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Background: The integration of computational and mathematical approaches is used to

provide a key insight into the biological systems. Through systems biology approaches

we seek to find detailed and more robust information on Leishmanial metabolic network.

Forman/Forman-Ricci curvature measures were applied to identify important nodes in

the network(s). This was followed by flux balance analysis (FBA) to decipher important

drug targets.

Results: Our results revealed several key high curvature nodes (metabolites) belonging

to common yet crucial metabolic networks, thus, maintaining the integrity of the network

which signifies its robustness. Further analysis revealed the presence of some of these

metabolites, MGO, in redox metabolism of the parasite. Being a component in the

glyoxalase pathway and highly cytotoxic, we further attempted to study the outcome

of the deletion of the key enzyme (GLOI) mainly involved in the neutralization of MGO

by utilizing FBA. The model and the objective function kept as simple as possible

demonstrated an interesting emergent behavior. The non-functional GLOI in the model

contributed to “zero” flux which signifies the key role of GLOI as a rate limiting enzyme.

This has led to several fold increase production of MGO, thereby, causing an increased

level of MGO•− generation.

Conclusions: The integrated computational approaches have deciphered GLOI as a

potential target both from curvature measures as well as FBA which could further be

explored for kinetic modeling by implying various redox-dependent constraints on the

model. Furthermore, a constraint-based FBA on a larger model could further be explored

to get broader picture to understand the exact underlyingmechanisms. Designing various

in vitro experimental perspectives could churn the therapeutic importance of GLOI.

Keywords: metabolic network, Forman curvature, Forman-Ricci curvature, network topology, Leishmania, flux

balance analysis

INTRODUCTION

Metabolic networks are becoming of much interest amongst the researchers due to their unique
feature of connecting every node (the metabolites) with the links (the reactions) that are catalyzed
by specific gene products responsible for growth andmaintenance of a cell (Mahadevan and Palson,
2005). Metabolic networks can be used to shed light on finding various disease mechanisms via the
identification of essential genes by implying perturbations on networks, thereby, characterizing the
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structure-function relationships (Watts and Strogatz, 1998;
Barabási and Oltvai, 2004; Dorogovtsev and Mendes, 2013).
Structure-function relationship of a network in terms of network
robustness and reliability is strongly linked to its geometric and
topological properties and can be studied by using graph theory
(Barabási and Oltvai, 2004). Recent technological advances in
graph theory have allowed us to analyze and describe highly
complex systems at smaller and more detailed scales and have
been utilized to study global impact of long term sickle cell
disease on brain (Case et al., 2018), to diagnose pre-symptomatic
Alzheimer’s disease (Bytautiene, 2013), to understand the human
brain network (Vecchio et al., 2017). Recently, the development
of geometry based measures is significantly attracting the
focus of researchers to characterize the structural aspect of
complex networks.

Curvature-Based Methods for Complex
Networks
In geometry based measures of complex networks, curvature is
one of the notions that are being explored to understand the
complexity of graphs. Curvature plays central role in Riemannian
geometry since it represents a measure to quantify the deviation
of a geometrical object from being flat (Tannenbaum et al., 2016).
Curvature measures can be used to quantify the robustness and
thereby the functionality of networks.

Among several types of curvature notions, Ricci curvature is
known to be the most useful for analyzing the complex networks
(Burago et al., 2001; Saucan and Appleboim, 2005; Ollivier, 2009,
2010, 2011; Ni et al., 2015; Sandhu et al., 2015; Sreejith et al.,
2016). Ricci curvature measures deviance of geodesics (shortest
path) relative to Euclidean shortest-paths and is related to mass
transport or entropy (Wasserstein metrics) (Evans, 2001; Villani,
2003). High Ricci curvature is typically found near network hubs,
where an anchor node (high curvature node) is connected to
many existing nodes in close proximity. Principally, curvature
is very close to robustness; therefore, removal of high curvature
node/edge will result in collapse of network.

Ollivier-Ricci (Ollivier, 2009, 2011) and Forman-Ricci
(Forman, 2003), two different discretization of Ricci curvature,
give efficient solutions for network geometrizations. In case of
undirected networks, Ollivier-Ricci curvature has proved its
applicability in various network analyses (Loisel and Romon,
2014; Ni et al., 2015; Sandhu et al., 2015; Gao et al., 2016). On
the other hand, Forman-Ricci curvature has been introduced
as a tool for undirected (Sreejith et al., 2016, 2017a,b) as well as
directed (Weber et al., 2017a,b) network analyses. Irrespective

Abbreviations: FBA, Flux Balance Analysis; MGO, Methylglyoxal; GLOI,

Glyoxalase I; GLOII, Glyoxalase II; MGO•−, Methylglyoxal Free Radical;

CL, Cutaneous Leishmaniasis; DHAP, Dihydroxyacetone phosphate; GA3P,

Glyceraldehyde 3-phosphate; T[SH]2, Trypanothione; TryS, Trypanothione

synthase; TryR, Trypanothione reductase; TryP, Tryparedoxin peroxidase; TDPx,

Tryparedoxin-dependent peroxidase; TXN, Tryparedoxin; GR, Glutathione

reductase; GEMs, Genome scale metabolic modeling; ODE, Ordinary differential

equations; FR, Forman-Ricci curvature; FR(v), Forman-Ricci curvature of nodes;

FRI(v), In Forman-Ricci curvature of nodes; FRO(v), Out Forman-Ricci curvature

of nodes; Fv, Forman curvature of nodes; Fo, Out Forman; Fi, In Forman;

OF, Objective functions; BBGS, S-4-bromobenzylglutathionylspermidine; DNPGS,

S-2,4-dinitrophenylglutathionylspermidine.

of their applicability and handling the large networks, the two
curvature notions demonstrated high correlation (Samal et al.,
2018). However, Forman-Ricci curvature is a faster computation
method and can be utilized in larger real-networks. Current
study exploits the application of Forman-Ricci curvature
and systems biology to capture the behavior of Leishmanial
metabolic network.

