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Abstract

Hypertension causes cardiac hypertrophy, one of the most important risk factors for heart

failure (HF). Despite the importance of cardiac hypertrophy as a risk factor for the develop-

ment of HF, not all hypertrophied hearts will ultimately fail. Alterations of cytoskeletal and

sarcolemma-associated proteins are considered markers cardiac remodeling during HF.

Dystrophin provides mechanical stability to the plasma membrane through its interactions

with the actin cytoskeleton and, indirectly, to extracellular matrix proteins. This study was

undertaken to evaluate dystrophin and calpain-1 in the transition from compensated cardiac

hypertrophy to HF. Wistar rats were subjected to abdominal aorta constriction and killed at

30, 60 and 90 days post surgery (dps). Cardiac function and blood pressure were evaluated.

The hearts were collected and Western blotting and immunofluorescence performed for

dystrophin, calpain-1, alpha-fodrin and calpastatin. Statistical analyses were performed and

considered significant when p<0.05. After 90 dps, 70% of the animals showed hypertrophic

hearts (HH) and 30% hypertrophic+dilated hearts (HD). Systolic and diastolic functions

were preserved at 30 and 60 dps, however, decreased in the HD group. Blood pressure,

cardiomyocyte diameter and collagen content were increased at all time points. Dystrophin

expression was lightly increased at 30 and 60 dps and HH group. HD group showed

decreased expression of dystrophin and calpastatin and increased expression of calpain-1

and alpha-fodrin fragments. The first signals of dystrophin reduction were observed as early

as 60 dps. In conclusion, some hearts present a distinct molecular pattern at an early stage

of the disease; this pattern could provide an opportunity to identify these failure-prone hearts

during the development of the cardiac disease. We showed that decreased expression of

dystrophin and increased expression of calpains are coincident and could work as possible

therapeutic targets to prevent heart failure as a consequence of cardiac hypertrophy.

PLOS ONE | https://doi.org/10.1371/journal.pone.0189469 December 21, 2017 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Prado FP, dos Santos DO, Blefari V, Silva

CA, Machado J, Kettelhut IdC, et al. (2017) Early

dystrophin loss is coincident with the transition of

compensated cardiac hypertrophy to heart failure.

PLoS ONE 12(12): e0189469. https://doi.org/

10.1371/journal.pone.0189469

Editor: Tohru Minamino, Niigata Daigaku, JAPAN

Received: February 7, 2017

Accepted: November 28, 2017

Published: December 21, 2017

Copyright: © 2017 Prado et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: The work was supported by Fundação de

Amparo à Pesquisa do Estado de São Paulo: 09/

17787-8 CMP; 10/19216-5 CMP; 09/54010-1 HCS;

13/20549-7 HCS; 12/23649-0 SGR; 16/21710-4

SGR; 15/21112-7 JM.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0189469
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189469&domain=pdf&date_stamp=2017-12-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189469&domain=pdf&date_stamp=2017-12-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189469&domain=pdf&date_stamp=2017-12-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189469&domain=pdf&date_stamp=2017-12-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189469&domain=pdf&date_stamp=2017-12-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0189469&domain=pdf&date_stamp=2017-12-21
https://doi.org/10.1371/journal.pone.0189469
https://doi.org/10.1371/journal.pone.0189469
http://creativecommons.org/licenses/by/4.0/


Introduction

Hypertension causes cardiac hypertrophy, one of the most important risk factors for heart fail-

ure (HF). Structural remodeling of the heart as a consequence of systemic hypertension is a

compensatory mechanism that initially protects the heart, but a sustained excessive cardiac

workload is a major predictor of HF and sudden death [1–4]. In spite of the importance of car-

diac hypertrophy as a risk factor for the development of HF, not all hypertrophied hearts will

ultimately fail [5–8]. Although fibrosis and myocyte hypertrophy are standard markers for

myocardial abnormalities in HF, cytoskeletal and sarcolemma-associated proteins alterations

have been described [9–13]. The intracellular cytoskeletal proteins are mechanically linked to

the extracellular matrix by the dystrophin-glycoprotein complex (DGC). Dystrophin provides

mechanical stability to the plasma membrane through its interactions with the actin cytoskele-

ton and, indirectly, to extracellular matrix proteins. Dystrophin loss is an important mecha-

nism for destabilizing cardiomyocytes, leading to membrane instability and permeability

defects [14,15]. Besides, loss of dystrophin has been linked with end-stage cardiomyopathies

and has been proposed as a common pathway for contractile dysfunction in the failing myo-

cardium and progression to HF [13,16,17]. The cleavage of dystrophin and other cytoskeletal

and submembranous proteins has been demonstrated by several proteolytic enzymes [18–22].

