
CircWalk: a novel approach to predict 
CircRNA‑disease association based 
on heterogeneous network representation 
learning
Morteza Kouhsar1, Esra Kashaninia1, Behnam Mardani2 and Hamid R. Rabiee1* 

Abstract 

Background:  Several types of RNA in the cell are usually involved in biological 
processes with multiple functions. Coding RNAs code for proteins while non-coding 
RNAs regulate gene expression. Some single-strand RNAs can create a circular shape 
via the back splicing process and convert into a new type called circular RNA (circRNA). 
circRNAs are among the essential non-coding RNAs in the cell that involve multiple 
disorders. One of the critical functions of circRNAs is to regulate the expression of other 
genes through sponging micro RNAs (miRNAs) in diseases. This mechanism, known 
as the competing endogenous RNA (ceRNA) hypothesis, and additional information 
obtained from biological datasets can be used by computational approaches to pre-
dict novel associations between disease and circRNAs.

Results:  We applied multiple classifiers to validate the extracted features from the 
heterogeneous network and selected the most appropriate one based on some 
evaluation criteria. Then, the XGBoost is utilized in our pipeline to generate a novel 
approach, called CircWalk, to predict CircRNA-Disease associations. Our results demon-
strate that CircWalk has reasonable accuracy and AUC compared with other state-of-
the-art algorithms. We also use CircWalk to predict novel circRNAs associated with lung, 
gastric, and colorectal cancers as a case study. The results show that our approach can 
accurately detect novel circRNAs related to these diseases.

Conclusions:  Considering the ceRNA hypothesis, we integrate multiple resources 
to construct a heterogeneous network from circRNAs, mRNAs, miRNAs, and diseases. 
Next, the DeepWalk algorithm is applied to the network to extract feature vectors for 
circRNAs and diseases. The extracted features are used to learn a classifier and gener-
ate a model to predict novel CircRNA-Disease associations. Our approach uses the 
concept of the ceRNA hypothesis and the miRNA sponge effect of circRNAs to predict 
their associations with diseases. Our results show that this outlook could help identify 
CircRNA-Disease associations more accurately.
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Background
Non-coding RNAs are essential to cell players who manipulate and control many bio-
logical processes. About 80–90% of human cell transcripts are non-protein-coding [1]. 
There are multiple types of non-coding RNAs, and each of them has specific functions 
in the complex system of gene regulation. One of the essential non-coding RNAs that 
researchers have recently noticed is Circular RNAs (circRNAs). circRNAs created from 
other transcripts through a non-canonical splicing event called back splicing. In this 
process, the transcript’s 5′ and 3′ splice sites bind together and reconstruct a circular 
shape called circRNA [2]. This circular structure makes the circRNAs more stable than 
other RNAs [3, 4] and makes them attractive as a biomarker in complex diseases [5, 6].

Multiple functions have been identified for the circRNAs in the cell [7, 8]. They can 
act as enhancers for the role of other proteins or as scaffolds to mediate complex forma-
tion for some enzymes [2]. circRNAs also regulate the RNA Binding Proteins (RBP) by 
decoying them [2]. One of the most critical functions for circRNAs is trapping miRNAs 
based on their sequence and miRNA response elements (MREs) [9]. By sponging shared 
miRNAs, circRNAs can regulate the expression of coding RNAs [8]. This mechanism is 
known as the competing endogenous RNA (ceRNA) hypothesis [10], which is involved 
in multiple complex diseases such as cancer [11].

