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Recently, the dual Moore-Penrose generalized inverse has been applied to study the linear dual 
equation when the dual Moore-Penrose generalized inverse of the coefficient matrix of the linear 
dual equation exists. Nevertheless, the dual Moore-Penrose generalized inverse exists only in 
partially dual matrices. In this paper, to study more general linear dual equation, we introduce 
the weak dual generalized inverse described by four dual equations, and is a dual Moore-Penrose 
generalized inverses for it when the latter exists. Any dual matrix has the weak dual generalized 
inverse and is unique. We obtain some basic properties and characterizations of the weak dual 
generalized inverse. Also, we investigate relationships among the weak dual generalized inverse, 
the Moore-Penrose dual generalized inverses and the dual Moore-Penrose generalized inverses, 
give the equivalent characterization and use some numerical examples to show that the three are 
different dual generalized inverse. Afterwards, by applying the weak dual generalized inverse we 
solve two special linear dual equations, one of which is consistent and the other is inconsistent. 
Neither of the coefficient matrices of the above two linear dual equations has dual Moore-Penrose 
generalized inverses.

1. Introduction

In 1873, Clifford [1] proposed the use of quantity with size, direction and position to describe spiral motion, in particular 
rigid body motion. In 1903, Study [2] presented the operation rules of this new quantity and called it dual number. As a powerful 
mathematical tool, dual number are widely used in kinematics and dynamics analysis of space mechanisms, such as rigid body 
motion ([4–7]), spatial displacement analysis ([8–11]), robot ([12–14]), etc. In these practical applications, a large number of linear 
dual equations (LDEs for short) need to be solved.

In this paper, two real numbers 𝑎, 𝑎0 and the dual unit 𝜀 form a dual numbers 𝑎 = 𝑎 + 𝜀𝑎0, where 𝜀 ≠ 0, but 𝜀2 = 0, in addition 
to 0𝜀 = 𝜀0, 1𝜀 = 𝜀1 = 𝜀. Let 𝔻 and 𝔻𝑚×𝑛 be the sets of dual numbers and 𝑚 × 𝑛 dual matrices respectively. Dual matrix 𝐴 ∈ 𝔻𝑚×𝑛 is 
displayed in the form 𝐴 =𝐴 + 𝜀𝐴0, in which 𝐴 ∈ℝ𝑚×𝑛 and 𝐴0 ∈ℝ𝑚×𝑛. Moreover we denote its transpose by 𝐴𝑇 =𝐴𝑇 + 𝜀𝐴0

𝑇 , and the 
𝑛 × 𝑛 identity matrix as 𝐼𝑛.

Let two dual matrices 𝐴 ∈ 𝔻𝑛×𝑛 and 𝑋 ∈ 𝔻𝑛×𝑛, if 𝐴𝑋 = 𝑋𝐴 = 𝐼𝑛, then 𝐴 is invertible and 𝑋 is the dual inverse of 𝐴, denoted 
𝑋 = 𝐴−1. But the reality is that the dual inverse matrix 𝑋 does not always exist, so we need to seek some generalized inverses 
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to solve LDEs. The Moore-Penrose dual generalized inverse (MPDGI for short) is introduced by Pennestrì et al. [15–17] through the 
expression of the inverse of dual matrix, denoted it by 𝐴P and gave

𝐴P =𝐴† − 𝜀𝐴†𝐴0𝐴
†. (1.1)

It is obvious from the expression that any dual matrix has MPDGI. In [18], Falco et al. got some sufficient and necessary conditions 
for MPDGI to satisfy different types Penrose conditions, and applied MPDGI to solving LDEs of different kinematic problems.

Let the dual matrix 𝐴 ∈𝔻𝑚×𝑛 and 𝑋 ∈𝔻𝑛×𝑚, if the two dual matrices satisfy

(1) 𝐴𝑋𝐴 =𝐴 , (2) 𝑋𝐴𝑋 =𝑋 , (3)
(
𝐴𝑋

)𝑇
=𝐴𝑋 , (4)

(
𝑋𝐴

)𝑇
=𝑋𝐴 ,

then call 𝑋 the dual Moore-Penrose generalized inverse (DMPGI for short) of 𝐴 [22], denoting 𝑋 =𝐴†. Obviously, if 𝐴 is invertible, then 
𝐴† = 𝐴−1. Unlike any matrix over the real field that has the Moore-Penrose generalized inverse, the conditions for the existence of 
the DMPGI are strict, so not all dual matrices have DMPGIs [22]. Udwadia [20] gave an equivalent characterization of the existence 
of the DMPGI for a dual matrix 𝐴, that is, 𝐴 satisfies 𝐴𝑋𝐴 = 𝐴. Wang [19] obtained another equivalent condition for the existence 
of DMPGI. Udwadia [21] got some properties of dual generalized inverse, applied the inverse to solve consistent (inconsistent) LDEs, 
and obtained some equivalent characterization of the existence of solutions for LDEs.

It should be noted that not all dual matrices have DMPGIs, that is, the DMPGI can be used to study LDE only when the DMPGI 
of coefficient matrix of LDE exists. In this paper, a new class of dual generalized inverse is introduced to us, which is a generalized 
DMPGI, call it weak dual generalized inverse (WDGI for short), and discuss its properties, characterizations and applications.

2. Preliminary results

This section gives several known results for subsequent research.