Importantly, calpain-mediated degradation of dystrophin has been highlighted

[13,17,19,23,24].

The mechanisms underlying the development of HF as a consequence of hypertension/car-

diac hypertrophy are multiple, complex and not totally understood. This fact underscores the

need to differentiate the pathways responsible for the transition from compensated cardiac

hypertrophy from those promoting decompensation, dilation, and extreme ventricular remod-

eling. Additional mechanisms besides those that cause hypertrophy could be recruited during

progression from compensated cardiac hypertrophy to HF. In this study, our focus was over

dystrophin and the intracellular protease calpain.

Materials and methods

This study was carried out in strict accordance with the recommendations in the Guide for the

Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was

approved by the Committee on Ethics in Animal Research of Ribeirão Preto School of Medi-

cine, University of São Paulo, SP, Brazil (Protocol no. 204/2009). Male Wistar rats weighing

150.7±6.34 g were maintained on a 12 h light/dark cycle and housed 3 to 5 rats per cage with

free access to food and water. All efforts were made to minimize animal suffering and to

decrease the number of animals used.

Experimental protocol

The animals (n = 90) were randomly divided into two groups: operated group, animals sub-

jected to surgical abdominal aorta stenosis and the sham-operated group as control, animals

subjected to similar procedure without banding the aorta. After 30, 60 and 90 days post-sur-

gery (dps), the animals were euthanized and the tissues collected for the morphological or

molecular analysis. Briefly, the rats were anesthetized with inhaled isoflurane (1.5%) vaporized

in medical O2. Under sterile conditions, the abdominal aorta above the renal arteries was

exposed through a midline abdominal incision and constricted at the suprarenal level by a 4–0

cotton suture tied around both the aorta and a 0.85 mm diameter blunted probe which was

then pulled out, as previously described [25]. A similar procedure was performed for sham
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group, except without the ligature. At the end of surgery, paracetamol (500 mg/kg) was admin-

istered orally for pain relief, 6/6h up to 48h after surgery.

Evaluation of cardiac structure and function by echocardiography

Systolic and diastolic cardiac function were determined noninvasively by transthoracic echo-

cardiography of anesthetized rats (1.5% isoflurane) using a Vevo 2100 high-resolution imaging

system equipped with a 21 (small rats) and a 12 MHz-scan head (larger rats) (VisualSonics,

Toronto, Canada) (n = 10-15/group). Echocardiography was performed 30, 60 and 90 dps.

Images were analyzed off-line by an investigator blinded to the groups using VisualSonics Car-

diac Measurements software. For each parameter, measurements were performed from three

to six different cardiac cycles, and the values were averaged. Interventricular septum thickness

(IVS), left ventricle internal diameter (LVID), and left ventricle posterior wall thickness

(LVPW) were measured in both systole and diastole from long-axis views from the parasternal

approach. Fractional shortening (FS) and ejection fraction (EF) were calculated. Diastolic

function was assessed using pulsed-wave Doppler imaging of the transmitral filling pattern.

Mitral inflow pattern was assessed from the apical 4-chamber view with a sample volume

placed at the mitral leaflet tips. Peak velocity during early filling (E) was measured. As E and A

diastolic filling waves are often merged in rats, A-wave velocity and E-wave deceleration time

were not measured in this study. Tissue Doppler assessments were conducted from the apical

4-chamber view with the sample volume placed at the septal portion of the mitral annular

level. The lateral mitral annulus was not assessed due to unreliable visibility and poor angula-

tion. Early mitral annular septal velocity (E’) was measured and E/E’ ratio calculated.