circRNAs are involved in many human diseases based on previous research [5, 12, 
13]. For instance, circRNA Cdr1as affect insulin secretion in the pancreatic islet cells 
via decoying miR-7 miRNA. Consequently, this circRNA is a therapeutic target for dia-
betes [14]. hsa_circ_0054633 is another circRNA that is overexpressed in patients with 
type 2 Diabetes Mellitus [15]. Recently, two other circRNAs (hsa_circ_0063425 and 
hsa_circ_0056891) have been introduced as novel biomarkers to predict type 2 Diabe-
tes Mellitus in the early stages [16]. In cardiovascular diseases, circRNA HRCR absorbs 
miR-233 and prevents heart failure [17]. circFndc3b is another critical cardio-related cir-
cRNA that has recently been detected. It is involved in cardiac repair pathways [18]. Alz-
heimer’s disease (AD) is another disease in which the role of proteins has been proven 
[19]. For instance, a circular RNA created from the IGF2R transcript is associated with 
AD pathology [20]. Many circRNAs have also been involved in multiple cancer types 
[21]. For example, in glioma, circRNA 0001445 promotes tumor progression through the 
miRNA-127-5p/SNX5 signaling pathway [22]. hsa_circ_0062019 promotes prostate can-
cer cell proliferation, migration, and invasion through upregulating HMGA2 by decoy-
ing miR-195-5p [23]. Many other studies demonstrate the role of circRNAs in multiple 
cancer types such as thyroid, gastric, bladder, breast, and colon cancer [24–28].

Developing high-throughput technology such as RNA Sequencing (RNA-Seq) and 
public databases to store them has provided a valuable resource for researchers to create 
novel computational algorithms to mine the biological data. In circRNA-related studies, 
computational algorithms such as deep learning and machine learning-based methods 
can help predict more accurate CircRNA-Disease associations and deeply understand 
disease mechanisms. Many computational approaches have been developed to predict 
CircRNA-Disease associations in recent years. These approaches can be categorized 
into two main groups: network algorithm-based models and machine learning-based 
models [8]. Generally, network-based algorithms combine multiple resources to gener-
ate a circRNA-Disease association network and predict novel interactions. For example, 
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IBNPKATZ integrates the bipartite networks from known circRNA-Disease associations 
and circRNAs similarities and uses the KATZ measure to find novel circRNA-Disease 
pairs [29]. Ge et al. developed a network approach based on locality-constrained linear 
coding and label propagation [30]. One of the most recent algorithms has been intro-
duced by Lei et al. [31]. They reconstructed a heterogeneous network based on known 
circRNAs and disease relationships, circRNA-circRNA, and disease-disease similari-
ties. After that, a novel weighted biased meta-structure search algorithm was applied 
to the network to predict CircRNA-Disease associations. A heterogeneous network was 
reconstructed in a similar approach by Zhang et al. [32]. They used multiple resources 
to create circRNA and disease similarity networks. In their novel algorithm, entitled 
PCD_MVMF, the metapath2vec++ method was applied on meta paths in the hetero-
geneous network. Then the matrix factorization algorithm was used to predict the novel 
association between circRNAs and diseases. A combination of deep learning and matrix 
factorization methods was also used in another study. The DMFCDA (Deep Matrix 
Factorization CircRNA-Disease Association) algorithm was developed based on this 
approach [33]. Lu et al. developed a deep learning-based algorithm called CDASOR to 
predict CircRNA-Disease associations based on sequence and ontology representations 
with convolutional and recurrent neural networks [34]. In another study, Deng et al. pro-
posed the KATZCPDA algorithm based on a previously developed algorithm (KATZ) 
[35, 36]. The KATZCPDA algorithm integrated circRNA-protein and protein-disease 
association data with circRNA similarity and disease similarity data to reconstruct 
a heterogeneous network. Subsequently, a KATZ measure [35] was applied to extract 
unknown CircRNA-Disease associations by measuring the similarities between circR-
NAs and diseases [36].

Generally, in many computational approaches to predicting CircRNA-Disease asso-
ciations, interaction data between circRNAs and diseases from multiple resources 
integrated with circRNA similarity and disease similarity data to reconstruct a hetero-
geneous network in which the association between circRNAs and disease is hidden and 
should be mine. The basic concept in these methods is that similar circRNAs may be 
associated with similar disorders. In these approaches, more accurate data integration 
causes more accurate results. Similarly, this article proposed a novel algorithm called 
CircWalk to accurately extract potential CircRNA-Disease associations from a hetero-
geneous network based on a network representation algorithm. One of the essential cir-
cRNAs functions is acting as a miRNA sponge based on the ceRNA hypothesis. Many 
circRNAs are associated with diseases based on this mentioned mechanism. Our pro-
posed method tried to integrate data based on the ceRNA hypothesis to reconstruct the 
heterogeneous network. Our results demonstrated that this strategy could predict more 
accurate CircRNA-Disease associations compared with other algorithms.

