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Abstract: The androgen receptor (AR) is a member of the nuclear receptor superfamily and has three
functional domains, namely the N-terminal, DNA binding, and C-terminal domain. The N-terminal
domain harbors potent transactivation functions, whereas the C-terminal domain binds to androgens
and antiandrogens used to treat prostate cancer. AR has genomic activity being DNA binding-
dependent or through interaction with other DNA-bound transcription factors, as well as a number
of non-genomic, non-canonical functions, such as the activation of the ERK, AKT, and MAPK
pathways. A bulk of evidence indicates that non-coding RNAs have functional interactions with
AR. This type of interaction is implicated in the pathogenesis of human malignancies, particularly
prostate cancer. In the current review, we summarize the available data on the role of microRNAs,
long non-coding RNAs, and circular RNAs on the expression of AR and modulation of AR signaling,
as well as the effects of AR on their expression. Recognition of the complicated interaction between
non-coding RNAs and AR has practical importance in the design of novel treatment options, as well
as modulation of response to conventional therapeutics.
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1. Introduction

The androgen receptor (AR), alternatively named as NR3C4 (nuclear receptor sub-
family 3, group C, member 4), is a nuclear receptor [1] that is activated by a number of
androgens, such as testosterone and its more active form, dihydrotestosterone [2]. AR has
three protein domains, namely the N-terminal transcriptional regulation, DNA binding,
and C-terminal ligand binding domain [3]. After being activated by its ligands in the cyto-
plasm, AR is transferred into the nucleus, where it exerts its main DNA-binding-dependent
functions [4]. In fact, AR is a cytoplasmic protein in the absence of its ligands associated
with chaperone proteins, such as heat shock proteins and co-chaperones. Androgen bind-
ing to the AR results in conformational changes, dissociating it from chaperone proteins [4].
After translocation to the nucleus, the androgen/AR complex dimerizes and binds to an-
drogen response elements (AREs), which are present in the AR target genes. This process is
involved in the regulation of the expression of target genes [5]. In addition to this canonical
route of action, the androgen/AR complex has other functions that are mediated through
non-DNA-binding-dependent routes [6]. Modulation of activity of ERK, AKT, and MAPK
pathways are examples of this kind of function [6–8].
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Notably, specific coregulators have been found to modulate the transcriptional activity
of androgen/AR complex. The binding of coregulators with androgen/AR complex can
either enhance (via coactivators) or suppress (via corepressors) its transactivation capability.
This process is accomplished via the epigenetic changing of chromatin configuration and
histone modifications [5].

A bulk of evidence indicates that non-coding RNAs (ncRNAs) have functional interac-
tions with AR. This type of interaction is implicated in the pathogenesis of human malig-
nancies, particularly prostate cancer. In the current review, we summarize the available
data on the role of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular
RNAs (circRNAs) on expression of AR, as well as the effects of AR on their expression.

2. Effects of miRNAs on AR
2.1. Acting on AR mRNA to Directly Negatively Regulate AR Expression

Several miRNAs have been found to suppress the expression of AR. In fact, most
of these miRNAs have been shown to bind with 3′UTR of AR transcript, thus inducing
its degradation or translation suppression. The interactions between miRNAs and AR
mRNA, mainly through binding with its 3′UTR, have been mostly assessed in the context
of prostate cancer. MiR-299-3p is one of the AR-interacting miRNAs. Expression of
miR-299-3p has been reported to be decreased in prostate cancer samples, compared to
noncancerous prostate samples. The restoration of miR-299-3p in prostate cancer cells has
led to the induction of cell cycle arrest, reduction of cell proliferation and migration, and
enhancement of levels of apoptotic markers. Moreover, the up-regulation of miR-299-3p
leads to reduced expressions of AR, PSA, and VEGFA, suppressed epithelial mesenchymal
transition (EMT), reduced levels of Slug, TGF-β3, p-AKT, and p-PRAS40, and enhanced
E-cadherin levels. Taken together, miR-299-3p exerts anti-tumor effects via affecting activity
of AR and VEGFA pathways [9].

Another study in prostate cancer cells has identified miR-185-binding sites in the
3′UTR of the AR transcript. Notably, the suppression of AR expression by miR-185 has
compromised the interaction between AR and ARE and decreased the levels of the AR
target gene PSA [10]. Moreover, miR-185-mediated inhibition of AR has suppressed the
proliferation of prostate cancer cells and enhanced their apoptosis. Thus, the miR-185 has
been suggested as a negative regulator of AR signaling and tumor suppressor miRNA in
LNCaP cells [10].

MiR-381 is another down-regulated miRNA in prostate cancer. Forced over-expression
of miR-381 in LNCaP cells inhibited their proliferation, migratory aptitude, and invasion.
Mechanistically, miR-381 suppresses AR mRNA expression by binding to its 3′UTR [11].

MiR-let-7c is another miRNA that decreases expression and activity of AR in prostate
cancer cells. It modulates AR transcription through c-Myc. MiR-let-7c-mediated inhibition
of AR can reduce the proliferation of prostate cancer cells [12].

Figure 1 depicts a number of tumor suppressor miRNAs that regulate expression of
AR in prostate cancer cells.

2.2. Indirectly Regulate AR Expression or AR Signal

On the other hand, a handful of miRNAs have been found to exert oncogenic roles
in prostate cancer, through the regulation of transcription of AR expression or signaling.
Following androgen deprivation therapy, hormone-sensitive prostate cancer can evolve
to castration-resistant prostate cancer (CRPC). MiRNAs can contribute to this process.
For instance, miR-221/-222 has been shown to be up-regulated in bone metastatic CRPC
samples. In vitro studies have demonstrated that stable overexpression of miR-221 induces
the androgen-independent growth of prostate cancer cells, by releasing these cells from
androgen deprivation-related G1 arrest. The up-regulation of this miRNA in LNCaP has
led to the reduction of expression of a subclass of androgen-responsive genes, without
influencing the expression of AR or integrity of AR-androgen. MiR-221 has been found to
regulate the expressions of HECTD2 and RAB1A, two genes being capable of the induction



Cells 2021, 10, 3198 3 of 26

of CRPC phenotype in various prostate cancer cells. Further, the up-regulation of miR-221
has led to alterations in the expression levels of several cell cycle-related genes and the
activation of EMT-related pathways. Taken together, it has been hypothesized that miR-221
has a major role in AR signaling reprogramming and the subsequent evolution of the CRPC
phenotype [13].
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decreased levels of).

Experiments in mice models have indicated the effect of surgical castration in the
induction of an early upsurge in the serum levels of miR-125b. Moreover, bicalutamide-
mediated AR blocking has resulted in the prompt release of this miRNA into the media
of cultured prostate cancer cells. NCOR2, as a corepressor of AR, has been shown to be
targeted by miR-125b. Thus, miR-125b has been suggested as a key regulator of AR, which
alters the efficacy of anti-androgen therapies [14].

MiR-96 is another oncogenic miRNA that can target a RARγ network to control AR sig-
naling. Down-regulation of RARγ, a member of the nuclear receptor superfamily, has been
shown to significantly affect the viability of prostate cancer cells and gene signature of these
cells. A gene network, comprising of numerous RARγ target genes, such as SOX15, has
been found to be correlated with poor disease-free survival of prostate cancer patients [15].

MiR-541 is another oncogenic miRNA that can affect prostate cancer course through
modulation of AR signaling. In fact, infiltrating CD4(+) T cells, which are associated with
poor clinical outcomes in this type of cancer, can increase FGF11 levels. Up-regulation of
this growth factor leads to increase levels of miR-541. The subsequent down-regulation of
AR signaling regulates MMP9 levels, in favor of tumor metastasis [16]. Figure 2 shows the
effects of oncogenic miRNAs in the progression of prostate cancer, through the modulation
of AR signaling.