Lemma 2.1 ([3], SVD). Let 𝐴 ∈ℝ𝑚×𝑛 and rank (𝐴) = 𝑟. Then there are two unitary matrices, 𝑈 ∈ℝ𝑚×𝑚 and 𝑉 ∈ℝ𝑛×𝑛, with

𝐴 =𝑈

[
Σ 0
0 0

]
𝑉 𝑇 ,

where Σ = 𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, … , 𝜎𝑟), and 𝜎1 ≥ 𝜎2 ≥⋯ ≥ 𝜎𝑟 > 0 are the nonzero singular value of 𝐴.

Lemma 2.2 ([19], Theorem 2.1). Let 𝐴 =𝐴 + 𝜀𝐴0 ∈𝔻𝑚×𝑛. Then there is the following equivalent condition:

(a) The DMPGI 𝐴† of 𝐴 exists;

(b)
(
𝐼𝑚 −𝐴𝐴†)𝐴0

(
𝐼𝑛 −𝐴†𝐴

)
= 0;

(c) rank
[
𝐴0 𝐴

𝐴 0

]
= 2 rank (𝐴).

If the DMPGI 𝐴† of 𝐴 exists, then

𝐴† =𝐴† − 𝜀𝑅, (2.1)

where 𝑅 =𝐴†𝐴0𝐴
† −

(
𝐴𝑇𝐴

)†
𝐴𝑇
0
(
𝐼𝑚 −𝐴𝐴†)− (

𝐼𝑛 −𝐴†𝐴
)
𝐴𝑇
0
(
𝐴𝐴𝑇

)†
.

Furthermore, let the SVD of 𝐴 be as shown in Lemma 2.1, then

𝐴0 =𝑈

[
𝐴1 𝐴2
𝐴3 0

]
𝑉 𝑇 , (2.2)

𝐴† = 𝑉

[
Σ−1 0
0 0

]
𝑈𝑇 − 𝜀𝑉

[
Σ−1𝐴1Σ−1 −Σ−2𝐴𝑇

3
−𝐴𝑇

2 Σ
−2 0

]
𝑈𝑇 ,

in which 𝐴1 ∈ℝ𝑟×𝑟.

Lemma 2.3 ([20], Result 20). Let 𝐴 ∈𝔻𝑚×𝑛. If the DMPGI of 𝐴 exists, then

𝐴† =
(
𝐴𝑇𝐴

)†
𝐴𝑇 =𝐴𝑇

(
𝐴𝐴𝑇

)†
.

Lemma 2.4 ([19], Theorem 2.3). Let 𝐴 =𝐴 + 𝜀𝐴0 ∈𝔻𝑚×𝑛. The following equivalence conditions are obtained:

(a) The DMPGI 𝐴† of 𝐴 exists, and 𝐴P =𝐴†;

(b)
(
𝐼𝑚 −𝐴𝐴†)𝐴0 = 0 and 𝐴0

(
𝐼𝑛 −𝐴†𝐴

)
= 0;

(c) rank
[
𝐴 𝐴0

]
= rank

[
𝐴𝑇 𝐴𝑇

0
]
= rank (𝐴);( ) ( ) ( )
2

(d)  𝐴0 ⊆ (𝐴) and  𝐴𝑇
0 ⊆ 𝐴𝑇 .
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Lemma 2.5. Let 𝐴 =𝐴 + 𝜀𝐴0 ∈𝔻𝑚×𝑛, the SVD of 𝐴 be as in Lemma 2.1. Write

𝐴0 =𝑈

[
𝐴1 𝐴2
𝐴3 𝐴4

]
𝑉 𝑇 ,

in which 𝐴1 ∈ℝ𝑟×𝑟. Then DMPGIs of 𝐴𝑇𝐴 and 𝐴𝐴𝑇 exist, and(
𝐴𝑇𝐴

)†
= 𝑉

[
Σ−2

0

]
𝑉 𝑇 − 𝜀𝑉

[
Σ−1 (𝐴1Σ−1 + Σ−1𝐴𝑇

1
)
Σ−1 −Σ−3𝐴2

−𝐴𝑇
2 Σ

−3 0

]
𝑉 𝑇 , (2.3)

(
𝐴𝐴𝑇

)†
=𝑈

[
Σ−2

0

]
𝑈𝑇 − 𝜀𝑈

[
Σ−1 (𝐴𝑇

1 Σ
−1 + Σ−1𝐴1

)
Σ−1 −Σ−3𝐴𝑇

3
−𝐴3Σ−3 0

]
𝑈𝑇 (2.4)

and (
𝐴𝑇𝐴

)†
𝐴𝑇 =𝐴𝑇

(
𝐴𝐴𝑇

)†
.

Proof. By calculation we have

𝐴𝑇𝐴 =𝐴𝑇𝐴+ 𝜀
(
𝐴𝑇𝐴0 +𝐴𝑇

0 𝐴
)

and 𝐴𝐴𝑇 =𝐴𝐴𝑇 + 𝜀
(
𝐴𝐴𝑇

0 +𝐴0𝐴
𝑇
)
. (2.5)

For 𝐴𝑇𝐴, using 
(
𝐼𝑛 −𝐴𝑇

(
𝐴𝑇

)†)
𝐴𝑇 = 0 and 𝐴 

(
𝐼𝑛 −𝐴†𝐴

)
= 0, we obtain(

𝐼𝑛 −𝐴𝑇𝐴
(
𝐴𝑇𝐴

)†)(
𝐴𝑇𝐴0 +𝐴𝑇

0 𝐴
)(

𝐼𝑛 −
(
𝐴𝑇𝐴

)†
𝐴𝑇𝐴

)
= 0.

Therefore, according to Lemma 2.2, 
(
𝐴𝑇𝐴

)†
must exists. Next, by Lemma 2.2 and (2.5) we get (2.3).