Methods
Our approach consists of three stages: In the first step, we merged data from multiple 
sources to reconstruct an informative heterogeneous network (Network reconstruc-
tion step). Next, we used the DeepWalk [37] algorithm to convert each circRNA and 
disease in this graph to a feature vector (Feature extraction step). At this stage, we 
have two feature vectors and a label (0 for unrelated and 1 for related pairs) for each 
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CircRNA-Disease pair. We then train a classifier on this labeled dataset to create a model 
to predict CircRNA-Disease relationships accurately. Figure 1 shows the overall process 
of our algorithm.

Network reconstruction

We merged multiple bipartite networks extracted from multiple experimentally vali-
dated databases to reconstruct a heterogeneous network. Seven types of bipartite net-
works (Fig. 1) were combined based on their common nodes (genes and diseases). One 
of the critical points in this step is to unify the genes and disease identifiers in all the 
networks before merging. Different disease datasets may use various names for the 
same disease, e.g., “hepatocellular cancer” and “hepatocellular carcinoma”. Therefore, 
we checked and unified the disease names in all bipartite networks. Similarly, circRNAs 
have multiple notations in various datasets. To avoid duplication, we used the CircBase 
dataset [38] as a reference to unify circRNA identifiers in our bipartite networks (the cir-
cRNAs that were not specified in CircBase were filtered out from the data). The mRNA 
and miRNA identifiers were identical in all data sources and didn’t need to be unified. 
Finally, we generated a heterogeneous network in which nodes represented circRNA, 
mRNA, miRNA, and disease, and the edges represented their relationships based on the 
bipartite networks extracted from the source databases. Based on the ceRNA hypothesis 
and the sponge effect of circRNAs, a circRNA can indirectly influence a disease. There-
fore, adding mRNAs and miRNAs to this network can improve the prediction of indirect 
circRNA-Disease associations.

CircRNA‑Disease

The data in Circ2Disease [39], CircR2Disease [40], CTD [41], and CircAtlas [42] were 
merged to generate CircRNA-Disease interactions.

circRNA‑circRNA

We calculated the alignment scores between every two circRNAs in our data and 
regarded them as a similarity measure among circRNAs. Next, we set the average score 
of all pairs as a cutoff threshold. After that, the circRNA pairs whose similarity score 
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Fig. 1  The overall workflow of the proposed algorithm
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was more significant than this threshold was considered circRNA-circRNA networks for 
further analysis. Human circRNA sequence data were downloaded from the CircBase 
database [38], and built-in functions calculated the similarity scores from the BioPython 
package [43].

circRNA‑miRNA

We extracted the circRNA-miRNA interaction data by combining the pairs from experi-
mentally validated data in RAID [44] and StarBase [45].

miRNA‑disease

The experimentally validated data in Circ2Disease [39], HMDD [46], and Mir2Disease 
[47] were used to generate miRNA-disease interactions.

miRNA‑mRNA

miRTarbase [48], Circ2Disease [39], and StarBase [45] were used to extract miRNA-
mRNA bipartite network.

mRNA‑disease

The experimentally validated data in DisGeNet [49] was used to obtain mRNA-disease 
associations.

Disease‑disease

We use the tree structure of diseases in the MeSH [50] database for the disease-disease 
similarity network. We calculate the semantic similarity between each pair of diseases in 
our data, and all the similarities above than specific threshold (0.8) were considered dis-
ease-disease pairs. The method proposed by Wang et al. [51] in the pyMeSHSim python 
library [52] was used to calculate semantic similarity.

Feature extraction

Given G = (V ,E) as a network in which V = {v1, v2, ..vn} is a set of nodes (RNAs and 
diseases) and E = {(u, v)|u, v ∈ V } is a set of edges (interactions between the nodes). The 
goal of this step is to find a set of numeric feature vectors X ∈ R

|V |∗k each of which rep-
resents a node in the network ( k is the size of each feature vector). The DeepWalk algo-
rithm [37] solve this problem applying word2vec approach [53] on the random walks 
contains each node. DeepWalk solves an optimization problem (Eq. 1) to find maximum 
value of a mapping function � : v ∈ V → R

|V |∗k for node vi in a random walk defined as 
{vi−w , .., vi, .., vi+w}.