In addition to above-mentioned miRNAs, several miRNAs can directly or indirectly
affect AR signaling by binding with 3′UTR, the coding region of AR, or influencing the
levels of AR co-activators/co-repressors (Table 1).
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Table 1. The effects of different miRNAs on AR in prostate cancer (prostate cancer (PCa), FUS: fused in sarcoma, AR-V7: androgen receptor variant 7, BCa: breast cancer, BPH: benign
prostatic hyperplasia, ANCTs: adjacent non-cancerous tissues, PEITC: phenethyl isothiocyanate, Enz: enzalutamide, CIN: cervical intraepithelial neoplasia, AI: androgen-independent,
5-hmC: 5-Hydroxymethylated cytosine, ↓: decrease in, ↑: increase in).

miRNAs Expression of
miRNAs in PCa

Target Region of AR
mRNA/Effect of miRNAs on AR Targeted Pathway Cell Line/Samples/Animal Models Function of miRNAs in Cancer Cells References

miR-299-3p ↓ ↓ VEGFA signaling
LNCaP-104S, MDA-PCa-2b, 22Rv-1, C4-2B, PC-3,

WPE-1/TCGA PRAD publication: 330 matching tumor and
51 normal samples

↓ proliferation, EMT process and migration,
growth, ↑ cell cycle arrest, apoptosis, and

drug sensitivity
[9]

miR-185 ↓ ↓ 3′UTR ARE, PSA LNCaP ↓ proliferation, ↑ apoptosis [10]

miR-381 ↓ ↓ 3′UTR _ LNCaP ↓ proliferation, migration, and invasion [11]

miR-1207-3p ↓ ↓ FNDC1, FN1, AR WPE1-NA22, MDA PCa 2b, PC-3, E006AA, E006AA-hT,
LNCaP, C4-2B, RWPE-1 ↓ proliferation, migration, ↑ apoptosis [17]

miR-21 ↑ ↑ TGFBR2, Smad2/3 RWPE-1, MDA-PCa-2b, 22Rv1, PC-3, and LNCaP/male
athymic nude mice ↓ tumor-suppressive activity of TGFβ pathway [18]

miR-let-7c ↓ ↓ suppression of AR at the level
of transcription

Lin28,
c-Myc LNCaP, C4-2B/22 PCa samples/nude mice ↓ proliferation, ↓ transactivation, potential of AR [12]

miR-133a-5p ↓ ↓ 3′UTR FUS, PSA, IGF1R,
and EGFR

RWPE-1, VCaP, and LNCaP/TCGA database: 497 tumor
tissue samples and 52 non-cancerous tissue samples ↓ proliferation and viability [19]

miR-103a-2-
5p/miR-30c-1-3p ↓ ↓

3′UTR AR-V7 _ VCaP ↓ cell growth and proliferation [20]

miR-30b-3p and
miR-30d-5p ↓ ↓ 3′UTR _ LNCaP, PC3, LAPC4/15 primary PCa samples, 15 adjacent

normal prostate samples, and 15 metastatic CRPC samples ↓ cell growth [21]

miR-31 ↓ ↓ coding region _ RWPE-1, VCaP, LNCaP, 22Rv1, PC3, DU145, and HEK293 ↓ proliferation, cell growth and colony formation,
↑ cell cycle arrest [22]

miR-205 ↓ ↓ 3′UTR _ DU145, PC3, 22Rv1, LNCaP/49 PCa, and 25 samples
without PCa

↓ proliferation, colony formation and metastases,
↑ cell adhesion, overall survival [23]

miR-124 ↓ ↓ 3′UTR _ LNCaP, 22Rv1, DU145, PC-3, C4-2/male BALB/C
nude mice ↓ proliferation, migration, and cell growth [24]

miR-145 ↓ ↓ Ago2, PSA,
TMPRSS2, KLK2

PC3, DU145, LNCaP, 22Rv1, VCaP, PNT2/49 PCa, and
25 samples without PCa ↓ proliferation, ↑ G1 arrest [25]

miR-8080 _ ↓ AR-V7 3′-UTR IGF-1R and NKX3.1 22Rv1 and VCaP/male TRAP rats and male nude mice
Luteolin treatment: ↑ MiR-8080: ↓ proliferation,

growth and oxidative stress, ↑ apoptosis, and Enz
effects under castration conditions

[26]

miR-124 ↓ ↓ 3′UTR p53
RWPE-1, pRNS-1-1, LNCaP, C4-2B, cds2, 22Rv1, and

LAPC-4/8 matched pairs of CaP and BPH tissues/male
athymic nu/nu mice

↓ cell growth, ↑ apoptosis [27]

miR-124 ↓ ↓ 3′UTRs of AR-V4, -V7 EZH2 and Src LNCaP, C4-2B, 22Rv1, and VCaP/male athymic nude mice ↓ proliferation and cell growth, ↑ apoptosis,
sensitivity to Enz [28]

miR-125b ↑ ↑ indirectly by decreasing the
co-repressor of AR NCOR2 HEK293 and LNCAP/male nude mice ↑ cell growth and survival, ↓ apoptosis [14]

miR-473p ↑ _ MEKK1 LNCap/38 pairs of tumor tissues and ANCTs ↑ cell survival, ↓ docetaxel-induced apoptosis in
AR+ prostate cancer cells [29]
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Table 1. Cont.

miRNAs Expression of
miRNAs in PCa

Target Region of AR
mRNA/Effect of miRNAs on AR Targeted Pathway Cell Line/Samples/Animal Models Function of miRNAs in Cancer Cells References

miR-185 ↓
↓ directly by binding 3′UTRs, ↓

indirectly by suppressing
co-activator of AR

BRD8 ISO2 LNCaP, PC-3/10 pairs of tumor tissues and ANCTs ↓ proliferation and invasion [30]

miR-449 _ ↓ AR-v7 EZH2 CWR22Rv1 and VCaP/male nude mice ↓ cells growth and invasion, Enz resistance [31]

miR-34b ↓ ↓ 3′UTR ETV1

MDA-PCa-2b, DU-145/143 PCa samples
(from 3 different groups), and

GEO analysis:
GSE21032

↓ proliferation, ↑ apoptosis [32]

miR-320a ↓ ↓ 3′UTR _ 22Rv1, VCaP, and LNCaP/10 PCa samples/SD rats OBP-801 treatment: ↑ miR-320a: ↓ proliferation
and cell growth [33]

miR-17 ↓ ↓ indirectly by suppressing
co-activator of AR PCAF RWPE1, LNCaP, PC-3, DU145, C4–2B, and ALVA31 PEITC treatment: ↑ miR-17: ↓ cell growth [34]

miR-141 ↑ ↑ AR-regulated
transcriptional activity Shp RWPE-1, LNCaP, DU145,

and C4-2B
PEITC treatment: ↓ miR-141 and AR

signaling activation [35]

miR-449a _ ↓ 3′UTR PSA C4-2 and LNCaP capsaicin treatment: ↑ miR-449a: ↓ proliferation,
↑ G0/G1 cell cycle arrest [36]

miR-331-3p ↓ ↓ indirectly by regulating ERBB-2 ERBB-2, PI3K/AKT
signaling pathway, PSA LNCaP, 22RV1, DU145/tumor tissues, and ANCTs

↓ indirectly AR pathway target genes via
cross-talk between ERBB-2 and AR

signaling pathways
[37]

miR-371 ↓ ↓ 3′UTR KLK3 LNCaP and PC3/83 PCa samples and 6 BPH as
controls/male nude mice ↓ proliferation and tumor growth [38]

miR-1207-3p ↓ ↓ indirectly by regulating FNDC1 FNDC1, FN1 RWPE-1, CM, WPE1-NA22, RWPE-1, MDA PCa 2b, PC-3,
E006AA, E006AA-hT, LNCaP, C4-2b ↓ proliferation, migration, ↑ apoptosis [39]

miR-301a ↑ ↓ 3′UTR TGF-β1/Smad/
MMP9 signals

CWR22Rv1, 3T3-L1/21 pairs of tumor tissues, and
ANCTs/male nude mice

Recruitment of pre-adipocytes: ↑ miR-301a:
↑ invasion and metastasis [40]

miR137 ↓ ↓ indirectly by regulating AR
cofactor complexes

NCoA2, KDM1A, KDM2A,
KDM4A, KDM5B, KDM7A

and MED1
PREC, LNCaP, LNCaP:C4-2, and PC-3/TCGA database

miR137: suppressor of androgen signaling by
modulating expression of

transcriptional coregulators
[41]

miR-361-3p ↓ ↓ 3′UTR of ARv7 _ CW22Rv1, C4-2, and LNCaP/TCGA analysis/male
nude mice ↑ Enz sensitivity [42]

miR-2909 ↑ ↑ TGFBR2, TGFβ
signaling, PSA PC3 and LNCaP ↑ cell growth [43]

miR-200a ↓ ↓ AR-V7 indirectly by
regulating BRD4 BRD4 LNCaP and C4-2B/10 ADPC tissue and 10 CRPC

tissue samples ↓ proliferation, ↑ apoptosis [44]

miR-135b _ ↓ MUC1-C LNCaP ↑ invasion and EMT process [45]

miR-17-5p ↓ ↓ indirectly by regulating
co-activator of AR PCAF, PSA RWPE1, LNCaP, C4-2B, PC3, and PrEC ↓ cell growth [46]

miR-3162-5p
↑ in PCa tissues

with higher
Gleason grade

↓ 3′UTR KLK3, PSA LNCaP, PC3 ↓ proliferation, migration, and colony formation [47]
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Table 1. Cont.