Similarly, we get (2.4). □

3. Weak dual generalized inverse

It is well known that DMPGI has good properties, which can be used to study some problems of dual linear systems. However, 
it should be noted that the prerequisite for us to apply DMPGI to solving the problem is the existence of DMPGI. In this section, to 
study more problems of dual linear systems, we introduce a generalized DMPGI, and discuss characterizations and basic properties 
of the inverse.

Theorem 3.1. Let 𝐴 ∈𝔻𝑚×𝑛, then the solution 𝑋 ∈𝔻𝑛×𝑚 to

(1′) 𝐴𝑇𝐴𝑋𝐴𝐴𝑇 =𝐴𝑇𝐴𝐴𝑇 , (2) 𝑋𝐴𝑋 =𝑋 , (3)
(
𝐴𝑋

)𝑇
=𝐴𝑋 , (4)

(
𝑋𝐴

)𝑇
=𝑋𝐴 (3.1)

is unique and

𝑋 =
(
𝐴𝑇𝐴

)†
𝐴𝑇 =𝐴𝑇

(
𝐴𝐴𝑇

)†
. (3.2)

Proof. Applying Lemma 2.5 it is easy to check that 
(
𝐴𝑇𝐴

)†
𝐴𝑇 =𝐴𝑇

(
𝐴𝐴𝑇

)†
.

By applying (3.2) to (3.1), we get

𝐴𝑇𝐴𝑋𝐴𝐴𝑇 =𝐴𝑇𝐴
(
𝐴𝑇𝐴

)†
𝐴𝑇𝐴𝐴𝑇 =𝐴𝑇𝐴𝐴𝑇 ,

𝑋𝐴𝑋 =
(
𝐴𝑇𝐴

)†
𝐴𝑇𝐴

(
𝐴𝑇𝐴

)†
𝐴𝑇 =

(
𝐴𝑇𝐴

)†
𝐴𝑇 =𝑋,(

𝐴𝑋
)𝑇

=
(
𝐴
(
𝐴𝑇𝐴

)†
𝐴𝑇

)𝑇

=𝐴
(
𝐴𝑇𝐴

)†
𝐴𝑇 =𝐴𝑋,

(
𝑋𝐴

)𝑇
=
(
𝐴𝑇

(
𝐴𝐴𝑇

)†
𝐴

)𝑇

=𝐴𝑇
(
𝐴𝐴𝑇

)†
𝐴 =𝑋𝐴.

Then 𝑋 given in (3.2) satisfies the four conditional equations in (3.1).

Let both 𝑋1 and 𝑋2 satisfy the equations (3.1). Then applying 𝑋1𝐴𝑋1 =𝑋1 and 
(
𝐴𝑋1

)𝑇
=𝐴𝑋1 gives

𝑋1 =𝑋1𝐴𝑋1 =𝐴𝑇𝑋𝑇
1 𝑋1 =𝐴𝑇𝑋𝑇

1 𝐴
𝑇𝑋𝑇

1 𝑋1 =𝐴𝑇𝐴𝑋1𝑋
𝑇
1 𝑋1

=𝐴𝑇𝐴𝑋1𝐴𝑋1𝑋
𝑇
1 𝑋1 =𝐴𝑇𝐴𝑋1𝐴𝑋1𝐴𝑋1𝑋

𝑇
1 𝑋1 =𝐴𝑇𝐴𝑋1𝐴𝐴

𝑇𝑋𝑇
1 𝑋1𝑋

𝑇
1 𝑋1.
3

Applying (1′) and (3), we get
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𝐴𝑇𝐴𝑋1𝐴𝐴
𝑇𝑋𝑇

1 𝑋1𝑋
𝑇
1 𝑋1 =𝐴𝑇𝐴𝑋2𝐴𝐴

𝑇𝑋𝑇
1 𝑋1𝑋

𝑇
1 𝑋1 =𝐴𝑇𝑋𝑇

2 𝐴
𝑇𝐴𝑋1𝐴𝑋1𝑋

𝑇
1 𝑋1

=𝑋2𝐴𝐴
𝑇𝑋𝑇

1 𝑋1 =𝑋2𝐴𝑋1𝐴𝑋1 =𝑋2𝐴𝑋1.

Furthermore, applying (3.1) we get

𝑋2𝐴𝑋1 =𝑋2𝑋
𝑇
2 𝐴

𝑇𝑋𝑇
2 𝐴

𝑇𝐴𝑋1 =𝑋2𝑋
𝑇
2 𝑋2𝐴𝐴

𝑇𝐴𝑋1 =𝑋2𝑋
𝑇
2 𝑋2𝑋

𝑇
2 𝐴

𝑇𝐴𝑋1𝐴𝐴
𝑇

=𝑋2𝑋
𝑇
2 𝑋2𝐴𝑋2𝐴𝑋2𝐴𝐴

𝑇 =𝑋2𝑋
𝑇
2 𝐴

𝑇𝑋𝑇
2 𝐴

𝑇 =𝑋2𝑋
𝑇
2 𝐴

𝑇 =𝑋2𝐴𝑋2 =𝑋2.

Therefore, we get that the solution to (3.1) is unique. □

Definition 3.1. Let 𝐴 ∈𝔻𝑚×𝑛. Then the unique dual matrix that satisfies (3.1) is called the weak dual generalized inverse (WDGI for 
short), denoted by 𝐴W†.