Leishmaniasis and Systems-Biology
Neglected infectious diseases have affected at least a billion of
human populations worldwide (Narain et al., 2010; WHO, 2011)
and are of primary concern due to the lack of effective and
affordable drug regimens. Among them, cutaneous leishmaniasis
(CL), a very common clinical form of leishmaniasis, has always
been overlooked as a major public health problem due to its
non-fatality. The causative agent of CL, a protozoan parasite,
Leishmania major has a digenetic lifecycle and lives in two hosts,
sandfly, Phlebotomus argentipes, and human, in the form of
flagellated promastigotes (procyclic phase) and non-flagellated
amastigotes (metacyclic phase), respectively.

When inside the human host, the parasite has to undergo
the oxidative stress generated by host macrophages (Figure 1).
This stress is also attained from free radical generation within
the parasite in many ways mainly via electron transport chain.
Moreover, there are several highly reactive metabolites such
as glyoxals that contribute to the generation of free radicals.
These metabolites can react with the other metabolites and
enzymes and not only cause inactivation of enzymes but also
the formation of free radicals. To deal with these types of
internal and external trauma the parasite has evolved with
its unique redox machinery that helps in neutralization of
free radicals. The main component of this antioxidant defense
mechanism are trypanothione synthase (TryS), trypanothione
reductase (TryR), tryparedoxin peroxidase (TryP), tryparedoxin-
dependent peroxidase (TDPx), and tryparedoxin (TXN). The
center of these components is a central reductant, T[SH]2 that
regulates the activation of these enzymes (Krauth-Siegel and
Inhoff, 2003).

Due to the incapability and increasing drug resistance of
the current therapy regime techniques, the necessity to develop
novel, more efficient and affordable anti-leishmanial drugs along
with potential molecular drug targets with therapeutic value
are needed. The difference between Leishmania and human
host redox metabolism attracts researcher’s interest to explore
this mechanism for discovering novel drug targets and design
potential inhibitors against the redox enzymes without crossing
the host machinery (Ascenzi et al., 2003).

To study the role and effect of other intermediates in the
redox network, systems biology approaches are nowadays being
used (Kabra et al., 2018). Systems biology approaches have
already been utilized to study systems dynamics of complex
redox metabolic pathways in many organisms (Hädicke et al.,
2011; Pillay et al., 2013; Wang et al., 2018). Before implementing
many available network analyses techniques like, Genome scale
metabolic modeling (GEMs) (Hädicke et al., 2011; Pillay et al.,
2013), constraint based methods, kinetic pathway modeling (Ho,
2008; Resat et al., 2009; Kumar et al., 2019), the knowledge
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FIGURE 1 | Illustration of Leishmania parasite survival from oxidative stress.

and availability of all possible components and their inter-
connections is a pre-requisite. Recently, kinetic modeling and
constraint-based metabolic modeling have gained researcher’s
focus. In case of kinetic modeling, the availability of kinetic data
and rate laws is required. However, due to the lack of sufficient
kinetic data the use of metabolic kinetic modeling on larger scale
networks is limited. On the other hand, constraint-based analysis
such as flux-based analysis (FBA) requires only the knowledge
of stoichiometry of the metabolites and can be easily applied
to even larger scale metabolic networks. FBA calculations rely
on the assumption of steady-state growth and mass balance
and can be used to predict the flux of a metabolite flowing
through a metabolic network. To predict the growth rate or
to find a specific cellular function, FBA tries to find possible
solutions to optimize the stated objective function(s) and gives
quantitative insights into the genotype-phenotype relationship
of the model. Although, FBA is incapable of predicting the
concentrations of metabolites and does not account for any
regulatory effects like activation/inactivation of enzymes or
gene-expression regulations, there are extensive embodiment of
literature showing its applications in many fields including drug
target identification (Chavali et al., 2008; Fatumo et al., 2009;
O’Brien et al., 2015; Sharma et al., 2017; Subramanian and Sarkar,
2017; Tewari et al., 2017).

In current work, we attempted to explore the application
of Forman and Forman-Ricci curvature on metabolic network
of Leishmania. Using curvature measures, we tried to identify
important metabolic pathways contributing to the overall
network robustness by recognizing “important” metabolic hubs

in the network. Through this, we seek to spot metabolites
and enzymes having essential role in the survival of the
parasite. Further, to predict the effect of the absence of
these “important” metabolites, constraint-based FBA is used to
uncover the importance of enzymes and their probable role
as drug target for therapeutic significance (Figure 2). Also,
our systems pharmacology modeling on the kinetic model of
the selected drug target using known inhibitors may provide
significant insight for further clinical interventions.

MATERIALS AND METHODOLOGY

Data Sets and Model Reconstruction
Initially, Leishmania major metabolic network iAC560 (Chavali
et al., 2008) was retrieved from BioModels Database and
imported to Cell Designer (4.4) (Funahashi et al., 2003). The
model consisted of 1112 reactions and 1147 metabolites. This
model was used to construct a bipartite directed graph that
considered as master model. The master model was further used
for constructing small scale models (Figure 2).