miRNAs Expression of
miRNAs in PCa

Target Region of AR
mRNA/Effect of miRNAs on AR Targeted Pathway Cell Line/Samples/Animal Models Function of miRNAs in Cancer Cells References

miR-644a ↓
↓ 3′UTR (directly)
and indirectly by

regulating co-activators of AR

SRC-1, SRC-2, SRC-3,
CCND1, CBP, and ARA24 LNCaP, LAPC4, and 22RV1/male athymic nude male mice ↓ invasion, EMT process, metastasis and Warburg

effect, ↑ apoptosis [48]

miR-221 ↑ ↓ indirectly by
regulating co-activatorsof AR HECTD2 and RAB1A LNCaP and LNCaP-Abl, LAPC-4, PC-3, Du145, and 22Rv1 ↑ AI cell growth, emt process, and metastasis [13]

miR-29b ↑ ↑ indirectly by
regulating co-activatorsof AR TET2, FOXA1, mTOR LNCaP, BicR, VCaP, and 293T/male BALB/C nude mice ↑ 5-hmC-mediated tumour progression [49]

miR-141-3p _ ↓ 3′UTR _ LNCaP ↓ both mRNA and protein expression levels of AR [50]

miR-96 ↑ ↓ indirectly by regulating
co-activator of AR RARγ, TACC1

RWPE-1, RWPE-2, PNT2, HPr1-AR, LNCaP, LAPC4,
EAA006, MDAPCa2b, LNCaP-C42, 22Rv1, PC3 and

DU145/36 PCa samples, and MSKCC dataset
↑ proliferation and viability [15]

miR-185 ↓ ↓ indirectly by regulating
co-activator of AR SREBP signaling LNCaP, C4-2B, RWPE-1/male athymic nude mice ↓ proliferation, clonogenicit, tumorigenicity, cell

growth, migration and invasion, ↑ apoptosis
[51]

miR-342 ↓ ↓ indirectly by regulating
co-activator of AR SREBP signaling LNCaP, C4-2B, RWPE-1/male athymic nude mice ↓ proliferation, clonogenicit, tumorigenicity, cell

growth, migration and invasion, ↑ apoptosis

miR-204 ↓ ↓ indirectly by regulating XRN1 XRN1, PSA, miR-34a LNCaP, 22Rv1 and PC-3 and CL1/171 BPH, plus PCa
samples/nude mice and rats

↓ growth and colony formation of LNCaP and
22Rv1 cells but ↑ growth and colony formation of

CL1 and PC-3 cells
[52]

miR-541 ↑ ↓ FGF11, MMP9 LNCaP, CWR22RV1 and C4-2/20 PCa samples/male
nude mice

↑ invasion and metastasis (while infiltrated T cells
co-cultured with PCa cells) [16]

miR-205 ↓ ↓ indirectly by regulating SQLE SQLE LNCaP, C4-2, PC-3, DU145, RWPE-1, HEK293T, VcaP,
andLNCaP Abl ↓ cell growth and de novo cholesterol biosynthesis [53]

miR-130a ↓ ↓ indirectly by regulating
coregulators of AR

CDK1, PSAP, PSMC3IP,
GTF2H1

LNCaP, PC-3, Du-145 and RWPE-1/5 low Gleason grade
PCa samples, 6 high Gleason grade PCa samples,

3 recurrent PCa samples, and 6 nonmalignant samples
↑ apoptosis

[54]miR-203 ↓ ↓ indirectly by regulating
coregulators of AR

PARK7, MNAT1, TFIIH,
NCOA4, CDK1

LNCaP, PC-3, Du-145 and RWPE-1/5 low Gleason grade
PCa samples, 6 high Gleason grade PCa samples,

3 recurrent PCa samples, and 6 nonmalignant samples
↑ apoptosis and cell cycle arrest

miR-205 ↓ ↓ indirectly by regulating
coregulators of AR PARK7, RAN, KHDRBS1

LNCaP, PC-3, Du-145 and RWPE-1/5 low Gleason grade
PCa samples, 6 high Gleason grade PCa samples,

3 recurrent PCa samples, and 6 nonmalignant samples
↑ cell cycle arrest

miR-212 ↓ ↓ (AR and AR-V7) indirectly by
regulating hnRNPH1 hnRNPH1, SRC-3 LNCaP, MDA-PCa-2b and C4–2B/13 African American

samples, and 17 Caucasian American samples/SCID mice ↓ cell growth and ↑ sensitivity to bicalutamide [55]

miR-34a ↓ ↓ 3′UTR Notch-1 C4-2B, CWR22rv1, LNCaP, and VCaP ↓ proliferation and self-renewal capacity [56]

miR-190a ↓ ↓ indirectly by regulating the
activator of AR YB-1 LNCaP, C4-2, PC-3, DU-145, 22Rv1/mal nude mice ↓ proliferation and cell growth [57]
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decreased levels of).

2.3. Effects of miRNAs on AR in Other Different Cancer Types

In addition to prostate cancer, the effects of miRNAs on AR have been investigated in
other cancer types (Table 2). For instance, experiments in two AR-positive bladder cancer
cell lines have shown that phenyl glucosamine can inactivate and degrade AR through
the restoration of miR-449a expression. Lentivirus-mediated up-regulation of miR-449a
has been shown to further suppress the proliferation of these cells via the induction of cell
cycle arrest [58].

Table 2. Effects of miRNAs on AR in different cancer types (↓: decrease in, ↑: increase in).

Cancer Types MiRNAs

Expression of
miRNAs in
Different

Cancer Types

Target Region of
AR mRNA/How

microRNAs
Affect AR

Molecular Mechanisms Cell Line/Samples/
Animal Models

Function of miRNAs in
Cancer Cells References

Bladder
cancer miR-449a _ ↓ _ UMUC3 and TCCSUP

ABDHFA treatment:
↑ miR-449a:

↓ proliferation, viability,
↑ cell cycle arrest

[58]

Breast cancer miR-9-5p ↓ ↓ 3′-UTR _
MDA-MB-453, MCF-7,

T-47D/11 pairs of tumor
tissues and ANCTs

↓ proliferation and
cell growth [59]

Cervical
cancer miR-130a-3p ↑ ↓ 3′UTR _

20 CIN I, 20 CIN II, 30 CIN III
tissue and 20 healthy

tissue samples

↑ proliferation
and invasion [60]

Hepatocellular
carcinoma

miR-135b-5p ↓ ↓ 3′-UTR HIF-2α, c-Myc, p27 SK-hep1, HepG2, SNK,
Huh7 and HA22T

↓ proliferation,
colony formation [61]

miR-92a-2-5p ↑ ↓ 3′UTR PHLPP/p-AKT/
β-catenin signaling

SK-HEP-1, Hep G2,
HEK 293 T, THP-1, Hepa 1-6,

HA22T/male nude mice
↑ invasion [62]

miR-367-3p ↓ ↑ indirectly by
regulating MDM2

MDM2/FKBP5/PHLPP/(pAKT
and pERK) signals

SKhep1 and
HA22T/126 HCC samples

↑ Sorafenib
chemotherapy efficacy,

↓ invasion and metastasis
[63]

Glioma miR-599 ↓ ↓ 3′UTR circ-ASPH, SOCS2-AS1 U251, U87MG, LN229 ↓ proliferation, migration
and invasion [64]
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In addition, miR-9-5p has been identified as a suppressor of AR expression in breast
cancer. A feedback loop has been recognized between these genes in breast cancer cells,
in which androgen agonists of AR can increase expression of miR-9-5p. In fact, miR-9-5p
can inhibit the proliferation of breast cancer cells in a manner independent from the
estrogen receptor (ER) status of these cells. Moreover, miR-9-5p can decrease the activity
of AR-downstream signals, even in the conditions that breast cancer cells are induced
by AR-agonists [59].

In cervical cancer, the oncogenic miR-130a-3p has been found to target both ERα and
AR. MiR-130a-3p silencing, ERα up-regulation, and AR up-regulation have suppressed
proliferation and invasion of cervical cancer cells. Besides, antagomiR-130a could decrease
tumor bulk in animal models. Taken together, miR-130a-3p has a possible role in the
progression of cervical cancer, through the suppression of ERα and AR [60].

In hepatocellular carcinoma, miR-135b-5p has been shown to suppress AR-mediated
cell proliferation, through the regulation of HIF-2α/c-Myc/P27 axis [61]. Moreover,
macrophage-derived miR-92a-2-5p-containing exosomes could increase the invasiveness
of liver cancer cells, through the modulation of AR/PHLPP/p-AKT/β-catenin axis [62].
Finally, miR-367-3p could increase the effectiveness of sorafenib in the suppression of liver
cancer metastasis via the modulation of AR signals [63].