Theorem 3.2. Let 𝐴 =𝐴 + 𝜀𝐴0 ∈𝔻𝑚×𝑛. Then

𝐴W† =𝐴† − 𝜀𝑅W, (3.3)

where 𝑅W =𝐴†𝐴0𝐴
† −

(
𝐴𝑇𝐴

)†
𝐴𝑇
0
(
𝐼𝑚 −𝐴𝐴†)− (

𝐼𝑛 −𝐴†𝐴
)
𝐴𝑇
0
(
𝐴𝐴𝑇

)†
. Furthermore, write

𝐴0 =𝑈

[
𝐴1 𝐴2
𝐴3 𝐴4

]
𝑉 𝑇 ,

in which 𝐴1 ∈ℝ𝑟×𝑟, then

𝐴W† = 𝑉

[
Σ−1

0

]
𝑈𝑇 − 𝜀𝑉

[
Σ−1𝐴1Σ−1 −Σ−2𝐴𝑇

3
−𝐴𝑇

2 Σ
−2 0

]
𝑈𝑇 , (3.4)

where 𝑈 , 𝑉 and Σ are given by Lemma 2.2.

Proof. By Lemma 2.5 we know that the DMPGI of 𝐴𝑇𝐴 must exist for 𝐴. By (2.5) and (2.1) we obtain(
𝐴𝑇𝐴

)†
=
(
𝐴𝑇𝐴

)† − 𝜀
{
𝐴†𝐴0

(
𝐴𝑇𝐴

)† + (
𝐴𝑇𝐴

)†
𝐴𝑇
0
(
𝐴𝑇

)† − (
𝐴𝑇𝐴𝐴𝑇𝐴

)† Δ(
𝐼𝑛 −𝐴𝑇

(
𝐴𝑇

)†)
−
(
𝐼𝑛 −𝐴†𝐴

)
𝐴𝑇
0
(
𝐴𝑇

)† (
𝐴𝑇𝐴

)†}
,

and

𝐴W† =
(
𝐴𝑇𝐴

)†
𝐴𝑇

=
{(

𝐴𝑇𝐴
)† − 𝜀

{
𝐴†𝐴0

(
𝐴𝑇𝐴

)† + (
𝐴𝑇𝐴

)†
𝐴𝑇
0
(
𝐴𝑇

)† − (
𝐴𝑇𝐴𝐴𝑇𝐴

)† Δ(
𝐼𝑛 −𝐴𝑇

(
𝐴𝑇

)†)
−
(
𝐼𝑛 −𝐴†𝐴

)
𝐴𝑇
0
(
𝐴𝑇

)† (
𝐴𝑇𝐴

)†}}(
𝐴𝑇 + 𝜀𝐴𝑇

0
)

=𝐴† − 𝜀
{
𝐴†𝐴0𝐴

† −
(
𝐴𝑇𝐴

)†
𝐴𝑇
0
(
𝐼𝑚 −𝐴𝐴†)− (

𝐼𝑛 −𝐴†𝐴
)
𝐴𝑇
0
(
𝐴𝐴𝑇

)†}
,

where Δ =𝐴𝑇𝐴0 +𝐴𝑇
0 𝐴. Therefore, we have (3.3). Moreover, by (2.2), (2.3) and (2.4) we get (3.4). □

Theorem 3.3. Let 𝐴 ∈𝔻𝑚×𝑛. When the DMPGI of 𝐴 exists, we have 𝐴† =𝐴W†.

Proof. Theorem 3.3 follows from Lemma 2.3 and Theorem 3.1. □

Remark 3.1. By Lemma 2.2 and Theorem 3.2, we observe that DMPGI has the same explicit expression as WDGI. By Theorem 3.3, 
we know that WDGI is equal to DMPGI when DMPGI of dual matrix exists. On the other hand, from the Lemma 2.3, 𝐴† =

(
𝐴𝑇𝐴

)†
𝐴𝑇

when DMPGI of A exists, substituting 𝐴† into (3.1) (1′) has 𝐴𝑇𝐴𝐴†𝐴𝐴𝑇 = 𝐴𝑇𝐴
(
𝐴𝑇𝐴

)†
𝐴𝑇𝐴𝐴𝑇 = 𝐴𝑇𝐴𝐴𝑇 . This also indicates that 

WDGI is one generalized DMPGI. Of course, the difference between the two is that DMPGI needs to satisfy certain conditions to exist, 
while WDGI exists for any dual matrix. In conclusion, WDGI and DMPGI are two different types of dual generalized inverse. WDGI 
includes DMPGI and WDGI is more general.

According to the above theorems, WDGI is a generalization of DMPGI. We use the following example to illustrate that WDGI is 
4

more general.
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Example 3.1 ([22], Equation (46)). Let 𝑍 =𝑍 + 𝜀𝑍0 =
⎡⎢⎢⎣
1 −1 1
0 0 0
1 −3 3

⎤⎥⎥⎦+ 𝜀 
⎡⎢⎢⎣
1 −3 3
−1 6 −13
−1 1 −1

⎤⎥⎥⎦, then

𝑍† =
⎡⎢⎢⎢⎣

3
2 0 − 1

2
1
4 0 − 1

4
− 1

4 0 1
4

⎤⎥⎥⎥⎦ , 𝑍
†𝑍0𝑍

† =
⎡⎢⎢⎢⎣

1
2 0 3

2
1
4 0 1

4
− 1

4 0 − 1
4

⎤⎥⎥⎥⎦ ,
(
𝐼3 −𝑍𝑍†)𝑍0

(
𝐼3 −𝑍†𝑍

)
=
⎡⎢⎢⎣
0 0 0
0 − 7

2 − 7
2

0 0 0

⎤⎥⎥⎦ ≠ 0,

(
𝑍𝑇𝑍

)†
𝑍𝑇

0
(
𝐼3 −𝑍𝑍†) = ⎡⎢⎢⎢⎣

0 7 0
0 15

8 0
0 − 15

8 0

⎤⎥⎥⎥⎦𝑎𝑛𝑑
(
𝐼3 −𝑍†𝑍

)
𝑍𝑇

0
(
𝑍𝑍𝑇

)† = 0.