Blood pressure

The evaluation of blood pressure was performed in the anesthetized animals (pentobarbital

sodium, 40 mg/kg, intraperitoneally) one day after echocardiography at 90 dps (n = 6-8/

group). Also, some animals were randomly chosen at 30 and 60 dps for the evaluation of the

blood pressure (n = 6-8/group). Systolic, diastolic, and mean arterial blood pressures were

recorded through polyethylene catheters positioned in the carotid artery and connected to the

pressure transducer Powerlab (AD Instruments, Castle Hill, Australia). The values were

recorded during 5–8 minutes after hemodynamic stabilization.

Harvesting of the hearts

Immediately after blood pressure analysis at each time point, the thoracic cavity was opened,

the hearts rapidly removed, rinsed in 0.9% saline solution, blotted and weighed. Both ventricles

from each heart were isolated and cut into two fragments by a midi ventricular coronal section.

The upper fragment was fixed in phosphate-buffered 10% formalin (pH 7.3) for histological

study. From the inferior fragment, a thin slice was cut, embedded in Tissue Tek1, frozen in

isopentane chilled in liquid nitrogen and stored at -80˚C for immunofluorescence study. The

remaining from this fragment was frozen in liquid nitrogen and stored at -80˚C for Western

blot analysis.

To calculate cardiomyocyte diameter in the left ventricle (n = 6-8/group), hematoxylin and

eosin stained sections were used. Since the myocardial fiber has a tubular shape, the smallest

axis is a measure perpendicular to the nucleus, no matter the myocardial fiber is sectioned in

longitudinal, oblique or transversal manner [26,27]. We measured the axis in a section perpen-

dicular to the longest axis of the myocardial fiber crossing the nucleus. Thirty values were

obtained per animal, and the mean value was calculated. To estimate the percentage of fibrosis

in the left ventricle (n = 6-8/group), the collagen area was determined in picrosirius red-
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stained sections. For each heart, ten microscopic fields were randomly selected and perivascu-

lar fibrosis areas were excluded from the analyses. The mean value was subsequently calcu-

lated. Both quantitative examinations were performed on a medium power light-microscopic

field (×400). The measurements were performed with the Leica Qwin software (Leica Imaging

Systems Ltd., Cambridge, UK) by an investigator blinded to the group’s identification.

Western blot analysis

The hearts were collected as described before (n = 5-8/group), the left ventricle walls isolated

and homogenized in RIPA buffer with protease inhibitor cocktail (Sigma-Aldrich, Inc.,

St. Louis, MO, USA). Fifty μg protein/well were resolved on a 5%-16% SDS-Page gels and

transferred to PVDF membrane (Amersham Pharmacia Biotech, Amersham, UK). The mem-

branes were blocked with 5% albumin for 2 h and incubated overnight at 4˚C with the primary

antibodies to dystrophin (1:50, Santa Cruz Biotechnology, Santa Cruz, CA, USA), calpain-1

(1:500, Cell Signaling, Danvers, MA, USA), calpastatin (1:500, Cell Signaling) and alpha-fodrin

(1:500, Cell Signaling). After that, they were incubated with HRP-conjugated secondary anti-

bodies for an additional 1 h at room temperature. Equal protein loading of the samples was

verified by staining anti-tubulin (Santa Cruz Biotechnology), anti-GAPDH (Cell Signaling,

Danvers, MA, USA) or β-actin (1:5000, Santa Cruz Biotechnology). The membranes were

developed using ECL (Millipore, Billerica, MA, USA). Gel documentation and signal quantifi-

cation were made using the Bio-Image Analysis of Molecular Imager ChemiDoc XRS System

(Bio-Rad, Richmond, CA, USA).

Immunofluorescence

Immunolabeling was performed in 5 μm thick sections using a primary antibody to dystrophin

(1:200, Santa Cruz Biotechnology) (n = 3-5/group). Secondary antibody fluorescein-conju-

gated anti-rabbit IgG (Vector Laboratories Inc., Burlingame, CA, USA), diluted 1:200, was

used. F-actin filaments were stained with Alexa Fluor 594 conjugated phalloidin (Invitrogen-

GIBCO), and DNA was stained with DAPI. The images were analyzed with a Leica DM 6000

M microscope equipped with a Leica AF6000 Deconvolution System (Leica Microsystems).