In glioma, the circ-ASPH/miR-599/AR/SOCS2-AS1 axis has been identified as
a molecular mechanism for cancer progression. In fact, circ-ASPH could mediate this
function by sponging miR-599 [64].

3. Regulatory Impact of lncRNAs on AR
3.1. Regulation of AR Expression

PCGEM1 is a lncRNA with important roles in splicing events. This lncRNA has
been found to interact with the splicing factors heterogeneous nuclear ribonucleoprotein
(hnRNP) A1 and U2AF65. Experiments have shown correlation between PCGEM1 and
AR3, a principal and clinically important alternatively spliced form of AR in prostate cancer.
Besides, androgen deprivation leads to enhanced expression of PCGEM1 and its accretion
in nuclear speckles. Androgen deprivation-induced PCGEM1 has a role in regulation
of the competition between two splicing factors for AR pre-mRNA [65]. Another study
has identified HORAS5 as a CRPC-promoting lncRNA through assessment of patient-
derived xenografts, clinical information with subsequent in vitro and in vivo confirmation
studies. This lncRNA is a cytoplasmic lncRNA, which increases proliferation and viability
of prostate cancer cells via sustaining AR activity even in androgen-depleted settings.
Notably, HORAS5 silencing has reduced AR expression, as well as expression of oncogenic
targets of AR, including KIAA0101. In clinical samples, up-regulation of HORAS5 has been
associated with poor survival. Taken together, HORAS5 has been identified as targetable
contributor in the induction of CRPC phenotype through maintaining oncogenic activity
of AR [66]. Recent investigations identified a novel lncRNASAT1 as AR-interacting partner.
The expression of this lncRNA is down-regulated in PCa tumor tissue compared to non-
tumor tissue indicating a tumor suppressive function. LncRNASAT1 is up-regulated by the
treatment with supraphysiological androgen level (SAL) in PCa cells and human PCa tissue
ex vivo and mediates the SAL-induced cellular senescence [67]. Further, it has been shown
that lncRNASAT1 interacts with AR on chromatin level regulating AR transactivation and
AR target gene expression [68]. Another study has identified a feed-forward regulatory
circuit between AR and PlncRNA-1, which enhances progression of prostate cancer [69].
In addition, PCAL7 lncRNA is another lncRNA that enhances progression of this type
of cancer through promoting AR signaling [70]. Figure 3 depicts the role of a number of
lncRNAs in progression of prostate cancer through modulation of AR signaling.
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decreased
levels of).

3.2. Regulation of AR Activity as AR-Interacting Partner

Several other oncogenic lncRNAs have been found to regulate AR signaling. For
instance, HOTAIR increases AR-mediated transcriptional program and induces CRPC
phenotypes [71]. Moreover, MALAT1 has been shown to suppress cell cycle progression
in this type of cancer through regulation of AR signaling [72]. LINC00844 is another
lncRNA that affects migration and invasion of prostate cancer cells through modulation of
this route [73].

In brief, lncRNAs can affect AR levels through interacting with AR on chromatin
level, regulation of AR transactivation and modulation of AR target gene expression. Some
lncRNAs can also regulate stability of AR transcripts and preventing its ubiquitination.
Table 3 shows the effects of different lncRNAs on AR in prostate cancer.

Table 3. Effects of different lncRNAs on AR in prostate cancer (ANCT: PCa: prostate cancer, DHT: dihydrotestosterone,
CRPC: castration-resistant prostate cancer, ADPC: androgen-dependent prostate cancer, AD: androgen deprivation, DIM:
3,3′-Diindolylmethane, SAM: Synergistic activation mediator, LBD: ligand-binding domain, ↓: decrease in, ↑: increase in).

LncRNAs Expression of
lncRNAs in PCa

Target Region of AR mRNA/How
lncRNAs Affect AR

Molecular
Mechanisms Cell Lines/Samples/Animal Models Function of lncRNAs in

Cancer Cells References

ARLNC1 ↑ stabilizing AR transcript _

VCaP and LNCaP/11 benign prostate
samples, 85 localized prostate cancer
samples, and 37 from metastatic PCa

samples/athymic nude mice

↑ Proliferation and cell
growth, ↓ apoptosis [74]

PRNCR1
and

PCGEM1
↑ interact with, and increase its

ligand-independent activation DOT1L
LNCaP, RWPE, WPE,

CWR22Rv1/BPH and PCa tissues
male athymic Nu/Nu mice

↑ Proliferation and
cell growth [75]

HOTAIR ↑
↑ By preventing AR

ubiquitination and blocking its
interaction with MDM2

_ LNCaP, C4-2B/GEO analysis:
GSE35988 and GSE21034 ↑ cell growth and invasion [71]

MALAT1 ↑ ↑ indirectly by inhibiting miR-320 miR-320 DU145, 22Rv1, PC3,
LNCaP/BALB/cA-nu mice

DHT treatment:
↑ proliferation and cell

cycle progression
[72]

LINC00844 ↓ modulated AR binding
to chromatin NDRG1 LNCaP, VCaP, and 22Rv1/GEO

database: GSE109336 ↓ migration and invasion [73]

LINC00675 ↑
directly modulate AR interaction

with MDM2, inhibited AR’s
ubiquitination, ↑ indirectly by

regulating the co-activator of AR

MDM2,
GATA2

LNCaP-SF, LNCaP-JP, LNCaP,
LNCaP-C4-2b, 293T/male BALB/c

nude mice

↑ tumor formation, tumor
growth and Enz resistance [76]
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Table 3. Cont.

LncRNAs Expression of
lncRNAs in PCa

Target Region of AR mRNA/How
lncRNAs Affect AR

Molecular
Mechanisms Cell Lines/Samples/Animal Models Function of lncRNAs in

Cancer Cells References

CCAT1 ↑ ↑ by binding to P68 DDX5 (P68),
mir-28-5P

PC3, Du145, and LNCaP/8 ADPC
tissues and 4 CRPC

samples/BALB/C nude mice

↑ proliferation, colony
formation, and cell cycle
progression, ↓ apoptosis

[77]

PCGEM1 ↑ in AD
↑ AR3 by interacting with

U2AF65, ↓ AR3 by interacting
with hnRNP A1

U2AF65,
hnRNP A1

LNCaP, CWR22Rv1, LNCaP95,
HECK293T/male SCID mice ↑ castration resistance [65]

SOCS2-
AS1

↑ Castration-
resistant Prostate

Cancer Cells

↑ by regulating cofactor
recruitment for epigenetic controls TNFSF10 LNCaP, VCaP, LTAD ↑ castration-resistant and

cell growth, ↓ apoptosis [78]

HORAS5 ↑
↑ post-transcriptional

maintenance of AR
mRNA stability

_
LNCaP and C4-2 male,
immunocompromised

NOD/SCID mice

↑ proliferation
and survival [66]

PCLN16 ↑ ↑ indirectly by regulating HIP1 HIP1 NCaP and VCaP/tumor tissues
and ANCTs

↑ proliferation, migration
and cell growth [79]

HOTAIR
↑ in PCa cells

after co-culture
with HMC-1 cells

↓ at the transcriptional level PRC2, MMP9 LNCaP, CWR22Rv1, C4-2, C4-2B and
HMC-1/male nude mice

recruitment of mast cells:
↑ invasion and

stem/progenitor
cell population

[80]

PlncRNA-1 ↑ ↑ by sponging
AR-targeting microRNAs

miR-34c and
miR-297

RWPE-1, 22RV1, LNCaP, PC3 and
DU145/16 PCa tissue samples,

35 biopsy-negative and
37 biopsy-positive blood
samples/male nude mice

↑ proliferation, migration
and viability, ↓ apoptosis [69]

PCAL7 ↑ ↑ indirectly by regulating HIP1 HIP1 104 tumor tissues and ANCTs ↑ proliferation, migration [70]

Malat1 ↑
↑ AR-v7 indirectly by interacting

with SF2 to splice the
AR transcript

SF2
VCaP and EnzR-PCa C4-2/ 10 CRPC

samples before (Pre-Enz) and after
(Post-Enz) Enz treatment/nude mice

↑ Enz resistance [81]

PlncRNA-1 ↑ ↑ NKX3-1

LNCaP, LNCaP-AI, PC-3, C4-2,
RWPE-1 and PWR-1E/16 pairs of PCa

tissues and ANCTs, 14 pairs of PCa
tissues and BPH tissues

↑ proliferation and
viability, ↓ apoptosis [82]

LBCS ↓ ↓ 5′ UTR hnRNPK

LNCaP, LNCaP-Bic, and
LNCaP-AI/130 PCa tissues and

32 BPH tissues plus 70 PCa tissues
and 10 BPH

↓ castration resistance [83]

