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Abstract

Alterations in the structure and organization of the aging central nervous system (CNS),
and associated functional deficits, result in cognitive decline and increase susceptibility to
neurodegeneration. Age-related changes to the neurovascular unit (NVU), and their conse-
quences for cerebrovascular function, are implicated as driving cognitive impairment during
aging as well as in neurodegenerative disease. The molecular events underlying these
effects are incompletely characterized. Similarly, the mechanisms underlying effects of fac-
tors that reduce the impact of aging on the brain, such as physical exercise, are also
opaque. A study in this issue of PLOS Biology links the NVU to cognitive decline in the
aging brain and suggests a potential underlying molecular mechanism. Notably, the study
further links the protective effects of chronic exercise on cognition to neurovascular integrity
during aging.

Introduction

Age-associated alterations in the structure and organization of the central nervous system
(CNS) result in cognitive impairment [1] and increase susceptibility to individual overt neuro-
degenerative pathology and clinical disease [2]. Thus, understanding the factors that contribute
to age-related changes in structure and function within the CNS may lead to novel approaches
to prevent the associated cognitive decline as well as reduce the incidence of neurodegenerative
conditions such as Alzheimer disease (AD).

Links between Cerebrovascular Function and Cognitive Function
in Aging

Changes in both neuronal and non-neuronal populations within the CNS have been associated
with functional deficits in the aging brain. For example, alterations in synaptic morphology
and activity of neurons, notably in the hippocampus and prefrontal cortex, have been associ-
ated with impairments in cognition during aging [3]. Notably, and perhaps less intuitively,
important roles for non-neuronal lineages have also been demonstrated in cognitive decline.
Chronic inflammatory changes in resident and invading cells of the innate immune system,
such as microglia/monocytes and astrocytes, occur with aging [4] and may predispose to neural
pathology in the CNS. In addition, age-related changes to the neurovascular unit (NVU), (Fig
1) and associated cerebrovascular alterations, have also been implicated as impacting neural
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Fig 1. Schematic of the NVU. The NVU comprises the cerebral microvascular endothelium (shown in red), its basement membrane, and associated
pericytes (yellow) and astrocytes (orange). The perivascular space exists between the endothelium and astrocytic endfeet. The endothelium provides the
structural and functional basis for the blood—brain barrier (BBB), while astrocytes and pericytes control barrier induction and maintenance [7]. Junctional
proteins exist between endothelial cells and astrocytes (glia limitans) to help regulate entrance into the CNS parenchyma. Image credit: Gareth R. John &

Benjamin M. Laitman.

doi:10.1371/journal.pbio.1002300.9001

integrity and function [5,6]. However, the relative contribution of alterations of the NVU to
these age-related changes in brain structure and function, and the molecular events that drive
them, are incompletely characterized. Thus, an important question is how exactly cerebrovas-
cular function, particularly integrity of the NVU, impacts cognitive function during aging.
Examination of underlying mechanisms presents an interesting avenue to discover and develop
treatments to prevent cognitive decline and/or neurodegeneration.

The NVU comprises the cerebral microvascular endothelium, its basement membrane, and
associated pericytes and astrocytes [7,8] (Fig 1). The endothelium provides the structural and
functional basis for the blood-brain barrier (BBB), while astrocytes and pericytes control bar-
rier induction and maintenance [7,8]. Notably, defects in the NVU have been linked to cogni-
tive decline in the context of neurodegenerative conditions. For example, vascular defects in
mice deficient for the AD risk factor, apolipoprotein E (ApoE), or transgenic for the human
APOE4 isoform, display vascular defects that precede neuronal dysfunction [9]. Furthermore,
human APOE4 carriers may be susceptible to age-dependent breakdown of the BBB prior to
the onset of clinical AD deterioration [10].

Studies have also linked neurovascular dysfunction to cognitive decline in aging. Cerebral
microvascular pathology together with reductions in cerebral blood flow (CBF) and glucose
and oxygen metabolism are known to occur during human aging [11]. Moreover, use of a
novel high-resolution MRI technique has also shown that vascular leakage is an early event in
the aged human brain, beginning in the hippocampus and correlating with cognitive deficit
[12]. These studies, and others like them, suggest that changes in the NVU may be significant
in driving deterioration in the structure and organization of the CNS, and therefore cognitive
deficits, during aging as well as in neurodegenerative disease.
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The Mechanism by Which Exercise Impacts the Aging Brain Is
Incompletely Understood

Interestingly, the mechanisms underlying effects of factors that reduce the impact of aging on
the brain are similarly opaque. A good example is physical exercise, which is strongly associ-
ated with protection against age-related decline in cognitive and sensorimotor function [1,13]
(Fig 2). Exercise is known to improve cardiovascular function, and blood flow within the CNS,
and is associated with improved cognitive, sensory, and motor test outcomes, angiogenesis,
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Fig 2. The impacts of exercise on age-related cognitive decline. Three major factors have been implicated in promoting age-related cognitive decline:
inflammation, neurovascular changes, and changes in CNS structure and function. Exercise has been shown to be beneficial in impacting these three
categories. It has been shown to promote neurogenesis [16], increase CBF and angiogenesis [14], and reduce inflammation [4,17], correlating with improved
cognitive performance. Soto et al. adds to this data (red text) by demonstrating that exercise reduces the age-related loss of pericytes, basement membrane
components, and astrocyte reactivity at the NVU, and reduces the amount of complement induction in myeloid cells. Image credit: Gareth R. John &
Benjamin M. Laitman.

doi:10.1371/journal.pbio.1002300.g002
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and neurogenesis [13-16]. However, the molecular events that drive this protective effect
remain incompletely understood.

