able to enhance the benefits.
For example, exercise combined with cognitive therapy for the
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FIGURE 1 | An acute 20–30-min bout of moderate-intensity aerobic exercise may mobilize neural mechanisms that help prime the brain for cognitive and motor
performance. BDNF, brain-derived neurotrophic factor; VEGF, vascular endothelial growth factor; NE, norepinephrine.

treatment of schizophrenia improved symptoms and functional
outcomes compared to cognitive therapy alone (Malchow et al.,
2016; Nuechterlein et al., 2016). In addition, stimulant users
report more abstinent days when they participate in exercise
combined with therapy compared to therapy partnered with
health education (Trivedi et al., 2017).

In summary, both acute and chronic exercise training studies
have provided initial evidence that aerobic exercise improves
cognitive and motor function in cognitively impaired individuals.
Specifically, the cognitive benefits associated with such exercise
interventions have been shown to extend beyond improving
mobility of limbs to also improving sensorimotor learning
and performance in cognitive tasks. Therefore, aerobic exercise
in combination with therapeutic recovery and motor control
rehabilitation techniques may ultimately augment functional
outcomes through cognitive effects. As the number of individuals
with cognitive and motor impairments continue to rise, it
is imperative that more research is conducted in this area
to define the specific parameters (e.g., intensity, duration)
and combinations (e.g., exercise and therapy) of such chronic
exercise interventions.

CONCLUSION

Aerobic exercise, both acute and chronic, has the ability to
prime the brain for both cognitive and motor task performance.
These findings provide a stable groundwork for designing and
prescribing acute aerobic exercise in future research studies

examining the effects of exercise on cognitive performance
and motor skill acquisition. Applying this priming idea to
education, rehabilitation, and therapy has the potential for
improved cognitive and motor performance and may form an
important component of improvements in these fields. Finally,
the combination of exercise and various forms of therapeutic
rehabilitation may enhance the functional outcomes and quality
of life for individuals with cognitive or motor impairments and
perhaps be the way of the future with further in-depth research
and knowledge of mechanisms.
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