PCGEM1 ↑ upregulation of PCGEM1 by SAM:
↑ AR3 p54/nrb LNCaP and CWR22Rv1/male

SCID mice

↑ tumor growth and
castration resistance, ↓

apoptosis

DIM: ↓
PCGEM1-mediated
castration resistance

[84]

PCGEM1 ↑ facilitating AR binding to some
promoters c-Myc LNCaP,

↑ glucose uptake and
glycolysis, ell-cycle

progression, proliferation,
and survival

[85]

LOC283070 ↑ ↑ indirectly by inhibiting PHB2 PHB2 LNCaP and LNCaP-AI ↑ proliferation
and migration [86]

lnc-
OPHN1-5 _ ↓ 3′UTR hnRNPA1

C4-2R, C4-2BR, C4-2B/75 PCa
samples/male NOD CRISPR Prkdc

Il2r Gamma
triple-immunodeficient mice

↑ Enz sensitivity [87]

GAS5 ↓ ↓ directly by interacting with LBD
of AR _ C4-2, DU145, 293T/GSE6919 ↓ proliferation, ↑ apoptosis [88]

GHSROS ↑ ↓ PPP2R2C PC3, LNCaP, DU145, DUCaP

↑ proliferation, growth,
migration, survival, and

resistance to the cytotoxic
drug docetaxel

[89]

PCA3 ↑ PCA3 knock down→ ↑ regulation
of AR cofactors _ LNCaP

modulating the expression
of EMT markers and

AR cofactors

∆ PCA3: ↓ cell viability

[90]

PRNCR1 ↑ ↑ _ LNCaP and C4-2 ↑ proliferation and
invasion, ↓ apoptosis [91]

3.3. Effects of lnRNAs on AR in Other Different Cancer Types

The effects of lncRNAs on AR signaling have also been assessed in other types of
cancers. In bladder cancer, XIST has been found to be up-regulated parallel with up-
regulation of AR. Over-expression of XIST and AR has been correlated with advanced TNM
stage in this cancer. XIST silencing has decreased proliferation, invasion, and migratory
potential of bladder cancer through modulation of AR signaling. Mechanistically, XIST
suppresses expression of miR-124 through direct interaction. Besides, miR-124 has been
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shown to target 3′UTR of AR [92]. Another experiment in bladder cancer has shown
over-expression of LINC00460. LINC00460 levels have been correlated with poor prognosis
of these patients. LINC00460 silencing decreased proliferation of 5637 and T24 bladder
cancer cells. Based on the observed down-regulation of AR in bladder urothelial cancer
tissues, it has been suggested that LINC00460 might exert its oncogenic roles through
modulation of AR expression [93]. LINC00278, SLNCR1, SARCC and HOTAIR are other
lncRNAs whose effects on AR have been investigated in different cancer types (Table 4).

Table 4. Effects of lncRNAs on AR in different cancer types (ND: nutrient deprivation, ccRCC: clear cell renal cell carcinoma,
↓: decrease in, ↑: increase in).

Cancer Types LncRNAs
Expression of LncRNAs

in Different
Cancer Types

Target Region of AR
mRNA/How

lncRNAs Affect AR

Molecular
Mechanisms

Cell Lines/Samples/
Animal Models

Function of lncRNAs
in Cancer Cells References

Bladder cancer

XIST ↑
↑ by sponging
AR-targeting
microRNA

miR-124
TCC-SUP, EJ, SW780 and

UM-UC-3, SV-HUC-1 67 pairs
of tumor tissues and ANCTs

↑ proliferation,
migration and invasion [92]

LINC00460 ↑ ↓ _
5637, T24, J82, TCCSUP,

UM-UC-3 and
SV-HUC-1/TCGA database

↑ proliferation
and migration [93]

Esophageal
squamous cell

carcinoma
LINC00278 ↓

indirectly inhibited
interaction between

YY1 and AR

YY1, eEF2K,
YY1BM

DMEM, RPMI1640, FBS,
Eca-109, TE-1, and

KYSE-30/281 pairs of ESCC
tissues and ANCTs,

ND treatment:
↑ LINC00278:

↓ survival, ↑apoptosis
[94]

Melanoma
SLNCR1 ↑

SLNCR1 binds to
AR-binding

motifs 1 and 2
_ A375, HEK293T, WM1976,

↓ binding SLNCR1 to
AR: ↓ SLNCR1-mediated

invasion
[95]

SLNCR1 ↑ ↑ AR binding to the
MMP9 promoter

Brn3a,
MMP9 A375, HEK293T, CY and WM ↑ invasion [96]

Renal cell
carcinoma

SARCC ↓ destabilizing
AR protein

miR-143-3p,
AKT,

MMP-13,
K-RAS and

P-ERK

SW839, OSRC-2, A498, 769-P,
786-O, Caki-1, Caki-2,

HK2/66 ccRCC tissues and 8
metastatic ccRCC

tissues/male athymic
nude mice

↓ proliferation,
invasion, migration

and resistance
to Sunitinib

[97]

SARCC

Differentially expressed
by hypoxia in

a VHL-dependent
manner

↓ binding and
destablizing
AR protein

HIF-2α,
C-MYC
signals

SW839, OSRC-2, A498, 769-P,
and 786-O, Caki-1, Caki-2,
HK-2 and 293T/16 ccRCC

samples/male athymic
nude mice

Differentially
modulates proliferation

under hypoxia
[98]

HOTAIR ↑ ↑ GLI2
HK-2, 786-O, ACHN, 769-P,

SW839, OSRC-2,
HUVEC/male nude mice

↑ angiogenic
phenotype

and stemness
[99]

4. Effects of circRNAs on AR

circZMIZ1 has been shown to be over-expressed in plasma samples of patients
with prostate cancer compared with those having benign prostatic hyperplasia (BPH).
In vitro studies have shown that circZMIZ1 silencing inhibits cell proliferation and ar-
rests cells at G1. Functionally, circZMIZ1 enhances expression of AR and its splice
variant 7 (AR-V7) [100].

On the other hand, expression of cir-ITCH has been shown to be decreased in the
tissues and cell lines of prostate cancer compared to corresponding controls. Up-regulation
of cir-ITCH could suppress proliferation, migratory potential, and invasiveness of hu-
man prostate cancer cells. A reciprocal inhibitory effect has been found between this
circRNA and miR-17. Several molecules within Wnt/β-catenin and PI3K/AKT/mTOR
cascades have been found to be influenced by cir-ITCH. This circRNA could indirectly
reduce expression of AR through regulating the coactivator of this nuclear factor [101].
hsa_circ_0004870 [102] and circRNA17 [103] are two other circRNAs that reduce AR-V7 lev-
els through U2AF65 and miR-181c-5p mediated routes, respectively, thus enhancing efficacy
of enzalutamide. Table 5 shows the effects of different circRNAs on AR in prostate cancer.



Cells 2021, 10, 3198 12 of 26

Table 5. The effects of different circRNAs on AR in prostate cancer (HCs: healthy controls, Enz: enzalutamide, ↓: decrease
in, ↑: increase in).

circRNAs
Expression

of circRNAs
in PCa

Target Region of AR
mRNA/How

circRNAs Affect AR
Regulated Pathway Cell Lines/Samples/

Animal Models
Function of
circRNAs in
Cancer Cells

References

circZMIZ1 ↑ ↑ AR and AR-V7 _
DU145, C4-2, LNCaP, 22RV1,

RWPE-1, 14 PCa samples, and
14 HCs

↑ proliferation,
↓ G1 arrest [100]

circ-ITCH ↓ ↓ indirectly by regulating
the coactivator of AR

miR-17,
Wnt/β-Catenin,
and PI3K/AKT/

mTOR
Signaling Pathways

RWPE-1, LNCaP, PC-3/10 pairs
of tumor tissues and ANCTs

↓ migration
and invasion [101]

hsa_circ_0004870 ↓ ↓ AR-V7 indirectly
through U2AF65 RBM39, U2AF65 LNCaP, BPH1, 22Rv1 ↓ Enz resistance [102]

circRNA17 ↓ ↓ AR-v7 indirectly by
regulating miR-181c-5p miR-181c-5p

C4–2, CWR22Rv1, and 293T/13
BPH samples, and 14 PCa
samples/male nude mice

↓ Enz resistance
and invasion [103]

5. Effects of AR on ncRNAs
5.1. AR Responsive miRNA

AR has been found to regulate the expression of several ncRNAs. For instance, acti-
vated AR has been shown to increase the expression of miR-203 and decrease the expression
of SRC kinase in prostate cancer model systems. MiR-203 has a direct interaction with the
3′UTR of SRC and affects its stability following AR activation. A reduction in AR-induced
miR-203 levels has been associated with an increased growth and migration potential of
prostate cancer cells. The dysregulation of the AR signaling in prostate cancer cells results
in the over-expression of SRC and enhancement of metastatic ability of these cells [104].