We applied this algorithm on the network generated in the previous step and extracted 
a k-dimensional feature vector for each circRNA and Disease in the network. Since Deep-
Walk uses random walks (paths) on the graph to learn the embeddings of the nodes, we 

(1)
maximum

�

i+w

j = i − w
j �= i

P(vj|�(vi))
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believe that adding new paths through mRNAs and miRNAs to the CircRNA-Disease 
graph can improve the performance of CircRNA-Disease associations prediction.

Binary classification of CircRNA‑disease Pairs

As a result of the previous step, we have a feature vector with a size of 2 k for each pair 
of CircRNA-Disease. Besides, there is a class label for each pair: 0 means the circRNA is 
unrelated to the disease, and 1 implies the circRNA is related to the disease. Consequently, 
we can define a dataset and learn a classifier to predict the label of each input pair. To this 
end, we generated a benchmark dataset (see the result section). We applied fivefold cross-
validation based on multiple classifiers to evaluate the performance of extracted features 
from the heterogeneous network to predict the disease-related circRNAs. Six classification 
algorithms were used in this step: Support Vector Machine (SVM) [54], Logistic Regres-
sion (LR) [55], Random Forest (RF) [56], AdaBoost [57] with Random Forest base classi-
fier (ABRF), XGBoost (XGB) [58], and Multilayer Perceptron (MP) [59]. All classifiers were 
applied to the data using the scikit-learn Python package [60] (For non-default classifier 
hyperparameters, see Additional file 1: Table S1).

Results
Evaluation metrics

The following evaluation metrics with fivefold cross-validation were used to evaluate the 
performance of our algorithm and compare it with some other state-of-the-art algorithms. 
For simplicity, we use the abbreviations TP, FP, TN, and FN for true positive, false positive, 
true negative, and false negative, respectively. The Area Under the receiver operating char-
acteristic Curve (AUC) was the primary scoring metric we applied in comparing models 
against each other. To obtain this, we need to calculate the area under a plot with points 
whose x coefficients are the false-positive rates (FPR) of the model examined and whose y 
coefficients are the true positive rates (TPR) of that same model for different classification 
thresholds. TPR and FPR can be calculated based on Eqs. 2 and 3.

Accuracy (ACC) is the ratio of correctly classified samples to all samples and can be cal-
culated based on Eq. 4.

Precision (Pre) is the ratio of true positive samples to all samples labeled as positive. We 
used Eq. 5 to calculate Pre for each algorithm.

(2)FPR =
FP

FP + TN

(3)TPR =
TP

TP + FN

(4)Acc =
TP + TN

TP + TN + FP + FN

(5)Pre =
TP

TP + FP
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Sensitivity (Sen), also known as Recall, and Specificity (Spe) are the ratio of true posi-
tive samples and true negative samples to all ground truth, respectively. We calculated 
Sen and Spe based on Eqs. 3 and 6, respectively.

The final evaluation metric is the F1 Score; the geometric mean of Pre and Sen. Equa-
tion 7 can be used to calculate this metric.

Benchmark dataset

To evaluate our method, we need a labeled set of CircRNA-Disease pairs as a bench-
mark dataset, wherein the label is 1 if the pair are associated and 0 otherwise. The labels 
will later be used for supervised binary classification. To create the benchmark data-
set, we adopted the approach in [61], in which an equal number of the positive sam-
ples were randomly selected from unknown pairs as negative samples. Our dataset has 
575 known circRNA-Disease pairs reconstructed from 474 unique circRNAs and 64 
unique diseases. Hence, there are 474 × 64 = 30,336 possible CircRNA-Disease combi-
nations, 474 × 64 − 575 = 29,761 of which are possibly unrelated. We randomly select 
575 pairs from them as our negative samples (label = 0). As there is no validated dataset 
for unrelated circRNA-Diseases pairs (negative samples), this approach allows us to have 
a balanced dataset and reduces the probability of having false negatives (i.e., CircRNA-
Disease pairs that are really associated but whose associations have not been discovered 
yet) by a factor of 575

29761
∼= 1.93%.