Statistical analysis

All data are presented as the mean±SD. Multiple comparisons were made using a one-way

analysis of variance (ANOVA) followed by Tukey’s post-test. Differences were considered sta-

tistically significant when p<0.05.

Results

Echocardiography

Table 1 shows changes in the echocardiographic parameters. It was previously shown [25] that

after 90 dps the operated animals could be subdivided into two groups, wherein 70% showed

hypertrophic hearts (HH) and 30% hypertrophic+dilated hearts (HD). Increased left ventricle

wall thickness was observed since 30 dps in IVS and LVPW in both systole and diastole. Alter-

ation in the LVID was observed only at 90 dps in the HD group and increases of 51% and 28%

were observed in the systole and diastole, respectively (Table 1; Fig 1A–1E). The systolic func-

tion at 30 and 60 dps in the operated groups was not different from the sham-operated group.

The findings in HH group were similar to that observed at 30 and 60 dps. However, striking

decrease was observed in the systolic function in the HD group: 45% in the EF and 41.5% in

the FS (Table 1; Fig 1K and 1L). Concerning to diastolic parameters, there is no difference
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between sham-operated and operated at 30 and 60 dps and HH group, although increased val-

ues were observed. But, in the HD group, the mitral E-wave velocity increased 47%, and E/E’

ratio increased 60% (Table 1; Fig 1F–1J, 1M and 1N). The heart rate did not change in sham

and operated groups during all the study (Table 1).

Blood pressure

To verify whether the increased blood pressure had an additional role in the results, the blood

pressure was evaluated. At 30 dps, the systolic blood pressure increased 42% in the operated

group (171.3±30.30 mmHg, p<0.05) compared with the sham-operated group (120.5±10.21

mmHg). The increase in diastolic blood pressure was not significant (106.5±23.87 mmHg)

compared with the sham-operated group (83.50±15.11 mmHg) and an increase of 47% was

observed for the mean blood pressure (140.6±26.41 mmHg, p<0.01) compared with the

sham-operated group (95.8±11.56 mmHg) (Fig 2A).

After 60 dps, the increase in the systolic blood pressure was 44% in the operated group (180

±31.05 mmHg, p<0.05) compared with the sham-operated group (125.0±19.26 mmHg); the

increase in diastolic blood pressure was 29% (113.5±14.69 mmHg, p<0.05) compared to the

values of sham-operated group (90.25±18.06 mmHg) and an increase of 41% was observed for

the mean blood pressure (143.6±16.95 mmHg, p<0.05) compared with the sham-operated

group (101.7±20.85 mmHg) (Fig 2B).

At the end of 90 dps, the increase in the systolic pressure was 50% in HH group (193.3.0

±25.56 mmHg, p<0.001) and 48% in HD group (191.3±15.30 mmHg, p<0.001) compared

with the sham-operated group (129.0±16.53 mmHg). The increase in the diastolic blood pres-

sure was 43% in HH group (130.3±13.55 mmHg, p<0.001) and 42% in HD group (129.3±8.40

mmHg, p<0.001) compared with the sham-operated group (91.25±18.49 mmHg). An increase

of 46% in the HH group (151.4±16.95 mmHg, p<0.001) and 44% in HD group (149.5±12.4

mmHg, p<0.001) in the mean blood pressure was observed compared to the sham-operated

Table 1. Echocardiographic parameters.