Another experiment has shown that AR represses the expression of both miR-221/-222.
The derepression of their expression after androgen deprivation has enhanced proliferation
of prostate cancer cells via facilitating G1/S phase transition. Although this effect might
be transient, it has a possible role in the evolution of CRPC. The restoration of AR activity
via AR up-regulation could subsequently down-regulate miR-221/-222 [105]. MiR-182-
5p is another AR-regulated miRNA that facilitates the progression of prostate cancer by
targeting the ARRDC3/ITGB4 axis [106]. Another study has shown the effects of AR on the
down-regulation of miR-1 expression and subsequent suppression of TCF7. This process
has been shown to participate in the evolution of resistance to androgen deprivation in this
type of cancer [107].

AR has been shown to differentially affect the metastasis of prostate and breast cancers,
through distinctively changing vasculogenic mimicry (VM) formation. In fact, AR can
enhance miR-525-5p transcription in prostate cancer, while decreasing its transcription in
breast cancer by binding to different AREs in the precursor promoter of this miRNA. NFIX
and HDAC2 have been identified as co-factors of AR in prostate and breast cancer cells,
respectively [108]. Figure 4 shows the impact of AR on miRNAs expressions, in the context
of prostate cancer.

5.2. AR Responsive lncRNA and circRNA

AR has also been shown to affect expression of several lncRNAs. For instance,
LINC00304 is an androgen-responsive lncRNA that induces cell cycle transition and in-
creases the proliferation of prostate cancer cells, through the regulation of CCNA1 [109].
Moreover, the androgen-associated up-regulation of POTEF-AS1 has been shown to affect
apoptosis-associated pathways, in favor of prostate cancer cells survival [110]. On the other
hand, the expression of PSLNR has been shown to be decreased by androgens. This lncRNA
suppresses prostate cancer progression partly through regulation of the p53-dependent
axis [111]. PART1, as another androgen-regulated lncRNA, can influence the toll-like recep-
tor pathways in this type of cancer. The expression of PART1 has been induced in prostate
cancer cells treated with 5α-dihydrotestosterone, indicating that this lncRNA is directly
induced by androgen [112]. Figure 5 shows the effects of AR on lncRNAs in prostate cancer.
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to castration-resistant prostate cancer (CRPC). MiRNAs can contribute to this process. For 
instance, miR-221/-222 has been shown to be up-regulated in bone metastatic CRPC sam-
ples. In vitro studies have demonstrated that stable overexpression of miR-221 induces 
the androgen-independent growth of prostate cancer cells, by releasing these cells from 
androgen deprivation-related G1 arrest. The up-regulation of this miRNA in LNCaP has 
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influencing the expression of AR or integrity of AR-androgen. MiR-221 has been found to 
regulate the expressions of HECTD2 and RAB1A, two genes being capable of the induc-
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that miR-221 has a major role in AR signaling reprogramming and the subsequent evolu-
tion of the CRPC phenotype [13]. 
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decreased
levels of).

Other studies, in the context of prostate cancer, have identified AR-regulated miRNAs
and lncRNAs. Moreover, a number of circRNAs, such as circRNA-51217, circRNA-ARC1,
and circZMIZ1, have been found to be influenced by AR signaling (Table 6). A recent study
has identified more than 3000 androgen-responsive circRNAs, using a microarray technique.
Notably, the expression of more than 1000 of these circRNAs has been consistent with the
expression of their parent genes, suggesting that AR may modulate their expression at the
transcriptional level [113].
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Table 6. Effects of AR on different ncRNAs in prostate cancer. (PCa: prostate cancer, CRPC: castration-resistant prostate
cancer, HCs: healthy controls, NE: neuroendocrine, BPH: benign prostatic hyperplasia, CRPC: castration-resistant prostate
cancer, DOX: doxorubicin, NED: neuroendocrine differentiation, NE: neuroendocrine, Enz: enzalutamide, PRAD: prostate
adenocarcinoma, R-2HG: R-2-hydroxyglutarate, ↓: decrease in, ↑: increase in).

ncRNAs Regulation
by AR

Molecular
Mechanisms Cell Line/Samples/Animal Models Function of ncRNAs in

Cancer Cells References

miR-203 ↑ SRC _ ↓ migration, growth,
and metastasis [104]

miR-221/-222 ↓ FOXA1 LNCaP and C4-2B/LuCaP 35 and LuCaP
35CR xenografts

↑ proliferation and development
of CRPC [105]

miR-182-5p ↑ ARRDC3, ITGB4
RWPE-1, 22RV1, LNCaP, DU145/65, pairs of

tumor tissues and ANCTs, and 18 pairs of
tumor tissues and ANCTs/male nude mice

↑ proliferation, invasion,
migration and growth, ↓ apoptosis [106]

miR-1 ↑ TCF7 PC3, LNCaP/111 PCa samples/nude mice ↓ proliferation [107]

miR-525-5p ↑ SLPI, NFIX _ ↓ PCa metastasis [108]

miR-21 ↑ TGFBR2, Smad2/3 RWPE-1, MDA-PCa-2b, 22Rv1, PC-3, and
LNCaP/male athymic nude mice

↓ tumor-suppressive activity of
TGFβ pathway [18]

miR-21 ↑ _ LNCaP, LAPC-4, C4-2, CWR22Rv1/10 PCa
samples/male athymic Nu/Nu mice

↑ androgen-dependent and
-independent proliferation, tumor
growth, and castration resistance

[114]

miR-193a-3p ↑ AJUBA LNCaP, C4-2B ↑migration and metastasis [115]

miR-4496 ↑ β-catenin signals C4-2 and PC3 ↓ invasion [116]

miR-135a ↑ ROCK1 and
ROCK2

LNCaP, PC-3/56 pairs of tumor tissues, and
ANCTs/chick embryos and adult male mice ↓ invasion [117]

miR-31 ↓ EZH2 RWPE-1, VCaP, LNCaP, 22Rv1, PC3, DU145,
and HEK293

↓ proliferation, cell growth and
colony formation,
↑ cell cycle arrest

[22]

miR-421 ↓
NRAS, PRAME,

CUL4B,
and PFKFB2

LNCaP, 22Rv1, PC-3 and DU 145/microarray
data: GSE21036, GSE45604, GSE38241, and
13 PCa samples 11 samples without PCa

↓ viability, glycolysis and
migration, ↑ cell cycle arrest [118]

miR-1 ↑ SRC
LNCaP, DU145RasV12G37,

DU145/RasB1/28 HCs, 98 primary tumor, and
13 distant metastasis samples/male nude mice

↓ proliferation, invasion,
and metastasis [119]

miR-32 ↓ NSE RWPE1, LNCaP, and CWR22Rv1/male
nude mice

enzalutamide treatment
(mast cells) → suppression of AR:
↑ miRNA32: ↑ NE differentiation

[120]

miR-21
promoter ↑ PDCD4 LNCaP and HEK 293, LAPC4/male athymic

nu/nu mice

↑ androgen-dependent and
-independent growth and

castration resistance, ↓ apoptosis
[121]

miR-22 ↓ LAMC1

LNCaP, PC3, DU145, VCaP, CWR22RV1,
DUCaP, BPH-1, PC3-AR, LAPC-4, RWPE-1, and
EP156T/ 41 pairs of tumor tissues and ANCTs,

TCGA analysis: 52 pairs of tumor tissues
and ANCTs

↓ migration

[122]

miR-29a ↓ MCL1

LNCaP, PC3, DU145, VCaP, CWR22RV1,
DUCaP, BPH-1, PC3-AR, LAPC-4, RWPE-1, and
EP156T/ 41 pairs of tumor tissues and ANCTs,

TCGA analysis: 52 pairs of tumor tissues
and ANCTs

↓ migration and viability,
↑ apoptosis

miR-99a/let7c/
125b-2 cluster ↓ IGF1R LNCaP, C4-2, and PC3 ↓ proliferation [123]

miR-2909 ↑ TGFBR2, TGFβ
signaling, PSA PC3 and LNCaP ↑ cell growth [43]

miR-32 ↑ BTG2 LNCaP/ 5 BPH and 28 PCs, plus 7 BPH and
14 CRPCs ↑ cell growth

[124]
miR-148a ↑ PIK3IP1 LNCaP/ 5 BPH and 28 PCs, plus 7 BPH and

14 CRPCs
↑ cell growth and the number of

cells in the S phase

miR-194 ↓ FOXA1, ERK
Signaling LNCaP, PC3, and 22RV1

↑ EMT process, migration,
invasion and

epithelial-neuroendocrine
transdifferentiation

[125]

miR-27a
(miR-23a27a24-

2cluster)
↑ PHB HeLa, Cos-1, LNCaP, DuCaP, VCaP, C42,

DU145, PC3, and PC3wtAR ↑ cell growth [126]

miR-200b ↑ _ PC3/male athymic mice
↓ proliferation, invasion, cell

growth, EMT process
and metastasis

[127]
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Table 6. Cont.