Evaluate classification methods

For each classifier, the evaluation statistics depend on the number of features of circR-
NAs and diseases in the CircRNA-Disease dataset fed to them as input. Therefore, using 
DeepWalk, we created a set of feature vectors with different vector sizes (a multiple of 10 
ranging from 10 through 200). We obtained the classification results on the benchmark 
dataset for each classifier and found the optimal number of features in terms of AUC. 
Overall, the most accurate result we produced was achieved by the XGB and ABRF clas-
sifiers. Figure 2 shows how the average AUC of each classifier changes with the number 
of features extracted by DeepWalk. The optimal number of features for each classifier 
was considered for further evaluation.

Table 1 shows the values of the evaluation metrics for our six classifiers based on their 
optimal number of features. This table shows that SVM and LR have the minimum per-
formance in our experiment with an average accuracy of 72 and 71, respectively. Overall, 
it seems that the boosting algorithms enjoy better performance compared with the oth-
ers. Random forest shows the appropriate performance as well. In terms of accuracy, 
the random forest has the best result after XGBoost, but if we consider AUC, its effect 
is very close to AdaBoost. We employed AdaBoost to improve the random forest model 
results, but as you can see in the table, the results of these two approaches are very close. 

(6)Spe =
TN

TN + FP

(7)F1 =
2× Pre × Recall

Pre + Recall
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The XGBoost algorithm obtained the best result. We chose this algorithm as the classi-
fier in our final pipeline. It is noteworthy, however, that the training time of the XGBoost 
classifier is by far longer than AdaBoost and random forest.

The permutation of the samples in the cross-validation folds was identical for all six 
classifiers. Figure 3 compares ROC curves of different classifiers for each fold of the data 
in the fivefold CV. Other algorithms outperformed SVM and logistic regression with an 
approximate gap of 20% in terms of all six metrics. Not to mention that the SVM took 
the longest training time of all models. The multilayer perceptron was superior to SVM 
and logistic regression but missed out on the others by about 1%. XGBoost had the high-
est AUC in 4 of the 5-folds of the dataset.

Comparison with existing methods

We compared CircWalk with four state-of-the-art algorithms based on the bench-
mark dataset: DMFCDA (Deep Matrix Factorization CircRNA-Disease Association) 
[62], GCNCDA [61], GMNN2CD (Graph Markov Neural Network algorithm to pre-
dict unknown CircRNA–Disease associations) [63] and SIMCCDA (Speedup Induc-
tive Matrix Completion for CircRNA-Disease Associations prediction) [64]. We 

Fig. 2  The average AUC of each classifier is based on the size of feature vectors extracted by DeepWalk

Table 1  The average values of the evaluation metrics in 5 folds for different classifiers based on their 
optimal number of features

Classifier (optimal 
feature vector size)

Acc (%) F1 (%) Pre (%) Sen (%) Spe (%) AUC (%)

ABRF (10) 89.74 89.37 92.6 86.44 93.04 96.58

LR (80) 71.3 71.32 71.25 71.48 71.13 77.48

MP (10) 89.56 89.59 89.37 89.91 89.22 95.54

RF (10) 90.09 89.78 92.61 87.13 93.04 96.44

XGB (20) 92.09 92.078 92.36 91.82 92.35 97.77

SVM (90) 72.09 73.26 70.16 76.69 67.48 76.41
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applied a fivefold cross-validation approach to the benchmark dataset and trained 
each algorithm with its default parameters in each fold. The average value of the eval-
uation criteria in 5 folds was used to compare the algorithms.

Table 2 shows the evaluation process results for the selected algorithms based on 
the benchmark dataset. As shown in this table, CircWalk is the most outperform-
ing algorithm in our experiment, and its average values for all evaluation metrics are 
more significant than 90%. After CircWalk, GMNN2CD is the best-performing algo-
rithm among others. In terms of accuracy, this algorithm is the best in our experi-
ment, but it has the lowest sensitivity compared with the other algorithms. GCNCDA 
is the most similar algorithm to our method among these comparison methods. 
Although this approach shows lower accuracy than CircWalk, it is more stable and 
shows approximately the same results in all folds. SIMCCDA has acceptable perfor-
mance in all metrics except precision and F1. This algorithm accurately predicted the 
negative class (unassociated CircRNA-Disease pairs), but its true positive rate was 
meager.

