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Formal group insertion into aryl C—N bonds through
an aromaticity destruction-reconstruction process

Dandan Han', Qiugin He'! & Renhua Fan'2

Given the abundance and the ready availability of anilines, the selective insertion of atoms
into the aryl carbon-nitrogen bonds will be an appealing route for the synthesis of nitrogen-
containing aromatic molecules. However, because aryl carbon-nitrogen bonds are particularly
inert, anilines are normally activated by conversion to more reactive intermediates such as
aryldiazonium salts to achieve functionalization of the aryl carbon-nitrogen bonds, but the
nitrogen atom is usually not incorporated into products, instead being discarded. The
selective insertion of groups into aryl carbon-nitrogen bonds remains an elusive challenge
and an unmet need in reaction design. Here we show an aromaticity destruction-
reconstruction process that selectively inserts a trimethylenemethane (TMM) group into
the aromatic carbon-nitrogen bond of anilines concomitant with a benzylic carbon-hydrogen
bond functionalization. This process provides a transformative mode for anilines, and the
insertion products are versatile precursor to various nitrogen-containing aromatic molecules
through simple conversions.

TDepartment of Chemistry, Fudan University, 200433 Shanghai, China. 2 Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi
Normal University, 330022 Nanchang, China. Correspondence and requests for materials should be addressed to R.F. (email: rhfan@fudan.edu.cn)

| (2018)9:3423| DOI: 10.1038/541467-018-05637-z | www.nature.com/naturecommunications 1


mailto:rhfan@fudan.edu.cn
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

n view of the demand for high atom economy, insertion of
functional groups into chemical bonds is of significant interest to
synthetic chemists. This comes not only from the perspective of
fundamental scientific research but also from its potential use in
synthetic chemistry. Recently, transition-metal-catalyzed group
insertion into unreactive aryl chemical bonds such as
carbon-carbon!~3, carbon—cyanide*-%, or carbon-halogen’~° bonds
has drawn particular attention since aromatic molecular complexity
can be rapidly built without the generation of stoichiometric
amounts of waste products (Fig. la). In this context, given the
abundance and the ready availability of anilines and their deriva-
tives, the selective insertion of atoms into the aryl carbon-nitrogen
bonds will be an appealing route for the synthesis of nitrogen-
containing aromatic molecules. However, compared with the clea-
vage and functionalization of aliphatic carbon-nitrogen bonds!?-18,
because aryl carbon-nitrogen bonds are particularly inert, the direct
cleavage of these bonds is very difficult!®-23, Anilines are normally
activated by conversion to more reactive intermediates such as
aryldiazonium salts**-27, arylammonium salts?8-30, triazenes3!-32,
or amides?3, which serve as electrophiles in various reactions thus
forming carbon-heteroatom or carbon-carbon bonds (Fig. 1b).
Although these elegant methods have enabled the synthesis of a
variety of functionalized aromatic molecules using anilines as the
aryl source, the nitrogen atom in substrates is usually not incor-
porated into products, instead it is being discarded. The selective
insertion of groups into aryl carbon-nitrogen bonds remains an
elusive challenge and an unmet need in reaction design (Fig. 1c).
Dearomatization of aromatic compounds has been recognized as
a fundamental chemical transformation, especially in the synthesis
of complex alicyclic molecules®*4%, The intrinsic functionality and
reactivity associated with the aromatic system of anilines may be
liberated once the conjugated system is successfully broken up,
thus offering a possibility to circumvent the reactivity and the
selectivity of anilines*!~4%, In this paper, we report an aromaticity
destruction-reconstruction process that selectively inserts a tri-
methylenemethane (TMM) group into the aryl carbon-nitrogen
bond in anilines concomitant with a functionalization of the
benzylic carbon-hydrogen bond. This group insertion process
provides a transformative mode for anilines and the TMM inser-
tion products are versatile precursors to a variety of nitrogen-
containing aromatic molecules through simple conversions.

a

Results

Initial test. In connection with our recent research on the
functionalization of the aryl carbon-nitrogen bonds by using the
dearomatization strategy”’, we investigated the reaction of ani-
lines with palladium-TMM (Pd-TMM) complexes under oxi-
dative dearomatization conditions. PA-TMM complexes in situ
generated from 3-acetoxy-2-trimethylsilylmethyl-1-propene and
palladium(0) catalysts has served as useful synthons in dipolar
cycloaddition with unsaturated bonds in the construction of
various cyclic compounds since the first report by Trost in
1979°1-63, To our delight, in an initial test, we observed the
formation of a TMM-containing spiro intermediate and its con-
version into compound 3 in which the aryl carbon-nitrogen bond
was inserted by the TMM group and the para-benzylic
carbon-hydrogen bond was functionalized by methoxylation
under acidic conditions.