ncRNAs Regulation
by AR

Molecular
Mechanisms Cell Line/Samples/Animal Models Function of ncRNAs in

Cancer Cells References

miR-19a ↑
SUZ12, RAB13,
SC4MOL, PSAP,

and ABCA1
LNCaP ↑ cell viability

[128]miR-27a ↑ ABCA1 and PDS5B LNCaP ↑ cell viability

miR-133b ↑
CDC2L5, PTPRK,

RB1CC1,
and CPNE3

LNCaP ↑ cell viability

miR-22
↑ and ↓ during
two different
mechanisms

IL-6, AR
c-MYC, miR-22,

PHF8, KDM3A (↑)
and AR

c-MYC, miR-22,
PHF8, KDM3A (↓)

LNCaP-Abl, LNCaP-IL-6, LNCaP/male mice
↑ sensitivity LNCaP-Abl cells to

the enzalutamide treatment,
↓ proliferation

[129]

miR-17-92a ↑ ATG7 NCaP, 22Rv1, DU145, and PC-3 ↓ autophagy induced by
celastrol treatment [130]

miR-204 ↓ XRN1, PSA,
miR-34a

LNCaP, 22Rv1, PC-3, and CL1/171, BPH, plus
PCa samples/nude mice and rats

↓ growth and colony formation of
LNCaP and 22Rv1 cells but

↑ growth and colony formation of
CL1 and PC-3 cells

[52]

miR-34

miR-34a ↑
after DOX, but
did not change

with si-AR,
miR-34c↑ after

DOX, but to
a small extent

changed
with si-AR

p53, SPAK, MDC1,
and CaMKII LNCaP, C4-2b, PC3, and DU145 ↑ caspase activity and apoptosis [131]

miR-135a ↑
MMP11, RBAK,

PI3K/AKT
pathway

LNCaP, 22RV1, DU145, PC-3, and WPMY-1 ↓ proliferation and migration,
↑ cell cycle arrest, and apoptosis [132]

the miR-200
family,

miR-17-92
cluster, and
miR-99a/let-

7c/miR-125b-2
family

↓ HOXC6 and
NKX2-2 RWPE-1 and LNCAP ↓ metastasis and EMT process [133]

miR-101 ↑ _ LNCaP, 22Rv1, DU145, and PC-3 ↓ celastrol-induced autophagy [134]

miR-27a ↓ MAP2K4, PI3K
signalingpathways TCGA database: GSE45604 andGSE21036 ↓ proliferation and migration,

↑ apoptosis [135]

miR-190a ↓ YB-1 LNCaP, C4-2, PC-3, DU-145, 22Rv1/mal
nude mice ↓ proliferation and cell growth [57]

ARLNC1 ↑ _

VCaP and LNCaP/11 benign prostate samples,
85 localized prostate cancer samples, and 37

from metastatic PCa samples/athymic
nude mice

↑ Proliferation and cell growth,
↓ apoptosis [74]

PRCAT38 ↑ TMPRSS2, FOXA1 LNCaP, DU145, and VCaP/20 samples (HCs
and PCa) ↑ cell growth and migration [136]

H19 ↓ _ LNCaP Enzalutamide treatment: ↑ H19 [137]

GAS5 ↓ _ PC3 and 22Rv1
dexamethasone treatment in AR-

PCa cell line PC3: ↑ GAS5:
↓ proliferation, ↑ G0/G1 cell arrest

[138]

p21

↓ AR binding
to the ARE5,
↑ AR binding
to the AGRE

EZH2, STAT3 C4-2, CWR22RV1, NE1.8, NCI-H660,
and DU145

Enz treatment: ↓ AR binding to
the ARE5 region of p21: ↑ p21:

↑ NED, NE-like structure
[139]

LINC00304 ↓ CCNA1
LNCaP, 22RV1, DU145, PC-3, and

WPMY-1/GEO database: GSE38241: 18 PCa
samples and 21 HCs

↑ proliferation and cell cycle
progression [109]

POTEF-AS1 ↑ TLR signaling
pathway LNCaP, VCaP, LTAD, and VCaP-LTAD ↑ cell growth, ↓ apoptosis [110]

PLSNR ↓ p53 signaling
pathway

LNCaP, 22RV1, DU145, PC-3, and
WPMY-1/GEO database: GSE55909, 3 pairs of

tumor tissues and ANCTs, 13 tumor tissues and
ANCTs, plus 20 pairs of PCa sample

↑ proliferation and
cell-cycle progression,

↓ apoptosis
[111]

PART1 ↑ TLR pathways LNCaP and PC3/30 pairs of tumor tissues
and ANCTs ↑ proliferation, ↓ apoptosis [112]

GAS5 ↓ _ LNCaP, 22RV1, DU145, PC3, WPMY-1 14 tumor
tissues, and 11 normal tissues ↑ proliferation, ↓ apoptosis [140]

PCLN16 ↑ HIP1 NCaP and VCaP/tumor tissues and ANCTs ↑ proliferation, migration, and
cell growth [79]
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Table 6. Cont.

ncRNAs Regulation
by AR

Molecular
Mechanisms Cell Line/Samples/Animal Models Function of ncRNAs in

Cancer Cells References

PlncRNA-1 ↑ miR-34c and
miR-297

RWPE-1, 22RV1, LNCaP, PC3 and
DU145/16 PCa tissue samples,

35 biopsy-negative and 37 biopsy-positive
blood samples/male nude mice

↑ proliferation, migration and
viability, ↓ apoptosis [69]

PCAL7 ↑ HIP1 104 tumor tissues and ANCTs ↑ proliferation, migration [70]

PCGEM1 ↑ _ 131 primary PCa, 19 metastasized PCa, and
29 normal prostatic tissue samples/intact mice

↑ PCGEM1 in primary PCa
Androgen receptor regulated

PCGEM1 in vivo.
[141]

DRAIC ↓ _ VCap, PC3M-luc

↓ transformation of cuboidal
epithelial cells to fibroblast-like

morphology, migration,
and invasion [142]

PCAT29 ↓ _ VCap, PC3M-luc ↓ migration and metastasis

a subset of
TPCATs, most

notably EPCART
↑ ERG LNCaP, VCaP, and DuCaP/87

prostatectomy-treated samples ↑ proliferation, migration [143]

PCAT29 ↓ _
VCaP, LNCaP, and DU145/GEO database:

GSE58397/male nude athymic BALB/c
nu/nu mice

↓ proliferation, migration [144]

Malat1 ↓ _
VCaP and EnzR-PCa C4-2/ 10 CRPC samples,

before (Pre-Enz) and after (Post-Enz) Enz
treatment/nude mice

Enz treatment: ↑ Malat1 [81]

PlncRNA-1 ↑ NKX3-1
LNCaP, LNCaP-AI, PC-3, C4-2, RWPE-1 and
PWR-1E/16 pairs of PCa tissues and ANCTs,

14 pairs of PCa tissues and BPH tissues

↑ proliferation and viability,
↓ apoptosis [82]

CTBP1-AS ↑ PSF, CTBP1 VCaP, LNCaP, DU145, RWPE and
PrEC/105 PCa samples

↑ castration-resistant
tumour growth [145]

RP11-783K16.13,
RP11-228B15.4,

and
CTD-2228K2.7

↑ _ GEPIA dataset
Higher expression of the lncRNAs
were significantly correlated with

shorter DFS time in PRAD.
[146]

PCAT1

↑ rs7463708
increases
binding

ONECUT2
and AR to the

PCAT1
promoter

ONECUT2, LSD1,
GNMT, and

DHCR24
LNCaP, LNCaP/shPCGEM1/TCGA dataset ↑ proliferation and tumor growth [147]

FAM83H-AS1 ↑ miR-15a, CCNE2
LNCaP, LNCaP-AI, and DU145/GEPIA data

sets: GSE513217 and GSE55062, plus 20PCa and
8 normal samples

↑ proliferation, migration, and cell
cycle progression [148]

DANCR ↓ TIMP2/3 CWR22Rv1, PC-3, and C4-2B/nude mice ↑ migration and invasion [149]

GAS5 ↓ _ LNCaP/GSE22606 ↓ proliferation, ↑ apoptosis [88]

PCAT18 ↑ PES LNCaP, C4-2, BPH/131 PCa, and 29 normal
samples/NOD/SCID mice

↑ proliferation, migration,
and invasion [150]