Figure  4 compares the ROC curve of each algorithm in each fold of the validation. 
As shown in this figure, CircWalk obtained an AUC of more than 96% (about 97% on 

Fig. 3  ROC curve and AUC based on the average values of 5 folds (the size of extracted feature vector with 
Deepwalk set to the optimum value for each classifier)

Table 2  The average values of the evaluation metrics in 5 folds for different state-of-the-art 
algorithms based on the benchmark dataset

Algorithm Acc (%) F1 (%) Pr (%) Se (%) Sp (%) AUC (%)

CircWalk 92.09 92.08 92.36 91.83 92.35 97.77

DMFCDA 83.69 83.69 81.55 87.79 79.6 83.69

GCNCDA 74.52 74.9 73.79 76.17 72.87 82.72

SIMCCDA 83.36 16.4 9.1 84.54 83.34 73.3

GMNN2CD 99.09 85.52 72.63 63.36 99.78 96.69
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average). GCNCDA and DMFCDA have almost the same results, and SIMCCDA has 
the poorest results in our experiment (because of its low true positive rate).

Case study

This step aims to evaluate the performance of CircWalk in the prediction of novel Cir-
cRNA-Disease associations in some selected common diseases. To this end, we selected 
three common cancers (lung, gastric, and colorectal) that are the target of many cir-
cRNA-related kinds of research. We train our model on the feature vectors of the posi-
tive pairs and a third of the negative pairs. As we pointed out earlier, the negative pairs 
(i.e., associations) are a subset of unverified CircRNA-Disease associations, which means 
there may be positive associations. As a result, we decided to train our model on a 
few negative pairs as possible to reduce learning from these false negatives. However, 
we could not wholly omit them as there must be at least two classes in the dataset for 
XGBoost to be trained on it. Then, we list all CircRNA-Disease pairs whose circRNA 
is present in our initial CircRNA-Disease dataset and whose disease is one of the three 
diseases we selected in this part. After that, filter out the CircRNA-Disease pairs present 
in the data, which our model was trained on in this part. We give this list of CircRNA-
Disease associations as input to our trained model. Instead of labeling them as positive 
(1) or negative (0), we use our model to calculate the probability of association in each 
pair. Finally, for each disease, we find the circRNAs that are most likely to be associated 
with that disease and investigate the existing literature in PubMed to check if empiri-
cal studies have already confirmed that CircRNA-Disease association. Table 3 shows the 
result of this investigation.

As shown in Table  3, all the predicted pairs (except gastric cancer) had a prob-
ability of over 90%. There is much experimentally validated evidence in the results of 
this step. For instance, CircWalk predicted an association between hsa_circ_0001313 

Fig. 4  ROC curve and AUC based on the average values of 5 folds for different algorithms compared with 
our method
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and gastric cancer with a probability of almost 100%. Based on a recent study by 
Zhang et al. [65], this circRNA is a vital regulator of drug resistance in gastric can-
cer. CircRNA hsa_circ_0007534 (predicted by a probability of 99.6%) is an essential 
oncogene in lung cancer related to cancer cell proliferation and apoptosis [66].

Another example is the association between hsa_circ_0044556 and colorectal 
cancer (predicted by a probability of 98.9%). Knocking down this circRNA pre-
vents  proliferation, migration, and invasion of colorectal cancer cells [67]. These 
results represent the power of CircWalk to predict truly novel CircRNA-Disease 
associations.