By applying 
(
𝐼3 −𝑍𝑍†)𝑍0

(
𝐼3 −𝑍†𝑍

)
≠ 0 and Lemma 2.2, we get that the DMPGI of 𝑍 does not exist. By applying Theorem 3.2 we 

get

𝑍W† =
⎡⎢⎢⎢⎣

3
2 0 − 1

2
1
4 0 − 1

4
− 1

4 0 1
4

⎤⎥⎥⎥⎦− 𝜀

⎡⎢⎢⎢⎣
1
2 −7 3

2
1
4 − 15

8
1
4

− 1
4

15
8 − 1

4

⎤⎥⎥⎥⎦ .
Next, we give some basic properties of the weak dual generalized inverse.

Theorem 3.4. Let 𝐴 ∈𝔻𝑚×𝑛. Then

(a)
(
𝐴𝑇

)W†
=
(
𝐴W†

)𝑇
;

(b)
(
𝐴W†

)W†
=𝐴𝐴W†𝐴;

(c)
(
𝐴𝐴𝑇

)W†
=
(
𝐴𝑇

)W†
𝐴W†; 

(
𝐴𝑇𝐴

)W†
=𝐴W†

(
𝐴𝑇

)W†
;

(d)
(
𝜆𝐴

)W†
= 𝜆†𝐴W†, where 𝜆 ∈𝔻 and 𝜆† =

{
𝜆−1, the real part of 𝜆 is not zero

0, the real part of 𝜆 is zero
;

(e) 𝐴𝐴W†𝐴𝐴𝑇 =𝐴𝐴𝑇 ; 𝐴𝑇𝐴𝐴W†𝐴 =𝐴𝑇𝐴.

Proof. (𝑎): By (3.2) we know 𝐴W† =
(
𝐴𝑇𝐴

)†
𝐴𝑇 =𝐴𝑇

(
𝐴𝐴𝑇

)†
. Then by applying 

(
𝐴W†

)𝑇
to (3.1) we get

(𝐴𝑇 )𝑇 𝐴𝑇
(
𝐴W†

)𝑇
𝐴𝑇 (𝐴𝑇 )𝑇 =𝐴𝐴𝑇𝐴

(
𝐴𝑇𝐴

)†
𝐴𝑇𝐴 =𝐴𝐴𝑇𝐴 = (𝐴𝑇 )𝑇 𝐴𝑇 (𝐴𝑇 )𝑇 ,(

𝐴W†
)𝑇

𝐴𝑇
(
𝐴W†

)𝑇

=𝐴
(
𝐴𝑇𝐴

)†
𝐴𝑇𝐴

(
𝐴𝑇𝐴

)†
=𝐴

(
𝐴𝑇𝐴

)†
=
(
𝐴W†

)𝑇

,(
𝐴𝑇

(
𝐴W†

)𝑇
)𝑇

=𝐴W†𝐴 =𝐴𝑇
(
𝐴𝐴𝑇

)†
𝐴 =𝐴𝑇

(
𝐴W†

)𝑇

,((
𝐴W†

)𝑇

𝐴𝑇

)𝑇

=𝐴𝐴W† =𝐴
(
𝐴𝑇𝐴

)†
𝐴𝑇 =

(
𝐴W†

)𝑇

𝐴𝑇 .

By applying Theorem 3.1 we get that 
(
𝐴W†

)𝑇
is the WDGI of 𝐴𝑇 .

The proof of (𝑏), (𝑐), (𝑑) is analogous to (𝑎).
(𝑒): Substituting (3.2) in (𝑒) gives 𝐴𝐴W†𝐴𝐴𝑇 =𝐴𝐴𝑇

(
𝐴𝐴𝑇

)†
𝐴𝐴𝑇 =𝐴𝐴𝑇 and 𝐴𝑇𝐴𝐴W†𝐴 =𝐴𝑇𝐴

(
𝐴𝑇𝐴

)†
𝐴𝑇𝐴 =𝐴𝑇𝐴. □

4. Relationships among WDGI, DMPGI and MPDGI

In this section, we discuss that WDGI is different from DMPGI and MPDGI, and further investigate relationships among WDGI, 
DMPGI and MPDGI.

Theorem 4.1. Let 𝐴 =𝐴 + 𝜀𝐴0 ∈𝔻𝑚×𝑛. Then there is the following equivalent condition:

(a) The DMPGI 𝐴† of 𝐴 exists, and 𝐴† =𝐴W†;

(b) The DMPGI 𝐴† of 𝐴 exists;

(c)
(
𝐼𝑚 −𝐴𝐴†)𝐴0

(
𝐼𝑛 −𝐴†𝐴

)
= 0;[

𝐴0 𝐴
]

5

(d) rank
𝐴 0 = 2 rank (𝐴).
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Proof. The equivalence among the above four conditions follows from Lemma 2.2, Lemma 2.3 and Theorem 3.3. □

The following examples illustrate relationships among WDGI, MPDGI and DMPGI.