30d 60d 90d

Sham Operated Sham Operated Sham HH HD

IVS systole (mm) 1.81±0.25 2.28±0.39* 2.03±0.31 2.79±0.31*** 2.13±0.37 2.72±0.38** 2.85±0.39***

IVS diastole (mm) 1.37±0.12 1.56±0.21* 1.50±0.19 1.93±0.23*** 1.48±0.13 1.89±0.26*** 1.96±0.26***

LVID systole (mm) 4.87±0.61 5.45±0.63 5.17±0.65 5.56±0.77 5.40±0.55 6.04±0.26### 8.18±1.06***

LVID diastole (mm) 7.69±0.73 8.12±0.75 7.80±0.65 8.80±0.90 8.26±0.35 9.10±0.95### 10.57±0.88***

LVPW systole (mm) 2.27±0.25 2.69±0.39* 2.37±0.31 3.10±0.39*** 2.49±0.11 3.11±0.39*** 2.71±0.23

LVPW diastole (mm) 1.74±0.24 1.91±0.24* 1.76±0.23 2.15±0.20** 1.75±0.13 2.11±0.25** 1.98±0.33

EF (%) 65.34±5.77 62.17±5.85 62.62±5.82 63.26±5.42 67.73±7.34 61.46±4.94### 35.46±3.29***

FS (%) 36.70±3.88 33.95±5.00 35.28±2.47 37.44±3.81 36.97±3.38 34.60±2.78### 21.60±5.34***

Heart rate (bpm) 334.4±50.95 359.9±13.58 329.0±10.27 342.2±21.41 323.5±25.18 325.9±19.99 353.6±22.79

Mitral E-wave velocity (mm/s) 839±99 1087±233 893±142 1169±242 866±134 1039±156 1279±127*

E/E’ ratio 25.89±7.34 54.09±14.91 29.22±1.58 55.27±15.49 26.99±5.47 48.10±14.94 68.14±16.78**

Values are mean ± SD

*p<0.05 versus sham

**p<0.01 versus sham

***p<0.001 versus sham

###p<0.001 HH versus HD.

https://doi.org/10.1371/journal.pone.0189469.t001
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group (103.8±12.15 mmHg) (Fig 2C). Here we showed that there is no difference in the blood

pressure levels between the HH and HD groups.

Animal growth and heart morphology

The body weight at 30, 60 and 90 dps was not different between operated and sham-operated

groups. The mean heart weight of rats from the operated group was 34% increased at 30 dps,

39% increased at 60 dps, 40% increased in HH group and 76% in HD group at 90 dps when

compared with respective sham-operated animals (Table 2). The heart/body weight ratio

increased 47% at 30 dps, 38% at 60 dps, 55% in the HH group and 76% in the HD group when

Fig 1. Representative images showing the B-mode long-axis ultrasound (A-E) and pulsed-wave Doppler (F-J) from

sham-operated, 30, 60 and 90 dps (HH and HD groups). The B-mode images represent hearts in diastole. Pulsed-

wave Doppler shows E peaks in different velocities. The graphs represent data from 3–6 cycles per animal (n = 10-15/

group) of the ejection fraction, fractional shortening, E wave velocity and E/E’ ratio. IVS = interventricular septum;

LVID = left ventricle internal diameter; LVPW = left ventricle posterior wall. White bars = sham-operated, gray

bars = operated; gray bar with stripes = HH group; and black bars = HD group. The values represent the means ± SD.

https://doi.org/10.1371/journal.pone.0189469.g001

Early dystrophin loss in the transition to heart failure

PLOS ONE | https://doi.org/10.1371/journal.pone.0189469 December 21, 2017 6 / 16

https://doi.org/10.1371/journal.pone.0189469.g001
https://doi.org/10.1371/journal.pone.0189469


compared with respective sham-operated animals. The myocyte diameter increased 11% at 30

dps, 25% at 60 dps, 22% at 90 dps in the HH group and 20% in the HD group when compared

with sham-operated animals. Concerning to the interstitial collagen content, significant

increases were observed since 30 dps: 71% at 30 dps, 69% at 60 dps, 81% in the HH group and

87% in the HD group at 90 dps when compared to sham-operated animals (Table 2).