Generation of Connectivity Matrix
Connectivity matrices for master and other models were
generated by considering the connections between metabolites
(substrate to product). A value of “1” was assigned for
connection, if a metabolite (substrate) is connected (producing
or converting into) to other metabolite (product), and “0” for
no connection.
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FIGURE 2 | Overview of the workflow strategy adopted.

Network Analysis
Network Topology
The reconstructed bipartite directed graphs were visualized in
Cytoscape (3.6.0) (Shannon et al., 2003) and their topological
information (network properties) of nodes and edges were
obtained using graph theory followed by calculation of various
network properties. We used Forman curvature and Forman-
Ricci curvature for the analysis of our bipartite directed graphs.
For any given directed bipartite graph we calculated (Samal et al.,
2018):

F (e) = we

(

wv1

we
−

∑

ev1 ∼ e

wv1√
wewev1

)

+ we

(

wv2

we
−

∑

ev2 ∼ e

wv2√
wewev2

)

(1)

Where, F is the Forman curvature of the directed edge e = −−→v1v2
that originates from node v1and terminates at node v2. Only
those directed edges were considered for calculation that either
terminate at node v1 or originate at node v2. we denotes the

weight of the edge e under consideration. wv1 and wv2 denote the
weights associated with the nodes v1 and v2, respectively. ev1 ∼
e and ev2 ∼ e denote the set of edges incident on nodes v1 and
v2, respectively, after excluding the edge e under consideration
which connects the two nodes v1 and v2. Furthermore, self-loops
or self-edges on nodes v1 and v2, edges facing opposite direction,
were completely ignored.

Forman Curvature on Networks
To distinguish between incoming, EI,v, and outgoing, EO,v, edges
for a given node v, unnormalized Forman curvature (the sum
of the curvature of all edges incident or outgoing on that node),
In Forman curvature FI(v) and Out Forman curvature FO(v) were
computed as follows:

FI(v) =
∑

e∈EI,v

F(e) (2)

FO(v) =
∑

e∈EO,v

F(e) (3)
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And, the total flow on a given node was obtained as:

FT (v) = FI (v) − FO (v) (4)

Forman-Ricci Curvature on Networks
Moreover, for determining Forman-Ricci curvature, FR(v)
(normalized Forman curvature) (Sreejith et al., 2017a,b) of a node
v, the sum of the curvature of all edges incident or outgoing on
that node was divided by the degree of that node:

FRI (v) =
1

deg(v)

∑

ev ∼ v

F(ev) (5)

FRO (v) =
1

deg(v)

∑

ev ∼ v

F(ev) (6)

Where, FRI(v) and FRO(v) are In and out Forman-Ricci curvature,
respectively, deg(v) is in and out-degree and F(ev) is the Forman
curvature of edge ev, and ev ∼ v represents the set of edges
incoming or outgoing on that node v. Subsequently, total flow
on node v was obtained as follows:

FRT (v) = FRI (v) − FRO (v) (7)

Flux Balance Analysis

Reconstruction of the stoichiometric model
For the reconstruction of stoichiometric model COBRA Toolbox
(Vlassis et al., 2014; Heirendt et al., 2018) was used. Necessary
exchange reactions and transport reactions for uptake and
excretion of typical substrates and products, respectively,
were introduced. The network was devoid of any organism
specific internal compartments and only external and internal
environment were taken into account. Stoichiometric model is
represented in the form of stoichiometric matrix, S, that is a
mathematical representation of the network. In this matrix, each
reaction is a column and each metabolite is a row. And the
participation of the metabolites in the corresponding reactions
is denoted by their stoichiometric coefficients where “−1” is
used for the consumption and “+1” for the production of
the metabolite. In our model, the upper and lower bounds of
reversible reactions were set between+1,000 and−1,000, and for
irreversible reaction between 0 and+1,000. Uptake and excretion
reactions were also set between −1,000 and +1,000. The upper
and lower bounds for any reaction define the total space allowed
for flux distribution (Orth et al., 2010).

FBA simulation
Once the model is reconstructed, constraint-based FBA
simulation was performed in COBRA Toolbox in MATLAB
(Becker et al., 2007). FBA assumes steady-state kinetics and uses
linear programming (LP) based optimization to determine the
flux distribution to solve a given metabolic objective function by
maximizing or minimizing it (Orth et al., 2010). Hence, the LP
problem was formulated as,

Maximize Z,

Subject to

S•v = 0

vmin≤v≤vmax

Where, Z is the objective function to be maximized (or
minimized), S is the stoichiometric matrix of m x n, v represents
the flux vector that is controlled through enzyme capacity
constraints vmin and vmax representing lower and upper bounds,
respectively. After conversion into mathematical form, the
simulation was performed to maximize the objective function.
Initially the objective function was carrying zero flux indicating
metabolic gaps in the model. The required demand reactions
were added to the network to refine the model till the non-zero
value of the objective function is attained.