Example 4.1. Let 𝐴 =𝐴 + 𝜀𝐴0 =
⎡⎢⎢⎣
1 2 0
−2 1 0
0 0 0

⎤⎥⎥⎦+ 𝜀 
⎡⎢⎢⎣
1 2 3
2 1 3
3 1 2

⎤⎥⎥⎦, then

𝐴† =
⎡⎢⎢⎢⎣

1
5 − 2

5 0
− 2

5
1
5 0

0 0 0

⎤⎥⎥⎥⎦ , 𝐴
†𝐴0𝐴

† =
⎡⎢⎢⎢⎣
− 3

25
6
25 0

14
25 − 3

25 0
0 0 0

⎤⎥⎥⎥⎦ ,
(
𝐼3 −𝐴𝐴†)𝐴0

(
𝐼3 −𝐴†𝐴

)
=
⎡⎢⎢⎣
0 0 0
0 0 0
0 0 2

⎤⎥⎥⎦ ≠ 0,

(
𝐴𝑇𝐴

)†
𝐴𝑇
0
(
𝐼3 −𝐴𝐴†) = ⎡⎢⎢⎢⎣

0 0 3
5

0 0 1
5

0 0 0

⎤⎥⎥⎥⎦ 𝑎𝑛𝑑
(
𝐼3 −𝐴†𝐴

)
𝐴𝑇
0
(
𝐴𝐴𝑇

)† = ⎡⎢⎢⎣
0 0 0
0 0 0
3
5

3
5 0

⎤⎥⎥⎦ .
So by Lemma 2.2 we know that the DMPGI of 𝐴 does not exist, but 𝐴W† does. By (1.1) and (3.3) we have

𝐴P =
⎡⎢⎢⎢⎣

1
5 − 2

5 0
− 2

5
1
5 0

0 0 0

⎤⎥⎥⎥⎦− 𝜀

⎡⎢⎢⎢⎣
− 3

25
6
25 0

14
25 − 3

25 0
0 0 0

⎤⎥⎥⎥⎦ 𝑎𝑛𝑑 𝐴W† =
⎡⎢⎢⎢⎣

1
5 − 2

5 0
− 2

5
1
5 0

0 0 0

⎤⎥⎥⎥⎦− 𝜀

⎡⎢⎢⎢⎣
− 3

25
6
25 − 3

5
14
25 − 3

25 − 1
5

− 3
5 − 3

5 0

⎤⎥⎥⎥⎦ .
Now, the DMPGI of 𝐴 does not exist and 𝐴P ≠𝐴W†.

Example 4.2. Let 𝐴 =𝐴 + 𝜀𝐴0 =
⎡⎢⎢⎣
1 2 0
−2 1 0
0 0 0

⎤⎥⎥⎦+ 𝜀 
⎡⎢⎢⎣
2 −1 3
0 1 2
−4 −5 0

⎤⎥⎥⎦, then

𝐴† =
⎡⎢⎢⎢⎣

1
5 − 2

5 0
− 2

5
1
5 0

0 0 0

⎤⎥⎥⎥⎦ , 𝐴
†𝐴0𝐴

† =
⎡⎢⎢⎢⎣
− 4

25 − 7
25 0

2
25 − 9

25 0
0 0 0

⎤⎥⎥⎥⎦ ,
(
𝐼3 −𝐴𝐴†)𝐴0

(
𝐼3 −𝐴†𝐴

)
= 0,

(
𝐴𝑇𝐴

)†
𝐴𝑇
0
(
𝐼3 −𝐴𝐴†) = ⎡⎢⎢⎣

0 0 − 4
5

0 0 −1
0 0 0

⎤⎥⎥⎦ 𝑎𝑛𝑑
(
𝐼3 −𝐴†𝐴

)
𝐴𝑇
0
(
𝐴𝐴𝑇

)† = ⎡⎢⎢⎣
0 0 0
0 0 0
3
5

2
5 0

⎤⎥⎥⎦ .
So the DMPGI of 𝐴 exists. By (1.1), (2.1) and (3.3) we have

𝐴P =
⎡⎢⎢⎢⎣

1
5 − 2

5 0
− 2

5
1
5 0

0 0 0

⎤⎥⎥⎥⎦− 𝜀

⎡⎢⎢⎢⎣
− 4

25 − 7
25 0

2
25 − 9

25 0
0 0 0

⎤⎥⎥⎥⎦ ,

𝐴† =
⎡⎢⎢⎢⎣

1
5 − 2

5 0
− 2

5
1
5 0

0 0 0

⎤⎥⎥⎥⎦− 𝜀

⎡⎢⎢⎢⎣
− 4

25 − 7
25

4
5

2
25 − 9

25 1
− 3

5 − 2
5 0

⎤⎥⎥⎥⎦ 𝑎𝑛𝑑 𝐴W† =
⎡⎢⎢⎢⎣

1
5 − 2

5 0
− 2

5
1
5 0

0 0 0

⎤⎥⎥⎥⎦− 𝜀

⎡⎢⎢⎢⎣
− 4

25 − 7
25

4
5

2
25 − 9

25 1
− 3

5 − 2
5 0

⎤⎥⎥⎥⎦ .
Now, the DMPGI of 𝐴 exists, 𝐴P ≠𝐴† and 𝐴† =𝐴W†.

Remark 4.1. From Examples 4.1–4.2 above, we know that MPDGI and WDGI could be unequal whether or not DMPGI exists. In 
other words, MPDGI and WDGI are two different types of dual generalized inverses.

Theorem 4.2. Let 𝐴 =𝐴 + 𝜀𝐴0 ∈𝔻𝑚×𝑛. Then there is the following equivalent condition:

(a) 𝐴P =𝐴W†;

(b)
(
𝐼𝑚 −𝐴𝐴†)𝐴0𝐴

† = 0 and 𝐴†𝐴0
(
𝐼𝑛 −𝐴†𝐴

)
= 0.