Table 3  Predicted CircRNA-Disease relations with the highest probability for some selected diseases

Disease circRNA Probability Related article (PMID)

Lung cancer hsa_circ_0007534 0.996 30017736

hsa_circ_0001946 0.995 31249811

hsa_circ_0002874 0.992 33612481

hsa_circ_0014130 0.991 29440731, 31241217, 31818066, 
32060230, 32616621, 34349347

hsa_circ_0002702 0.990 32962802

hsa_circ_0007874 0.988 30975029

hsa_circ_0074930 0.985 32962802

hsa_circ_0086414 0.983 30777071

hsa_circ_0079530 0.972 29689350

hsa_circ_0007385 0.972 29372377, 32602212, 32666646

hsa_circ_0016760 0.968 29440731

hsa_circ_0012673 0.960 29366790, 32141553

hsa_circ_0067934 0.954 33832139

hsa_circ_0000567 0.950 32328186, 33768996, 34435479

hsa_circ_0072088 0.941 32308427, 34135596

hsa_circ_0001727 0.934 32010565

hsa_circ_0008305 0.901 30261900

Gastric cancer hsa_circ_0001313 0.999 32253030

hsa_circ_0004771 0.998 29098316

hsa_circ_0002874 0.998 34388244

hsa_circ_0000615 0.998 34049561

hsa_circ_0006404 0.977 32445925

hsa_circ_0001982 0.977 33000178

hsa_circ_0032683 0.910 33449227

hsa_circ_0014130 0.819 32190005

Colorectal cancer hsa_circ_0006054 0.995 30585259

hsa_circ_0000745 0.990 28974900

hsa_circ_0044556 0.989 32884449

hsa_circ_0005075 0.964 31081084, 31476947, 34015582

hsa_circ_0040809 0.958 34438465

hsa_circ_0004771 0.945 31737058, 32419229

hsa_circ_0007874 0.924 32419229

hsa_circ_0080210 0.914 34222420
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Discussion
This study tried to integrate multiple data from multiple resources about genes and dis-
ease interactions to predict more significant CircRNA-Disease associations. Although 
biological data generation technologies have been advanced in recent years, this data 
type is primarily incomplete and has false positives. Data Integration can be a helpful 
approach to reducing noise and false positives. Biological events are closely related and 
work as a system on the plus side. The cause of many disorders in the human body can 
only be explained using this systematic view of cellular processes. Therefore, the main 
idea we have to solve the problem of our study is to integrate multiple data into a com-
plex network and try to find associations between circRNAs and diseases through the 
network’s features. Another critical point in our approach involves the concept of the 
ceRNA hypothesis and the miRNA sponge effect of circRNAs to predict their associa-
tions with diseases. The results of our study demonstrated that this point of view could 
help predict CircRNA-Disease associations more accurately.

One of the most challenging steps in our study was preparing the data. Each dataset 
uses unique identifiers for circRNAs, and converting these identifiers sometimes can be 
impossible. So, we missed some information in our data because we couldn’t convert and 
match the identifiers of some circRNAs in multiple datasets. This limitation can affect 
the results of our algorithm, and defining a standard for naming this type of RNA and 
creating a comprehensive database is needed. Another challenge that can significantly 
affect the result of algorithms is the lack of validated negative classes (un-associated 
pairs) for the CircRNA-Disease associations. As we mentioned in previous sections, we 
generated the negative class by randomly selecting circRNAs and unassociated diseases 
in our data. But there is no guarantee that there is no association between these selected 
negative pairs. This misinformation can affect the learning process of the classifiers and 
lead to generating inappropriate models. Consequently, creating standardized datasets 
and benchmarks to validate the models is one of the ideal approaches for the future of 
this field of study.

It is necessary to keep in mind that the sponging effect of circRNAs is not the only 
biological aspect that can help predict their association with a disease. Some other bio-
logical information can solve the problem in future work. For instance, their expres-
sion data, their exonic or intronic structure, the miRNA response elements information 
related to their sequence, and any other information about their structure and function 
can help associate them with a disease, provided that the related data be accessible. Fur-
thermore, using novel machine learning approaches such as deep learning and graph 
convolutional neural networks can integrate multiple data and extract meaningful fea-
tures in the study’s next step.

The presented algorithm can be used to predict miRNA-Diseases and lncRNA-Disease 
associations. To this end, we need to extract feature vectors of miRNAs and lncRNAs 
instead of circRNAs. Also, miRNA-miRNA, lncRNA-lncRNA, and lncRNA-Disease 
associations should be added to the data.
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