Optimization of reaction conditions. Encouraged by these initial
results, a set of variables, including palladium catalysts, acidic
catalysts, solvents, the ratio of reagents, and temperatures, were
screened to establish the optimum reaction conditions (for
details, see Supplementary Table 1 in the Supplementary Infor-
mation). The reaction can be conducted in a one-pot three-step
manner. Pd(PPh;), and Bi(OTf); proved to be the best catalysts
for the formation and the conversion of the spiro intermediate,
respectively. Moreover, changing the nature of nitrogen protect-
ing group in substrate has a large effect on the transformation.
The reaction works with sulfamide groups but not with benza-
mide or acetamide. Under the optimized conditions, the one-pot
reaction of N-tosyl protected p-toluidine provided the TMM
insertion product 3 in 68% yield (Fig. 2).

Substrate scope. Substrate scope investigation revealed that the
TMM insertion reaction displays broad substrate compatibility
(Fig. 3). Under the optimized conditions, the reaction is tolerant
of a range of functional groups on the aromatic ring or on the
substituents. For example, halogen groups remain unaffected in
the palladium-catalyzed reaction leading to the formation of
compounds 4 and 5. Compounds 6 and 7 bearing an allylic or a
1-phenylethyl group were formed in good yields. Reaction of 2-
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S 1) PhIO (1 equiv), MeOH, 25 °C, 5 min MeQ
Me N > N—Ts
4 2) Pd(PPhy), (10 mol %), ATMSMP (1.1 equiv) o
1 AcOEt, reflux, 1 h
3 (68%)

3) Bi(OTf), (12 mol %), MeOH, 25 °C, 12 h

ATMSMP: ACO\)k/TMS
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Fig. 2 TMM insertion into aryl carbon-nitrogen bond in p-toluidine concomitant with benzylic methoxylation. Ts tosyl, Ac acetyl, TMS thrimethylsilyl.
Trimethylenemethane in pink, which is consistent with the color of FG in Fig.1 means that is insertion group. N in purple is consistent with the color of N in
Fig.1. Methoxyl group in cornflower blue means that it is a newly incorporated group
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Fig. 3 Substrate scope investigation. Evaluation of the influence of substituent groups of anilines

aryl- or 2-alkynyl-substituted anilines proceeds smoothly
regardless of the different electronic demands on the aryl or the
alkynyl substituents. The oxidative dearomatization of substrate
bearing an ethynyl group was complex owing to the sensitive of
the ethynyl group to the used oxidant. It is noteworthy that, even
in the presence of multiple methyl groups at the ortho or the meta
position of the substrate, methoxylation occurs exclusively at the

para-benzylic positions. For example, reaction of 2,4-dimethyla-
niline provided the 4-methoxymethyl-substituted TMM insertion
product 23 in 71% yield. Steric hindrance in the TMM insertion
reaction was observed, consistent with our hypothesis. For
example, compound 25 bearing two ortho-ethyl groups was
formed in a lower yield than compound 24, bearing two methyl
groups since the ortho-ethyl substituents, sterically or otherwise,
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Fig. 5 Variable benzylic functionalization by varying rearrangement solvent. Nuc nucleophile. Nuc and the groups in cornflower blue means that it is a
newly incorporated group. Solvent in a cornflower blue square frame means that it acts as a nucleophile

decrease the reactivity of the ketimino group in the dearomatized
intermediate. In addition to a methyl group, ethyl, n-butyl, or
isopropyl groups can be the para-substituent of anilines.
Tetrahydronaphthalen-2-amine or  2,3-dihydro-1H-inden-5-
amine are also suitable substrates. Moreover, the TMM insertion
process can be extended to substrates lacking a para-benzylic
C-H bond, and methoxylation takes place in the ortho-benzylic
position, as in the reaction of 4-(tert-butyl)-2,6-dimethylaniline
that produces compound 33 in 71% yield. When phenylamine
was employed as substrate, the reaction failed to afford the TMM
insertion product but gave rise to the corresponding spiro
intermediate as the major product.

4

Plausible reaction pathway. Although the precise mechanism of
the TMM insertion reaction is not clear at this stage, a plausible
pathway could involve the dearomatization of anilines converting
the electron-rich aromatic system into an electron-deficient
cyclohexadienimine system to permit an aza-TMM cycloaddi-
tion of the ketimino group with the Pd-TMM complexes (Fig. 4).
This dearomatizing transformation would introduce the TMM
group by forming a spiro intermediate. Rearomatizing rearran-
gement would release the tension of the spiro structure
and trapping the benzylic carbon cation by nucleophilic
attack would deliver the TMM insertion and benzylic methox-
ylation products.
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Variable benzylic functionalization. This assumption led us to
investigate the possibility of introducing different functional
group into the benzylic position just by varying the solvent in the
rearrangement step (Fig. 5). We are delighted to observe the
formation of 4-hydroxymethyl-substituted TMM insertion pro-
ducts 34 and 35 when acetone and water was used as a mixed
solvent. Moreover, the use of nitriles as solvents instead of
methanol led to the formation of the 4-acetamido-substituted
products 40-43.