Proof. “⇒” If 𝐴P =𝐴W†, then by (1.1) and (3.3) we have( ) ( ) ( ) ( )

6

𝐴𝑇𝐴
†
𝐴𝑇
0 𝐼𝑚 −𝐴𝐴† + 𝐼𝑛 −𝐴†𝐴 𝐴𝑇

0 𝐴𝐴𝑇 † = 0. (4.1)
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Pre-multiplying 𝐴 on (4.1) gives

0 =𝐴
(
𝐴𝑇𝐴

)†
𝐴𝑇
0
(
𝐼𝑚 −𝐴𝐴†)+𝐴

(
𝐼𝑛 −𝐴†𝐴

)
𝐴𝑇
0
(
𝐴𝐴𝑇

)† = (
𝐴†)𝑇 𝐴𝑇

0
(
𝐼𝑚 −𝐴𝐴†) .

Furthermore, by taking transposes of both sides, we get 
(
𝐼𝑚 −𝐴𝐴†)𝐴0𝐴

† = 0. Similarly, post-multiplying 𝐴 on (4.1) gives 
𝐴†𝐴0

(
𝐼𝑛 −𝐴†𝐴

)
= 0.

“⇐” If 
(
𝐼𝑚 −𝐴𝐴†)𝐴0𝐴

† = 0 and 𝐴†𝐴0
(
𝐼𝑛 −𝐴†𝐴

)
= 0, then

𝑅W =𝐴†𝐴0𝐴
† −

(
𝐴𝑇𝐴

)†
𝐴𝑇
0
(
𝐼𝑚 −𝐴𝐴†)− (

𝐼𝑛 −𝐴†𝐴
)
𝐴𝑇
0
(
𝐴𝐴𝑇

)†
=𝐴†𝐴0𝐴

† −𝐴† ((𝐼𝑚 −𝐴𝐴†)𝐴0𝐴
†)𝑇 −

(
𝐴†𝐴0

(
𝐼𝑛 −𝐴†𝐴

))𝑇
𝐴†

=𝐴†𝐴0𝐴
†.

Therefore, we have 𝐴P =𝐴W†. □

Example 4.3. Let 𝐴 =𝐴 + 𝜀𝐴0 =
⎡⎢⎢⎣
1 2 0
−2 1 0
0 0 0

⎤⎥⎥⎦+ 𝜀 
⎡⎢⎢⎣
3 1 0
−2 4 0
0 0 −2

⎤⎥⎥⎦, then

𝐴† =
⎡⎢⎢⎢⎣

1
5 − 2

5 0
− 2

5
1
5 0

0 0 0

⎤⎥⎥⎥⎦ , 𝐴
†𝐴0𝐴

† =
⎡⎢⎢⎢⎣
− 7

25 − 21
25 0

16
25 − 2

25 0
0 0 0

⎤⎥⎥⎥⎦ ,
(
𝐼3 −𝐴𝐴†)𝐴0

(
𝐼3 −𝐴†𝐴

)
=
⎡⎢⎢⎣
0 0 0
0 0 0
0 0 −2

⎤⎥⎥⎦ ≠ 0,

(
𝐴𝑇𝐴

)†
𝐴𝑇
0
(
𝐼3 −𝐴𝐴†) = 0 𝑎𝑛𝑑

(
𝐼3 −𝐴†𝐴

)
𝐴𝑇
0
(
𝐴𝐴𝑇

)† = 0.

So the DMPGI of 𝐴 does not exist, but

𝐴P =
⎡⎢⎢⎢⎣

1
5 − 2

5 0
− 2

5
1
5 0

0 0 0

⎤⎥⎥⎥⎦− 𝜀

⎡⎢⎢⎢⎣
− 7

25 − 21
25 0

16
25 − 2

25 0
0 0 0

⎤⎥⎥⎥⎦ and 𝐴W† =
⎡⎢⎢⎢⎣

1
5 − 2

5 0
− 2

5
1
5 0

0 0 0

⎤⎥⎥⎥⎦− 𝜀

⎡⎢⎢⎢⎣
− 7

25 − 21
25 0

16
25 − 2

25 0
0 0 0

⎤⎥⎥⎥⎦ .
Now, the DMPGI of 𝐴 does not exist, but interestingly enough,

𝐴P =𝐴W†.

Example 4.4. Let 𝐴 =𝐴 + 𝜀𝐴0 =
⎡⎢⎢⎣
2 1 0
−1 2 0
0 0 0

⎤⎥⎥⎦+ 𝜀 
⎡⎢⎢⎣
3 1 0
−2 4 0
0 0 0

⎤⎥⎥⎦, then

𝐴† =
⎡⎢⎢⎢⎣

2
5 − 1

5 0
− 1

5
2
5 0

0 0 0

⎤⎥⎥⎥⎦ , 𝐴
†𝐴0𝐴

† =
⎡⎢⎢⎢⎣
14
25 − 12

25 0
7
25

19
25 0

0 0 0

⎤⎥⎥⎥⎦ ,
(
𝐼3 −𝐴𝐴†)𝐴0

(
𝐼3 −𝐴†𝐴

)
= 0,

(
𝐴𝑇𝐴

)†
𝐴𝑇
0
(
𝐼3 −𝐴𝐴†) = 0 𝑎𝑛𝑑

(
𝐼3 −𝐴†𝐴

)
𝐴𝑇
0
(
𝐴𝐴𝑇

)† = 0.