Western blotting and immunofluorescence

By Western blot quantification, the mean levels of dystrophin expression in the left ventricle at

30 dps (1.41±0.17, Arbitrary Unit—AU) and 60 dps (1.22±0.40 AU) were not different from

sham-operated group (1.02±0.14 AU, Fig 3A). A slight increase in the dystrophin expression

was observed in the HH group (1.52±0.15 AU, p<0.05) and a marked reduction was observed

in the HD group (0.52±0.12 AU, p<0.001), representing a decrease of 50% (Fig 3A). When the

mean value is observed in 30 dps, 60 dps and HH group, there is no difference among them

(Fig 3A). However, when data are displayed in a scatter plot graph where each data point is dis-

played individually on the graph, an important finding is highlighted: some animals from the

60 dps group displayed reduction of dystrophin expression (Fig 3B, red circle). This subgroup,

named 60 dps Low, showed a reduction of 45% (0.86±0.05 AU, p<0.001) in the dystrophin

Fig 2. Systolic, diastolic and mean blood pressure. Graphs show data from the systolic, diastolic and mean blood pressure from sham-

operated and operated at 30, 60 and 90 dps (HH and HD groups), n = 6-8/group.

https://doi.org/10.1371/journal.pone.0189469.g002

Table 2. Heart weight, heart/body weight ratio, myocyte diameter and interstitial collagen.

Heart weight (g) Heart/body weight ratio (g/Kg) Myocyte diameter (μm) Interstitial Collagen (%)

Sham Operated Sham Operated Sham Operated Sham Operated

30d 1.33±0.11 2.00±0.41** 3.25±0.20 4.74±0.40*** 10.2±0.24 11.3±0.58** 1.73±0.45 2.96±0.72*

60d 1.71±0.08 2.38±0.29** 3.04±0.20 4.20±0.59** 10.1±0.54 12.6±0.36** 2.07±0.54 3.50±0.72**

90d HH 1.78±0.16 2.66±0.12*** 2.99±0.36 4.65±0.44*** 10.6±0.73 12.89±0.53** 1.97±0.59 3.53±0.50**

90d HD 1.78±0.16 3.06±0.11***# 2.99±0.36 5.26±0.36***¶ 10.6±0.73 12.73±0.24** 1.97±0.59 3.69±0.59***

Values are mean±SD

*p<0.05

**p<0.01

***p<0.001 versus sham

#p<0.0001 HD versus HH

¶ p<0.05 HD versus HH.

https://doi.org/10.1371/journal.pone.0189469.t002
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expression when compared to the other animals from 60 dps group, named 60 dps High (1.57

±0.15 AU) (Fig 3C).

Fig 3. Western blotting and immunofluorescence for dystrophin. Graphs represent data from Western blotting quantification.

Immunofluorescent detection of dystrophin (green fluorescence), actin (red fluorescence) and nuclei (blue fluorescence). Bars = 50

microns, n = 5-8/group.

https://doi.org/10.1371/journal.pone.0189469.g003
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The immunofluorescent detection of dystrophin demarcates the cellular perimeter in a uni-

form pattern as a continuous rim at the periphery of most cardiomyocytes from sham-oper-

ated hearts (Fig 3D, green fluorescence). The actin in the cytoskeleton of the cardiomyocytes

was very evident (Fig 3D–3I, red fluorescence). At 30 dps and 60 dps High, the pattern of dys-

trophin labeling was very similar to that observed in the age-matched sham-operated animals

(Fig 3E and 3F, respectively). At 60 dps Low, some blocks of cardiomyocytes exhibiting loss of

green fluorescence were the first signals of dystrophin loss (Fig 3G). The merged images of

dystrophin and actin clearly delineated the cardiomyocytes and highlighted those cardiomyo-

cytes exhibiting loss of dystrophin signal (Fig 3G and 3I, arrow). At 90 dps, an increased num-

ber of foci of dystrophin loss were seen in the HD group. HH group results are similar to those

observed at 60 dps High (Fig 3H).

Since calpains have been suggested to be involved in the breakdown of cytoskeletal and sar-

comeric proteins during cardiac remodeling, the time-course of calpain-1 protein content was

investigated by Western blotting. The protein content of calpain-1 at 30 dps (1.18±0.12 AU),

at 60 dps (1.52±0.29 AU) and in the HH group (1.25±0.17 AU) was not different from that

observed in the age-matched sham-operated animals (0.81±0.18 AU, Fig 4A). However, a

marked increase was observed at 90 dps in the HD group (2.04±0.43 AU) representing an

increase of 151% when compared to sham-operated animals (Fig 4A). Following the same line

of thought as we made to dystrophin, calpain data were also displayed in a scatter plot graph

(Fig 4B) and the same subgroups were identified: 60 dps High (1.30±0.09 AU) and 60 dps Low

(1.77±0.11 AU) (Fig 4C). The subgroup 60 dps Low showed an increase of 33% in the calpain

expression when compared to 60 dps High (p<0.05).