Systems Pharmacology Modeling
The reactions for the model were input in COPASI v4.19.140
(Hoops et al., 2006) followed by assignment of appropriate
kinetic laws. All the reactions were considered as irreversible
and the reversible reactions were broken into two reactions
for maintaining uniformity in the kinetic model (Table S1).
The concentrations, time units and reaction fluxes in the
model are in molar (M), seconds and M/s, respectively. All
the kinetic parameters were obtained and/or calculated from
published literature (Data Sheets 1, 2, Table S2). To observe
the effect of different parameters on the models sensitivity
analyses was performed using deterministic LSODA ODE solver
(Hindmarsh, 1983).

RESULTS

Model Reconstruction and Network
Topology
A directed master network, M, was built after editing iAC560

by doing following: all transport and exchange reactions were
removed; all self-loops, currency metabolites (ATP, ADP, CO2,
etc.), electron carriers (NADP+, NADPH, NAD, NADH),Waters

TABLE 1 | Topological properties of the networks (Table S5).

Model Main components No. of

metabolites

Clustering

coefficient

Network

diameter

M – 226 0.038 31

M1 Glycolysis, TCA cycle,

PPP pathway

39 0.026 17

M2 Amino acid metabolism 81 0.022 13

M3 Fatty acid synthesis and

degradation

23 0.118 8

M4 Sterol biosynthesis 23 0.051 17

M5 Glycerolipid and

glycerophospholipid

metabolism

27 0.046 12

M6 Nucleic acid metabolism 36 0.017 8

M7 MGO and T[SH]2
metabolism

33 0.010 12
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(H2O), and electron transporters (H+, PO+3
4 , HCO−

3 ) were
removed; each reversible reaction in the network was converted
to two irreversible backward and forward reactions; then, each
irreversible reaction was considered as directed edge connecting
the substrate metabolite to the reaction or reaction to the
product metabolite; duplicate reactions and metabolites were
carefully observed in the network and removed. Moreover, each
directed edge was assigned with a weight corresponding to the

stoichiometry of the involved metabolite (substrate or product)

in the reaction under consideration. This model consisted of 226

metabolites (Table 1, Figure 3, Table S5).
Further, to get a deeper insight of the Leishmanial metabolic

network, the master model, M, was subdivided into small
directed bipartite graphs (Table 1, Figure S1). The network
topology of networks is summarized in Table 1 and Table S3.
The clustering coefficient (ranges between 0 to 1; no to high

interconnectivity) of the master network, M, was 0.038. Among

the models M1-M7, only M7 had the lowest clustering coefficient
0.01 (Table 1). The clustering coefficient of M7 indicates that

the network has lesser connectivity in comparison to other

networks, showing the transmission of the signal is linear and in

one direction.
Further, betweenness centrality calculated for each node in

M network pointed out important metabolites. Nodes having

high betweenness centrality are known to act as bridge between

nodes for transmission of information in the network. In
our M model several of these metabolites (HTA, MG, Pyr,

T[SH]2) with high betweenness centrality were part of M7
model (Table S3) suggesting the importance of M7 model
(Chauhan and Singh, 2019).

Curvature Distribution in Master Network
Normalized (Forman) and unnormalized (Forman-Ricci)
Forman curvatures of directed edges and nodes were calculated
in all reconstructed models (Table S4). Forman curvature of
nodes and edges in network “M” was computed and their
distribution was plotted to analyze their frequency (Figure 4).
From the plots, it was observed that most of the nodes and edges

FIGURE 3 | The reconstructed master model, M, after removing currency metabolites and self-loops.
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FIGURE 4 | Distribution of Forman curvature of directed edges and nodes in master (M) network. (A) Forman curvature of nodes, (B) In Forman curvature of nodes,

(C) Out Forman curvature of nodes, (D) Forman curvature of Edges, (E) In Forman curvature of edges, (F) Out Forman curvature of Edges.

FIGURE 5 | Demonstration of Forman curvature of nodes in master model.

Metabolites with high curvature values are labeled and pointed with green

arrows.

were comprised of negative curvature values. Although, the
distribution of Forman curvature of both nodes and edges was
broad, the peaks with high frequency were concentrated toward

(or at) “zero.” The distribution of Fi and Fo of nodes were found
to be slightly different than Forman curvature of nodes however
the peaks between 0 and −2 were found to be with frequency
>50. Similar was the case with Fi and Fo of edges where one
peak in both the plots had frequency >50. Further extraction of
these peaks demonstrated that metabolites belonging to amino
acid metabolism, sterol synthesis, fatty acid biosynthesis and
degradation, glycerolipid and glycerophospholipid metabolism
pathways were part of these high peaks. Interestingly, peaks
appearing far from “zero,” those with higher Forman curvature,
consisted of edges and nodes related to glycolysis, MG
metabolism and T[SH]2 metabolism pathways. Furthermore,
these metabolites were also spotted as important vertices from
Forman curvature plot of nodes in “M” model (Figure 5)
(Chauhan and Singh, 2019) (Table S4).

Correlation Between Forman Curvature
and Common Network Measures
Various common statistical topological measures were calculated
for all networks and studied to find any significant correlation
with the curvature measures (Table 2).

Master Model
The correlation between Forman curvatures and betweenness
centrality, closeness centrality, In-degree and Out-degree
were computed in “M” model (Table 2, Figure 6). A high
negative correlation was observed for Fi and FRi with In-degree
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(Figures 6B,F). Moderate negative correlation was reported
for Fi, FRi, Fo with betweenness centrality (Figures 6A,C,E).
Interestingly, In-degree and Out-degree have also shown
moderate correlation with betweenness centrality but the
R-value was shifted to positive side (Table 2). Moreover, in
contrast, Fo and FRo have shown very less or near negligible
correlation with Out-degree and betweenness centrality,
respectively (Figures 6D,G,H). Forman curvature of nodes was
also negatively correlated with high magnitude to betweenness
centrality than that of closeness centrality suggesting the
importance of the former in finding important nodes in the
network (Table 2, Table S4).