Synthetic applications. To demonstrate the synthetic utility of
this TMM insertion process, we explored a number of selective
transformations of the insertion products with a view to the
synthesis of functionalized nitrogen-containing aromatic mole-
cules (Fig. 6). The representative product 3a is readily converted
to the epoxide 44 by epoxidation to the aziridine 45 by iodocy-
clization or to the tetrahydroquinoline 46 by reduction and
radical amination. The condensation of compound 3a with allyl
bromide followed by an olefin metathesis gave rise to 2,5-dihy-
dro-1H-pyrrole 47%%. Compound 3a is also well suited to the
construction of 3-azabicyclo[4.1.0]hept-4-ene 48 by reaction with
propargyl bromide and subsequent platinum-catalyzed cycliza-
tion®. The 4-methoxymethyl group in compound 3a can be

Ts
\

e

M
|
MeQ
N c
Ts ‘X
45 MeO

NHTs

ol

oxidized to a formyl group by treatment with DDQ. The insertion
product 24 bearing two ortho-methyl groups undergoes reduction
and a radical sp3> C-H amination reaction to form 2,3,4,5-tetra-
hydro-1H-benzo[c]azepine 50°°. The reactivity of the alkynyl
functional group in the insertion products can also be exploited.
For example, a gold(I)-catalyzed cyclization of product 13 in the
presence of 5 equivalents of H,O delivers multi-functional ben-
zocycloheptene 51 in 63% yield®”.

Discussion

In summary, we report an aromaticity destruction-reconstruction
process that selectively inserts a TMM group into the aromatic
carbon-nitrogen bond in anilines concomitant with a benzylic
carbon-hydrogen bond functionalization. The process involves a
dearomatization, destroying the aromaticity of anilines, a
palladium-catalyzed aza-TMM cycloaddition to introduce the
functional group, and a Lewis acid-catalyzed rearrangement to
complete the group insertion and restore the aromaticity. The
process provides a transformative mode of anilines since the
group insertion products are versatile precursors through simple
conversions to a range of nitrogen-containing aromatic mole-
cules. Development of an extension of this strategy to other
aromatic systems is in progress.
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Fig. 6 Synthetic applications of the TMM insertion products. @) m-CPBA (6 equiv), CH,Cl,, 25 °C, 58%; b) Nal (1.2 equiv), t-BuOCI (1.2 equiv), MeCN,
25°C, 50%; ¢) i. H, (1atm), Pd/C, MeOH, 25 °C, 95%, ii. 1,3-diiodo-5,5-dimethylimidazolidine-2,4-dione (1.8 equiv), Na,SO5 (2 equiv), CICH,CH,CI,

60 °C, 83%; d) i. 3-bromoprop-1-ene (1.2 equiv), K,COs3 (2 equiv), MeCN, 80 °C, 76%, ii. Grubbs catalyst II (4 mol%), CH,Cls, rt, 80%; e) i. 3-bromoprop-
1-yne (1.2 equiv), K,CO3 (2 equiv), MeCN, 80 °C, 80%, ii. PtCl, (4 mol%), toluene, 80 °C, 67%,; f) DDQ (6 equiv), CH,Cl,:H,O =10:1, 25 °C, 78%. The

pink part in the structures mean that it is an insertion group
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Methods

General method for TMM insertion of anilines. PhIO (0.11 mmol) was added to
a solution of compound 1 (0.1 mmol) in MeOH (2.0 mL) at 25 °C. After 5 min, the
reaction mixture was concentrated in vacuo, then was passed through a short silica
gel column to remove Phl. The resulting product was mixed with a solution of
2 (0.11 mmol) and Pd(PPh;), (0.01 mmol) in anhydrous EtOAc (2.0 mL), and the
resulting mixture was stirred at 80 °C for 1h. Then the reaction mixture was
concentrated in vacuo. The resulting crude product was mixed with a solution of Bi
(OTf)3 (0.012 mmol) in MeOH (2.0 mL) and stirred at 25 °C for 12 h. After the
substrate was consumed completely (monitored by thin-layer chromatographic
analysis), the mixture was passed through a short silica gel column and then
concentrated under reduced pressure. The residue was purified by flash column
chromatography on silica gel (petroleum ether/ethyl acetate = 5/1) to furnish the
product 3. (0.023 mg, 68%). White solid; mp: 80-81 °C; IH NMR (400 MHz,
CDCL): 8 7.70 (d, J= 8.2 Hz, 2 H), 7.28 (d, J= 8.1 Hz, 2 H), 7.22 (d, J= 7.9 Hz,
2H), 7.06 (d, = 7.9 Hz, 2 H), 4.99 (s, 1 H), 4.85 (s, 1 H), 4.65 (t, ] = 6.3 Hz, 1 H),
4.41 (s, 2H), 345 (d, J=6.4 Hz, 2H), 3.38 (s, 3 H), 3.30 (s, 2H), 2.42 (s, 3 H);
13C NMR (100 MHz, CDCl;) & 143.8, 143.4, 137.8, 136.8, 136.3, 129.6, 128.9, 127.9,
127.1, 114.2, 74.4, 58.1, 47.2, 40.0, 21.5; HRMS (m/2): [M + H]* caled. for
C1oH,3NO,S, 346.1471; found, 346.1478.

Data availability. All data that support the findings of this study are available
within this article and its Supplementary Information (including experimental
procedures, compound characterization data). Data are also available from the

corresponding author upon reasonable request.
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