To further investigate the possible involvement of calpains in the dystrophin degradation,

the protein content of calpastatin, a well-known endogenous specific inhibitor of calpains, was

Fig 4. Western blotting for calpain-1. Graphs represent data from Western blotting quantification, n = 5-6/group.

https://doi.org/10.1371/journal.pone.0189469.g004
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investigated. Also, the production of 150- and 145 kDa proteolytic fragments of alpha-fodrin,

specific calpain-mediated alpha fodrin degradation products, were investigated. At 90 dps, the

protein content of calpastatin was significantly elevated in the HH group, and this effect was

associated to low protein content of calpain-1 as well as with low production of the 150- and

145 kDa fragments of alpha-fodrin. However, in the HD group, the protein content of calpas-

tatin was significantly reduced, and at the same time, the protein content of the cleaved cal-

pain-1 and the fragments of alpha-fodrin were significantly increased, suggesting an induction

of the calpain-1 activity (Fig 5).

Discussion

The present study demonstrated that abdominal aorta constriction produced significant

hypertension and cardiac hypertrophy from 30 to 90 dps. At 90 dps, 70% of the animals pre-

sented cardiac hypertrophy and fibrosis (HH group) associated with preserved dystrophin

expression and cardiac function. The remaining 30% presented cardiac hypertrophy+dilated

hearts (HD group), decreased dystrophin and increased calpain-1 expression associated with

systolic and diastolic dysfunction. At 30 and 60 dps, cardiac hypertrophy and fibrosis were

associated with preserved systolic and diastolic cardiac functions. The first signals of dystro-

phin reduction were observed as early as 60 dps.

The animals from HD and 60 dps High groups presented a significant reduction of dystro-

phin expression. Dystrophin is an essential cytoskeletal protein in the muscle. The precise

physiological role of dystrophin is not fully known although, due to its subsarcolemmal locali-

zation, it has been proposed to serve a variety of functions such as providing stability to the

membrane and signal transduction [28,29]. Thus, one important function of the dystrophin is

to mechanically stabilize the sarcolemmal membrane from shear stress imposed during eccen-

tric muscle contraction [30]. Increased dystrophin mRNA and protein accumulation were

observed 7 days after aorta constriction suggesting that dystrophin could play an important

role in the maintenance of the sarcolemma integrity under pressure overload [31]. The reduc-

tion of dystrophin expression constitutes the structural basis in the hearts of patients with

Becker muscular dystrophy and the absence of dystrophin is associated with Duchenne mus-

cular dystrophy. Both genetic disorders are associated with the development of dilated

Fig 5. Western blotting analysis for calpastatin, activated calpain-1 and alpha-fodrin. Figure shows

representative image of Western blotting in the sham, HH and HD groups, n = 5-6/group.

https://doi.org/10.1371/journal.pone.0189469.g005
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cardiomyopathy [16,32]. Also, dystrophin reduction has been observed in several experimental

models of cardiomyopathies, such as post-viral myocarditis caused by Coxsackie virus B [33],

myocardial infarction [23], isoproterenol [10,34] and doxorubicin administration [35], septic

cardiomyopathy [36] and experimental Chagas disease [37–39]. The importance of dystrophin

loss to the development of heart failure has also been demonstrated through the antisense ther-

apeutic dystrophin that restores to almost normal levels the dystrophin expression in the car-

diac muscle and prevents the development of cardiac failure in dystrophic mdx mice [40].