Small Scale Models
It was noted that, in all models (M1-M7) except M3 (−0.576), the
correlation between Forman curvature of nodes and clustering
coefficient was very weak negative in comparison to correlation
between Forman curvature and degree. Interestingly, the highest
negative correlation between Forman curvature and degree was
mainly noted for model M5, M6 and M7 (−0.854, −0.782,
and −0.903, respectively) (Table 2). Further, weak negative
correlation coefficient between closeness centrality and Forman
curvature of nodes was obtained.

On the other hand, a good negative correlation of betweenness
centrality with Fi and FRi was observed only in case of M5, M7
and M4, M7, respectively. Surprisingly, in contrast to Fi and FRi,
correlation for Fo and FRo with out-degree and betweenness
centrality was noted very weak to moderate negative. Among the
small scale models, only M7 indicated high negative correlation
for Fo and FRo with betweenness centrality. It was found similar
to the correlation for betweenness centrality and In- and Out-
degree for M7 model (high positive correlation) (Table S4).

Robustness of Models
Forman and Forman-Ricci curvatures across all edges and nodes
of the network were computed. High curvature nodes are said to
be the backbone of the network those act as bridges betweenmajor
network communities (Varma and Palsson, 1993) (Figures 6,
7, Figure S1). Hence, for investigating the robustness in terms
of “network connectivity,” the nodes were removed on the
basis of decreasing strength in terms of Forman curvature,
Forman-Ricci curvature and clustering coefficient. Nodes with
low curvature and low clustering coefficient were removed first.
Highly connected network is represented as “1,” and a higher
value is an indication of disconnected network. In Figure 8,
we plotted network connectivity against the nodes removed
on the basis of Forman curvature and clustering coefficient.
It was observed that removal of high curvature nodes caused
faster disintegration of the network. Nodes deletion according
to Forman-Ricci curvature gave similar result as with Forman
curvature. However, nodes removal on the basis of clustering
coefficient has also caused network destruction but slower than
Forman curvature (Figure 8) (Sreejith et al., 2016).

In our master model we found more than 25 nodes with
high curvature values (Table S3). We noted that most of the
nodes from these were related to “M7” model that consists
of glycolysis, T[SH]2 synthesis, and methylglyoxal metabolism
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FIGURE 6 | Correlation between (A) Fi-Betweenness centrality; (B) Fi-In-degree; (C) Fo-Betweenness centrality; (D) Fo-Out-degree; (E) FRi-Betweenness centrality;

(F) FRi-In-degree; (G) FRo-Betweenness centrality; (H) FRo-Out-degree; (I) Fv-Closeness Centrality; and (J) Fv-Betweenness Centrality of nodes in Master “M”

network. Also, Spearman correlation coefficient is indicated for each.

pathways, signifying the importance of “M7” model (Chauhan
and Singh, 2019).

Flux Balance Analysis
Characteristics of the Reconstructed Network
As stated in previous section, the role of several metabolites
including MGO and T[SH]2 (part of M7 model) via Forman
curvature and Forman-Ricci curvature measures was found
important for maintaining the integrity of the master model
(Table S3). Since our focus for performing FBAwas to investigate
the importance of glyoxalase pathway in redox metabolism,
we kept our model at simple metabolic level. The proposed
stoichiometric model accounts for the reactions of glycolysis,
glyoxalase pathway, and thiol metabolism (Table 3). It is well
known that MGO is highly toxic entity and irreversibly modifies
DNA, proteins/enzymes (Thornalley, 1993; Lo et al., 1994;
Westwood et al., 1997; Greig et al., 2009) by reacting with Arg and
Lys residues to form Advanced Glycation End products (AGEs)
and promotes the formation of free radicals (Fraval andMcBrien,
1980; Desai and Wu, 2008; Kalapos, 2008). Since, the formation

of AGEs is a complex process in which MGO reacts with Lys and
Arg residues of the proteins/enzymes, in our model this process
was added in generalized form in whichMGOdirectly reacts with
Lys and Arg.

The exchange reactions were added to allow input-output
exchange of the extracellular metabolites to enter the system
from the medium or excretion of end products of any reaction
out of the system. All reactions were set to the maximum
for upper and lower bound limits for reversible/irreversible,
uptake/excretion reactions except for glucose (Edwards and
Palsson, 2000). For this small scale model, we took utmost care
in including only the reactions those are required for maintaining
the production of desired metabolites (Table S4). This model was
submitted to BioModel Database (Chelliah et al., 2015) with the
id: MODEL1909200001.