RP1-4514.2,
LINC01138,

and SUZ12P1
↓ _

22RV1, DU145, PC-3 and LNCaP,
WMPY-1/3 tumor tissues and 11 ANCTs, plus

14 tumor tissues, and 11 ANCTs and
TCGA database

_

[151]

KLKP1 ↑ _

22RV1, DU145, PC-3 and LNCaP,
WMPY-1/3 tumor tissues, 11 ANCTs plus

14 tumor tissues, and 11 ANCTs and
TCGA database

_

TMPO-AS1 ↓ _
LNCaP, DU145, 22Rv1, PC-3, and

WPMY-1/54 pairs of PCa samples and
TCGA data

↑ proliferation and migration,
↓ apoptosis [152]

circRNA-51217 ↓

R-2HG,
miRNA-646,
TGFβ1/p-

Smad2/3 signaling,
ADAR2

C4-2, PC3, DU145, LNCaP, and
HEK293T/TCGA database

IDH1 mutation
And R-2HG: ↑ circRNA-51217:

↑ invasion
[153]

circRNA-ARC1 ↓
miR-125b-2-

3p/miR-
4736/PPARγ/MMP-

9 signals

CWR22Rv1 and C4-2 Enz treatment: ↑ invasion [154]

circZMIZ1 ↑ _ DU145, C4-2, LNCaP, 22RV1, RWPE-1, 14 PCa
samples, and 14 HCs ↑ proliferation, ↓ G1 arrest [100]

In brief, the effect of AR on the expression of ncRNAs is mainly associated with its
role as a transcription factor.

Effects of AR on expression of ncRNAs are also implicated in the pathoetiology of
bladder, breast, liver, renal, and gastric cancers (Table 7). Yet, these effects are largely
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context-dependent. For instance, AR could reduce the expression of miR-21 in breast
cancer [155], while inducing its expression in hepatocellular carcinoma [156].

Table 7. Effects of AR on ncRNAs in different cancer types (Enz: enzalutamide, VM: vasculogenic mimicry, DHEA:
dehydroepiandrosterone, RBM: ccRCC bone metastases, ↓: decrease in, ↑: increase in).

Cancer Types ncRNAs Regulation by AR Molecular
Mechanisms

Cell Line/Samples/
Animal Models

Function of ncRNAs in
Cancer Cells References

Bladder cancer

miR-525-5p ↓ SLPI, HDAC2 _ ↑ metastasis [108]

circFNTA ↑
ADAR2, miR-370-3p,

FNTA pathway,
KRAS signaling

SVHUC, T24, J82, 5637, and
UMUC3/male athymic

BALB/c nude mice

↑ invasion, metastases, and
cisplatin chemo-resistance [157]

circRNA-
ARC1 ↑

miR-125b-2-3p/miR-
4736/PPARγ/
MMP-9 signals

T24 and UMUC3 Enz treatment: ↓ invasion [154]

Breast cancer

let-7a ↑ CMYC and KRAS
MCF-7, MDA-MB-453, and

MDA-MB-231/24 breast
cancer samples

↓ proliferation, cell growth [158]

miR-21 ↓ _
MCF-7, ZR-75-1,

MDA-MB-231, SKBR3,
and LNCap

↑ proliferation
(miboleron: ↓ miR-21:

↓ proliferation)
[155]

Triple-negative
breast cancer ARNILA ↓ miR-204, Sox4

MDA-MB-231 and Hs578T,
MDA-MB-436/88 TNBC
samples/female BALB/c

nude mice

↑ migration, invasion, and
EMT process [159]

Early Hepatocar-
cinogenesis miR-216a ↑ TSLC1

HepG2/48tumor tissues and
13 non-tumor tissues/male

athymic nude mice

↑ proliferation and
migration [160]

Hepatocellular
carcinoma

miR-21 ↑ PDCD4, ERβ HepG2, HBEC2-KT/male
C57BL/6 mice

DHEA: ↑ miR-21:
↑ proliferation [156]

miR-146a-
5p ↓ BRCA1 and BCL2

SK-HEP-1 and
HepG2/TCGA database
analysis/male nude mice

Enz plus Olaparib
treatment: ↑ miR-146a-5p:
↓ proliferation, cell growth,

and viability

[161]

circRNA7 ↓ miR-7-5p,
VE-Cadherin, Notch4 SKhep1, HA22T ↑ formation of VM [162]

circ-LNPEP ↓ miR-532-3p, RAB9A HA22T, SK-HEP-1, and
293/male nude mice ↑ invasion and metastasis [163]

circARSP91 ↓ ADAR1

MHCC-97h, LM3 and LO2,
HEK-293T/83 pairs of tumor

tissues, and
ANCTs/nude mice

↓ tumor growth [164]

Melanoma

miR-539-3p ↑ MITF-AXL signals,
USP13

A375 and WM115 and
C32/102 melanoma tissue
samples/male nude mice

↑ invasion and metastasis [165]

SLNCR

SLNCR and AR
cooperatively

regulate several
growth-regulatory

genes.

p21, EGR1, MMP9 WM1976 or A375,
SK-MEL-28, WM858

↑ proliferation
and invasion [166]

SLNCR1 ↑ Brn3a, MMP9 A375, HEK293T, CY and WM ↑ invasion [96]

Cholangiocarcinoma ZEB1-AS1 ↑ miR-133b, HOXB8

HIBEC, QBC939, CCLP-1,
RBE, TFK-1/54 pairs of

tumor tissues, and
ANCTs/female BALB/c

nude mice

↑ migration, invasion, EMT
process, viability,

and stemness
[167]

Gastric cancer PART1
AR interacts with

PART1 to
stimulatePLZF

expression

PLZF, EZH2,
PDGFRβ/PI3K/Akt
signaling pathway

GES-1, MGC-803, BGC-823,
and SGC-7901/GEOdatabase:

GSE27342, GSE33335,
andGSE3072, plus
136 GC samples

↓ migration, invasion,
and metastasis [168]

Clear cell renal
cell carcinoma

TANAR ↑ TWIST1

786O, SW839, HEK293T/51
ccRCC tissues, and 23
ANCTs/male athymic

BALB/c nude mice

↑ VM formation [169]

circHIAT1 ↓
HIAT1, miR-195-

5p/29a-3p/29c-3p,
and CDC42

SRC-2, VHL(þ) Caki-1,
SW-839, and ACHN ↓ migration and invasion [170]

circEXOC7 ↓ DHX9, miR-149-3p,
CSF1

SW839, 786-O, Caki-1,
ACHN, HEK293T/4 RCC
samples with RBM, and 10

RCC samples without
RBM/Balb/c nude mice

↑ RBM and
osteolytic formation [171]
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6. Discussion

AR has an essential role in the pathogenesis of human cancers, particularly prostate
cancer. Since it is required for the development of prostate cancer, androgen deprivation
therapy is regarded as a treatment for this type of cancer. Thus, the identification of the
regulatory mechanisms of AR signaling is important in the design of treatment options.
The importance of this process is further highlighted by the fact that castration resistance
might occur during the course of treatment, as a result of expression of constitutively active
AR splice variants [172], whose expressions can be modulated by ncRNAs.

Integrative transcriptomic analyses of diverse cancer cell lines and tissues have re-
sulted in the identification of several AR-interacting ncRNAs. In the current study, we
have listed ncRNAs that affect expression of AR, as well as those being affected by AR. No-
tably, mutual interactions have been identified between AR and some of these non-coding
transcripts. For instance, the expression of the lncRNA ARLNC1 has been shown to be
enhanced by the AR protein. Conversely, ARLNC1 can increase the stability of the AR
mRNA through RNA-RNA interaction [74].

AR-targeting miRNAs have been suggested as potent tumor suppressors in prostate
cancer. However, a number of other miRNAs have also been found to induce CRPC, by
changing the activity of AR signaling. Moreover, AR signaling can affect the expression of
miRNAs through different mechanisms, including feedback loops.

LncRNAs and circRNAs that regulate AR signaling have been found to interact with
miRNAs. MALAT1/miR-320, CCAT1/miR-28-5P, PlncRNA-1/miR-34c, PlncRNA-1/miR-
297, XIST/miR-24, SARCC/miR-143-3p, circ-ITCH/miR-17, and circRNA17/miR-181c-
5p are examples of the cooperation between lncRNAs/circRNAs and miRNAs in the
regulation of AR signaling. Similarly, AR-regulated lncRNAs and circRNAs have been
shown to influence the expression or bioavailability of miRNAs, adding novel layers of
complexity in this interaction network.

Taken together, the data presented above indicates the complexity of the transcrip-
tional regulation of miRNAs by AR and the effects of AR on them. Moreover, the interac-
tions between ncRNAs and AR signaling can be context-dependent.
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