A study in this issue of PLOS Biology by Soto and coauthors builds on these previous find-
ings, linking the NVU to cognitive decline in the aging brain and suggesting a potential under-
lying molecular mechanism [18]. Notably, the study further links the protective effects of
exercise on cognition to neurovascular integrity. The authors present RNA sequencing data
from young (4 mo) and aged (21 mo) mice that suggest that aging causes regional compromise
of the NVU. They confirm these findings using immunohistochemistry and electron micros-
copy, which reveals deterioration of neurovascular structures in the aging brain, including
basement membrane reduction, loss of pericytes, and astrocyte dysfunction. Importantly, these
neurovascular changes result in vascular leakage. Interestingly, these events further correlate
with microglial/monocyte activation and complement induction, implicated in age-related cog-
nitive decline in mice [19]. Collectively, these data suggest a connection between neurovascular
dysfunction and innate inflammation in the context of cognitive decline in aging. The authors
then turn their focus to the long-term impact of aerobic exercise on age-related neurovascular
dysfunction. They show that exercise strongly protects against neurovascular decline in aged
mice, and that this correlates with improved behavioral outcomes and markers of neuroplastic-
ity and reduced inflammation and complement induction (Fig 2).

What are the molecular mechanisms responsible for these outcomes? Interestingly, the
authors’ data in the final section of their paper returns us to ground familiar to those in the
fields of neurodegeneration and AD. Their findings implicate the AD risk factor ApoE as also
regulating neurovascular integrity during aging and, moreover, suggest involvement of ApoE
in the protective effects of exercise. They show that astrocytic ApoE decreases in aged mice
concomitant with age-related neurovascular decline and complement activation, and that this
effect is prevented by exercise. These data extend previous studies showing that ApoE defi-
ciency in mice leads to progressive age-related neurovascular dysfunction [9,20,21] and suggest
a potential link between astrocytic ApoE, age-related neurovascular dysfunction, and micro-
glial/monocyte activation. To test this hypothesis, the authors examine the effect of regular
exercise from life to old age on ApoE-deficient mice. Importantly, In contrast to wild-type
mice, they show that exercise has no effect on age-related neurovascular decline or microglia/
monocyte activation in the absence of ApoE.

Future Directions

Collectively, the findings presented by Soto et al. connect the NVU to cognitive decline in the
aging brain and suggest that exercise can prevent or attenuate age-related indices of both neu-
rovascular decline and inflammation. They further propose that the beneficial effects of exer-
cise on neurovascular integrity and inflammation, and neuroplasticity, may be mediated at
least in part by ApoE. How then might these findings be extended, and what might be the logi-
cal next steps in the current work? Several interesting questions spring to mind, some of which
are discussed by the authors. For example, do the increases in microglia/monocytes seen in
aging mice in the current study occur as a result of proliferation of resident microglia, infiltra-
tion of peripheral monocytes, or both? How do these responses impact cognitive function dur-
ing aging, given that increase of proinflammatory markers in the blood is correlated with poor
cognitive performance in older adults? And does complement induction seen in aged mice pre-
cede neurovascular decline, or occur as a consequence to it?

An additional point that should be addressed is how this work extends to age-related cogni-
tive decline in humans. While several studies, including Soto et al., provide encouraging evi-
dence of the positive effects of exercise on age-related cognitive decline, findings in humans
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have been inconsistent. In a study that examined a combination of dietary changes and aerobic
exercise, the authors found exercise only improved cognition when combined with a high fla-
vanol diet [22]. Unexpectedly, the exercise program alone failed to improve cognition. While
this same research group has previously demonstrated exercise to be beneficial for human cog-
nitive tasks [16], the authors bring up the possibility that the exercise regimen used in their
diet-exercise study was not stringent enough for the older population investigated. The benefit
of exercise on age-related cognitive decline is still inconsistent in humans, even if it strongly
protects against the cognitive decline in aged rodents. More robust studies in human popula-
tions are thus warranted.

However, perhaps the most important questions that the current study suggests are those
that are more directly translational. Notably, what is the detailed molecular mechanism of
action by which ApoE preserves neurovascular integrity and cognitive function in the aging
brain, and can we develop targeted therapies based on those results? Based on recent studies,
might neurovascular and cognitive decline in the brain be reduced by pharmacologically target-
ing the cyclophilin A-nuclear factor kB-matrix metalloproteinase-9 axis, as has been proposed
for APOE4-mediated neurovascular injury [9]? Furthermore, as noted by the authors, the con-
stitutive ApoE-deficient mice used in the manuscript already displayed a dysfunctional NVU
prior to the start of exercise studies, in contrast to wild-type mice. Thus, it would be interesting
to repeat these studies using an inducible conditional allele. This may answer the question of
whether, in addition to protecting against neurovascular dysfunction in aging mice, exercise
might be used as an intervention to repair (or restore) existing neurovascular breakdown. Such
findings could be translationally useful, in the prevention or amelioration of age-related and
pathologic cognitive decline in the growing geriatric population.
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