Formulation of Objective Function
We integrated the objective function (a mathematical equation
providing drain of essential metabolites) consisting of the pseudo
consumption of precursors from different pathways present in
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FIGURE 7 | Depicting the internal connectivity in (A) Master model, and (B) M7 model. The components are connected by backbone forming high curvature nodes

[encircled in red color (top 5) and purple (next top 10)]. Low curvature nodes are shown without encircled nodes. High curvature nodes act as bridges between major

network communities and play important role in determining structural and functional organization of network. Dotted lines depicting the connection of high curvature

nodes with important individual network communities.
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FIGURE 8 | Robustness analysis of the Master model (M) using nodes deletion on the basis of Forman and Forman-Ricci curvature, or clustering coefficient.

themodel. To observe the effect ofmetabolism ofMGO, substrate
for glyoxalase I (GLO I), on the system; hence, we focused on the
formulation of objective functions (OF) by taking into account
the metabolites only used in the model:

Objective Function : pyr + D− lac+ atp+ h2o− > adp+ pi+h

The end product of glyoxalase pathway is D-lactate that
ultimately leads to the formation of pyruvate. For simplicity,
the stoichiometric coefficients of the precursors and metabolites
used in formulation were kept as default. We considered, for
our model, the end products of both the pathways, glycolysis
(pyruvate) and glyoxalase pathway (D-lactate), contributing to
the total biomass production. The system was investigated under
two scenarios, first, functional GLO I, and second, nonfunctional
(absent from the system) GLO I (Chauhan and Singh, 2019).

Scenario 1: Functional GLO I
It was noticed that glycolysis carried constant flux to produce
pyruvate. However, glyoxalase pathway, comparatively, carried
maximum flux for the production of D-lactate. It was also
noticed that in presence of functional GLO I, advanced glycation
end products (AGEs) formed at very minimal level. Although,
both the pathways carried different flux levels, the maximization
of OF was seemed to be majorly contributed through MGO
synthesis and GLO I/II activities (Figure 9A). Other metabolites
synthesized at very minimal level probably due to smaller scale
of our model and lack of other reactions for the compensation of
their consumption (Chauhan and Singh, 2019).

TABLE 3 | Properties of FBA model constructed from M7 model.

Property Count

Reactions 52

Transport reactions 22

Exchange reactions 24

Metabolites 90

Compartments 2 (Internal and External)

Scenario 2: Non-functional GLO I
In, second scenario, we blocked the flux through glyoxalase
pathway by setting GLO I flux to “zero” making it inactive. In
this case, we observed that glucose entered the system at same
rate as in scenario 1. Even the flux rate was found to be more
or less similar for glycolysis but only upto the synthesis of GA3P
and DHAP. In fact, the flux through TPI enzyme was more than
that of scenario 1 that probably contributed to the synthesis of
MGO. It is noticeable that MGO was produced at twice the rate
than the previous case. This higher level of accumulation ofMGO
was found to contribute to equal level of the formation of AGEs
and MGO•− free radicals (Figure 9B). It was worth noticing
that in case of inactive GLO I, the flux moved from glycolysis
to MGO synthesis. Although in real network system, pyruvate
production will be happening at normal rate except for that the
inactivation of GLO I should lead to the increased level (∼1.5
fold) of accumulation of MGO (Chauhan and Singh, 2019).

Systems Pharmacology Modeling
Initially, the basal kinetic model (non-inhibited model) was
constructed by incorporating the reactions from glycolysis,
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FIGURE 9 | Reaction fluxes for (A) scenario 1 (Functional GLOI), and (B) scenario 2 (Non-functional GLOI). The depicted scenarios are illustrating the flow of flux for

the objective function (OF). The simulation was performed for the production of pyruvate (from glycolysis and glyoxalase pathway) and role of MGO in producing AGEs

(MGO-Arg and MGO-Lys) and MGO•− free radical. Solid thick black arrows represent the direction of main flux flow through the model. Gray arrows are an indication

of undetermined (zero) flux through the respective reaction. Dotted arrows represent the transport of the metabolites.

Glyoxalase system and T[SH]2 synthesis via arginine, glycine,
glutamate and methionine. Further, considering the important
role of T[SH]2, its demand reactions were also included in
the form of TXN, TDPx, and TryP. As mentioned in earlier
sections that due to the highly reactive nature of MGO, it
irreversibly modifies Arg and Lys residues proteins/enzymes
(Thornalley, 1993; Lo et al., 1994; Westwood et al., 1997)
leading to formation of AGEs and free radicals (Fraval and
McBrien, 1980; Desai and Wu, 2008; Kalapos, 2008). Hence,
these reactions were included in generalized form in which
MGO directly reacts with Lys and Arg, and AGEs were
represented in the form of modified Arg and Lys (MGO-
Arg and MGO-Lys, respectively). The model also consisted
of various reactions for free radical metabolism. Further, to
examine the effect of inhibited GLO I reaction on the system,
a perturbation was imposed using previous studied competitive
LmGLO I inhibitors, S-2,4-dinitrophenylglutathionylspermidine
(DNPGS) and S-4-bromobenzylglutathionylspermidine (BBGS)
(ki: 669 ± 57 and 0.536 ± 0.040µM, respectively) (Ariza
et al., 2006). Hence, two different perturbed kinetic models
were constructed by introducing their inhibition reactions
in the non-inhibited model. These inhibition kinetic models
were submitted to BioModel database (MODEL1909200002 and
MODEL1909200003, BBGS and DNPGS, respectively) (Chelliah
et al., 2015).

Analysis of the time course simulation of non-inhibited model
has showed the maximum formation and degradation of MGO
via glycolysis and GLOI enzyme, respectively. the maximum
concentration of MGO was considered as initial concentration
for both the inhibitors. GLOI reaction involves conversion of
HTA to SDL. Although HTA is formed in reversible manner

from MGO and T[SH]2 non-enzymatically, we assumed that the
introduced inhibition reaction, along with level of HTA, should
also affect the level of MGO. However, when the comparison
was made between non-inhibited and inhibited models, it was
observed that even after the incorporation of inhibition reaction
for GLOI, only HTA was accumulated in the system and not
MGO (Figure 10, Figures S2, S3).