Significant increases were seen in the cardiomyocytes diameter and collagen content in all

experimental groups. Ventricular remodeling is comprised of alterations in both extracellular

and intracellular myocardial architecture and fibrosis and cardiomyocyte hypertrophy are

classical remodeling parameters. Disproportionate increases in fibrosis and cardiomyocyte

decrease the myocardial relaxation, increase stiffness in the ventricular wall, reduce LV com-

pliance and the cardiac function [41–44]. To further investigate the consequences of the car-

diac remodeling, the cardiac function was evaluated by echocardiography. Here, serial

transthoracic echocardiography and Doppler techniques were used to evaluate LV geometry

and systolic and diastolic functions at 30, 60 and 90 dps. Conventional parameters of systolic

function including FS and EF remained unchanged at 30 dps and 60 dps groups, suggesting

preserved systolic function. However, they were decreased in the HD group, clearly indicating

systolic dysfunction. Diastolic function parameters evaluated at 30 and 60 dps groups were not

different from control, although increased values were seen. After 90 dps in the HD group, LV

dilation and deterioration in all parameters of diastolic filling became apparent. Thus, diastolic

dysfunction indicates poor compliance and reduced myocardial relaxation capabilities in this

group. Numerous studies have also assessed cardiac structure and function by echocardiogra-

phy in rats subjected to pressure overload and showed similar results to ours [45–49]. An

important limitation of echo studies should be considered: the fusion of the E and A wave.

Although E/A ratio is a marker for ventricular relaxation, it could not be obtained in this study

since the E and A waves were fused in the rats due to their extremely fast heart rates. It could

be argued whether reduced dystrophin expression in the HD group could contribute to the

heart failure or this reduction occurs secondary to heart failure? Our results show that the first

signals of dystrophin loss were early detected at 60 dps in some animals when systolic and dia-

stolic cardiac function were still preserved. In this way, we can hypothesize that loss of dystro-

phin occurs before the beginning of cardiac dysfunction. Thus, the animals that early lose

dystrophin might be those that could progress to heart failure.

Renin-angiotensin system [50–53] and mechanical stretch [54–58] are activated after

abdominal aortic constriction, a well known model of pressure overload induced left ventricu-

lar hypertrophy [59–62]. Both stimuli are known to increase intracellular Ca2+levels [63–68].

This increase could be responsible for the activation of proteolytic enzymes [18,69,70]. Among

these proteolytic enzymes, calpains have an important role in the cardiac remodeling and pro-

gression to HF [18,71]. Calpains are a ubiquitous, well-conserved family of Ca2+-dependent

cysteine proteases, consisting of several tissue-specific isoforms. The main isoforms of calpains

in mammalian cells are the μ-calpain (calpain 1) and m-calpain (calpain 2), which are activated

in demand of micromolar and millimolar levels of Ca2+, respectively. In response to increased

levels of cytosolic Ca2+ levels, calpains translocate to the cell membrane, where they are acti-

vated by autolysis. The cleaved calpains are then released into the cytosol to further cleavage

substrates. The calpains activity is inhibited by calpastatin, a well known endogenous inhibitor

[71,72]. In this study, we observed increased protein content of calpain-1in the HD group

associated with low protein content of calpastatin. To further test the possible activation of cal-

pain, we decided to evaluate another calpain substrate: alpha-fodrin (spectrin). Calpain-medi-

ated digestion of the cytoskeletal protein alpha-fodrin results in two proteolytic fragments of

Early dystrophin loss in the transition to heart failure

PLOS ONE | https://doi.org/10.1371/journal.pone.0189469 December 21, 2017 11 / 16

https://doi.org/10.1371/journal.pone.0189469


nearly equal electrophoretic mobility (~150 kDa and ~145 kDa). These fragments are the

exclusive result of calpain action and can be detected by antibodies against alpha fodrin [73–

76]. We showed a significant production of the 150 and 145 kDa proteolytic fragments of

alpha-fodrin in the HD group and the low production in the sham and HH groups. Taken

together, these data suggest the possible involvement of calpains in the cardiac remodeling

observed in the HD group.

In conclusion, some hearts present a distinct molecular pattern at an early stage of the dis-

ease; this pattern could provide an opportunity to identify these failure-prone hearts during

the development of the cardiac disease. In this study, we showed that decreased expression of

dystrophin and increased expression of calpains are coincident and could work as possible

therapeutic targets to prevent heart failure as a consequence of cardiac hypertrophy. These

changes occur in parallel and this casual relation requires further research. This is a continuing

interest of our laboratory.
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