Comparison of metabolites’ concentration and their
production rates among the models revealed that the synthesis
rate was higher in non-inhibited and DNPGS inhibited model
as compared to BBGS inhibited model (Tables 4A,B). Both the
inhibitors affected the level of few metabolites (free radicals)
but BBGS was found to have greater effect. In BBGS inhibited
model, the HTA accumulation was observed to increase by
1.6 fold in comparison to DNPGS inhibited model. Although,
we did not observe any change in the level of Arg-MGO and
Lys-MGO concentration in the system, however, the rate of their
formation is increased by 1–3 folds in case of BBGS inhibited
model. Through our kinetic modeling study, we are able to
shed an important light on the mechanism of inhibition of GLO
I reaction.

Further, to observe how GLO I inhibition has influence
on the perturbed models; sensitivity analysis of the networks
was carried out. For this purpose, GLO I reaction parameters,
GLOIVmax was used. Although perturbation did not greatly
influence the accumulation of MGO in the system, the
sensitivity analysis demonstrated that the inhibited GLOIVmax

affected other reactions fluxes. It seems like BBGS had
more effect on other reaction fluxes than DNPGS when
compared with the non-inhibited model. Between the two
perturbed models, GLO I inhibition using BBGS negatively
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FIGURE 10 | Illustration of effect of two LmGLO I competitive inhibitors, BBGS and DNPGS on (A) MGO and HTA concentration, (B) on MGO and HTA formation

rates. BBGS, S-4-bromobenzylglutathionylspermidine; DNPGS, S-2,4-dinitrophenylglutathionylspermidine.

TABLE 4A | Effect of GLO I inhibition on metabolites produced.

Metabolite Fold increase

BBGS# DNPGS#

[MGO] 0x 1.0x

[HTA] 1.6x 1.0x

[DL] 1.0x 1.0x

[SDLTSH] 1.0x 1.0x

[Arg-MG] 1.0x 1.0x

[Lys-MG] 1.0x 1.0x

[H2O2] 1089195.2x 573.8x

[•OH] 1029612.2x 242.0x

[O2
•−] 1.0x 1.0x

[L•] 1.0x 1.0x

[LO2
•] 1.0x 1.0x

[LOOH] 1.0x 1.0x

[NO•] 1.0x 1.0x

[NO−
2 ] 1080227.9x 569.1x

[ONOOH] 1.0x 1.0x

[ONOO−] 1066456.4x 569.3x

[NO−
2 ] 1.0x 1.0x

[MGO•−] 1.0x 1.0x

#BBGS, S-4-bromobenzylglutathionylspermidine; DNPGS, S-2,4-

dinitrophenylglutathionylspermidine.

affected GLO I reaction flux while DNPGS did not have
any effect (Figure 11). Also, despite of no effect of inhibition
on MGO level in the system, the rate of BBGS inhibited
GLO I reaction influenced the flux of MGO formation from
2 to 10 folds.

DISCUSSION

To discover the robustness and reliability of a biological network
it is important to understand its basic structural framework by

TABLE 4B | Effect of GLO I inhibition on metabolite rates.

Rates Fold increase

BBGS# DNPGS#

MGO 1.0x 1.0x

HTA 1.6x 1.0x

DL 1.0x 1.0x

SDLTSH 1.0x 1.0x

Arg-MG 3.2x 0.3x

Lys-MG 1.0x 1.0x

H2O2 −16612060.7x −8734.8x

•OH −91357.6x −5999.1x

O2
•- 21950717.4x −2122.4x

LO2 1.0x 1.0x

LOOH 1.0x 1.0x

NO2 −11634149.8x −45781.9x

ONOOH 1080215.6x 569.0x

ONOO− 1532627984.1x −19610.4x

NO−
2 1080230.2x 569.1x

MGO•− 1.0x 1.0x

#BBGS, S-4-bromobenzylglutathionylspermidine; DNPGS, S-2,4-

dinitrophenylglutathionylspermidine.

quantitatively analyzing it through mathematical tools (Watts
and Strogatz, 1998; Barabási and Oltvai, 2004; Dorogovtsev
and Mendes, 2013; Weber et al., 2017a,b). This can help in
uncovering the meaningful information by reducing the system
to a smaller level to understand the relationship among its
various components (Burago et al., 2001; Ollivier, 2009, 2011;
Ni et al., 2015; Sandhu et al., 2015). In current work, we
motivate the use of systems biology driven approaches including
Forman curvature and Forman-Ricci curvature measures along
with FBA for the analysis of complex metabolic network of
Leishmania parasite.
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FIGURE 11 | Illustration of Sensitivity analysis of kinetic models. For sensitivity analyses in these models, Vmax of GLO I was used to observe its influence on the flux

of other reactions, (A) non-inhibited model; (B) BBGS inhibited model; (C) DNPGS inhibited model.

Forman and Forman-Ricci curvature of master network has
shown that nodes with high curvatures differ drastically in
structure from the ones with low curvature values and appear
to be in denser clusters acting as bridges between the sub-
clusters in the network. This measure not only helped us to
identify the relatively more important parts of the network
but also provided the information on identifying the sub-
networks. This gave us the idea to break the network in sub-
models to study the properties of various pathways at smaller
scale and has helped us to detect important substructures
inside the network belonging to particular classes of vertices
or edges. Importantly, our analyses have pointed out several
central nodes belonging to very common yet crucial metabolic
pathways including glyoxalase pathway and T[SH]2 metabolism
pathways (Figures 5, 7, Figure S1). The significant importance
of these high curvature nodes has also been demonstrated
while performing the robustness analysis on the network
(Figure 8). In fact, high correlation between Forman/Forman-
Ricci curvature measures and common network properties has
also demonstrated and pointed out the structural and functional
importance of “M7” model comprising these metabolites
(Table 2). The assumptions made, here, are in congruence with
the validated experimental literature and are an inherent feature
of the model which signifies the importance of the metabolites
undertaken to study the impact of the curvature measures.
However, any modification of the connectivity matrices would
certainly impact the curvature measures for a particular built
up resampled model and would also impact the bridging of
the metabolites.

It is worth noticing that several of these metabolites (MGO
and T[SH]2) have very important role in the regulation of
redox homeostasis of the parasite. MGO is highly cytotoxic
carbonyl and can irreversibly modifies DNA, proteins/enzymes
(Thornalley, 1993; Lo et al., 1994; Westwood et al., 1997) causing

the formation of advanced glycation end products (AGEs) and
free radicals.

The neutralization of MGO is carried out by glyoxalase system
comprising two key enzymes, GLO I and GLO II (Vickers
et al., 2004; Greig et al., 2009; Wyllie and Fairlamb, 2011; Sousa
Silva M et al., 2012). These two enzymes sequentially convert
MGO into D-lactate in a two steps process: GLO I mediated
isomerization of spontaneously formed MGO-T[SH]2 conjugate,
hemi-thioacetal (HTA), to S-D-lactoyltrypanothione, followed
by GLOII mediated D-lactate formation (Thornalley, 1990).
GLO I is reported as an essential and rate limiting enzyme in
Leishmania. The essential role of GLOI has been demonstrated
earlier in GLOI attenuated Leishmania donovani strain (Chauhan
and Madhubala, 2009).

Our FBA result has also demonstrated similar information
when we applied two different conditions to the model.
Although, the OF we designed only serves as a tool to identify
feasible flux across the model system, this has demonstrated
the key role of GLO I. The non-functional GLO I has caused
“zero” flux and led to several fold increased production of
MGO (Figures 9A,B). The increased production of MGO in
the system caused its accumulation due to under-determined
flux in the downstream glyoxalase pathway and, hence, lack
of its detoxification. The accumulation of MGO in the system
consequently led to the formation of AGEs and MGO•− free
radicals. Moreover, in scenario 2, glyoxalase pathway has also
reflected the rate limiting step in very agreeable manner in the
form of carrying the “zero” flux through the glyoxalase pathway
reactions. These findings revealed the importance of GLO I
and are in the agreement with the previous reports. Although,
due to maintaining the simplicity of the model, we have not
shown the effect of MGO•− free radical on other components
in the system, however it has been demonstrated earlier that
the excess amount of MGO causes the formation of increased
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level of AGEs and MGO•− free radicals (Nohara et al., 2002;
Desai and Wu, 2008; Kalapos, 2008) and can inhibit the growth
of Leishmania.

In our model, emergent metabolic properties of GLO(I) have
been studied in a piecewise manner considering functional and
non-functional GLO(I). We are well aware that there might
be a change in metabolite vs. enzyme levels and any feedback
introduced at all enzyme levels in the pathway of interest may
give rise to different phenotype and correspondingly stable or
sustained oscillations. Having said that, with our simplified
model using a mathematical formalism wherein output depends
on only two conditions in the pathway: functional and
non-functional GLO I, these studies have been taken into
consideration. Moreover, a measure of robustness in metabolic
network accounts for the relative changes in the concentration
of metabolites to all other metabolites. Our reduced model
with local perturbations has a larger impact in a restricted sub-
network model system which is able to absorb the impact which
a whole system model might not be able to bear.

Having stated above, for most part of the reconstructed
network, taking into account the different point of observations,
interaction dynamics does not drastically changed. The
integrated analysis laid in this paper from computational
perspectives helped pinpoint an interesting phenomenon that
the underlined network model structure is largely preserved
across the large common substructure models. Nonetheless,
there might be instances at which major changes can occur in
the network often in response to the metabolic or environmental
stress. With the theoretical framework laid in this manuscript
we are able to represent an in silico analog of the curvature
measure and FBA. Therefore, the strategy outlined here
may become an indispensable tool in future for analyzing
smaller sub-network models created from a larger model.
Using a model like this amounts to endowing the system
with enhanced robustness and investigate how the dynamics
might get affected. GLO I as a target deciphered in present
work can further be validated through kinetic modeling and
experimental validation to pinpoint its influence on direct or
indirect metabolites.

CONCLUSION

In the quest to improve the current understanding of biological
networks we have devised a newer strategy of formulation of
curvature measure along with FBA in order to explain and
predict biological targets. Themethodology adopted in this paper
has enabled us to determine the implicit relationship between
metabolites. The model prototype developed in current paper
largely depends on its structure and topological components. On
the broader note, we have developed our mathematical model in
an iterative fashion to optimize the flux of the metabolic system
under limitation of certain enzymatic reactions thus leveraging
the unifying framework for curvature measures along with FBA.
GLOI deciphered as an important target both from curvature as

well as FBA enabled our deeper understanding into the parasite
redox metabolism.
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