Therefore, the DMPGI of 𝐴 exists and 𝐴† =𝐴W†. By (1.1) and (2.1) we have

𝐴P =
⎡⎢⎢⎢⎣

2
5 − 1

5 0
− 1

5
2
5 0

0 0 0

⎤⎥⎥⎥⎦− 𝜀

⎡⎢⎢⎢⎣
14
25 − 12

25 0
7
25

19
25 0

0 0 0

⎤⎥⎥⎥⎦ 𝑎𝑛𝑑 𝐴† =
⎡⎢⎢⎢⎣

2
5 − 1

5 0
− 1

5
2
5 0

0 0 0

⎤⎥⎥⎥⎦− 𝜀

⎡⎢⎢⎢⎣
14
25 − 12

25 0
7
25

19
25 0

0 0 0

⎤⎥⎥⎥⎦ .
Now,

𝐴P =𝐴† =𝐴W†.

Remark 4.2. From Examples 4.3–4.4 above, we know that MPDGI and WDGI could be equal whether or not DMPGI exists, and the 
above four examples show that when the DMPGI of dual matrix 𝐴 exists, then 𝐴† =𝐴W†. On the other hand, it shows that WDGI is a 
dual generalized inverse different from MPDGI and DMPGI, and more general than DMPGI.
7

Corollary 4.3. Let 𝐴 =𝐴 + 𝜀𝐴0 ∈𝔻𝑚×𝑛. If the DMPGI 𝐴† of 𝐴 exists, then there is the following equivalent condition:
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(a) 𝐴P =𝐴† =𝐴W†;

(b) 𝐴P =𝐴†;

(c)
(
𝐼𝑚 −𝐴𝐴†)𝐴0 = 0 and 𝐴0

(
𝐼𝑛 −𝐴†𝐴

)
= 0;

(d) rank
[
𝐴 𝐴0

]
= rank

[
𝐴𝑇 𝐴𝑇

0
]
= rank (𝐴);

(e)  
(
𝐴0

)
⊆ (𝐴) and  

(
𝐴𝑇
0
)
⊆ 

(
𝐴𝑇

)
.

Proof. The equivalence among the above five conditions follows from Lemma 2.4 and Theorem 3.3. □

5. Applications of WDGI

Let the dual vector �̂� = 𝑝 + 𝜀𝑞. Then denote dual vector norm

⟨�̂�⟩ = ⟨𝑝+ 𝜀𝑞⟩ = ‖𝑝‖+ ‖𝑞‖,
where ‖ ⋅ ‖ is the Euclidean norm of real vector [21].

DMPGI not only provides a new tool for studying some consistent linear dual equations (LDE), but also provides a tool for getting 
analogue of the least-squares solution to some inconsistent LDEs [21]. WDGI is one generalization of DMPGI. When DMPGI exists, 
WDGI is equal to DMPGI, which means that WDGI can handle any problem that DMPGI can handle. However, the conditions for 
the existence of DMPGI are hard to meet, which means that DMPGI has great limitations in practical applications. Here we give two 
special LDEs; one is a consistent LDE and the other is an inconsistent LDE. The DMPGIs of coefficient matrices of the two special 
LDEs do not exist, that is, the two special LDEs cannot be treated with DMPGI.

Example 5.1. Let the dual equation 𝐴𝑥 = �̂� be

⎡⎢⎢⎣
1 + 𝜀 2 + 𝜀3 𝜀

−2 − 𝜀2 1 + 𝜀4 0
𝜀3 0 −𝜀2

⎤⎥⎥⎦
⎡⎢⎢⎣
𝑥1
𝑥2
𝑥3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
5 + 𝜀

𝜀2
𝜀3

⎤⎥⎥⎦ . (5.1)

By Lemma 2.2 we have

(
𝐼3 −𝐴𝐴†)𝐴0

(
𝐼3 −𝐴†𝐴

)
=
⎡⎢⎢⎣
0 0 0
0 0 0
0 0 −2

⎤⎥⎥⎦ ≠ 0.

In this case, the DMPGI of 𝐴 does not exist. By applying 𝐴 to (3.2), we get

𝐴W† =
⎡⎢⎢⎢⎣
1
5 + 𝜀

1
5 − 2

5 + 𝜀
3
5 𝜀

3
5

2
5 − 𝜀

4
5

1
5 − 𝜀

2
5 0

𝜀
1
5 0 0

⎤⎥⎥⎥⎦ and 𝐴W†�̂� =
⎡⎢⎢⎢⎣
1 + 𝜀

2
5

2 − 𝜀
16
5

𝜀

⎤⎥⎥⎥⎦ .
It’s easy to check that

𝐴𝐴W†�̂� =
⎡⎢⎢⎣

1 + 𝜀 2 + 𝜀3 𝜀

−2 − 𝜀2 1 + 𝜀4 0
𝜀3 0 −𝜀2

⎤⎥⎥⎦
⎡⎢⎢⎢⎣
1 + 𝜀

2
5

2 − 𝜀
16
5

𝜀

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎣
5 + 𝜀

𝜀2
𝜀3

⎤⎥⎥⎦ .
Therefore, 𝐴W†�̂� is one solution to (5.1).

Example 5.2. Let the dual equation 𝐴𝑦 = 𝑑 be

⎡⎢⎢⎣
2 + 𝜀3 0 𝜀2

0 𝜀4 −𝜀
𝜀 0 −𝜀2

⎤⎥⎥⎦
⎡⎢⎢⎣
𝑦1
𝑦2
𝑦3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
𝜀

1
0

⎤⎥⎥⎦ . (5.2)

It is easy to check that (5.2) is inconsistent, the DMPGI of 𝐴 does not exist, and

𝐴W† =
⎡⎢⎢⎢⎣
1
2 − 𝜀

3
4 0 𝜀

1
4

0 0 0
𝜀
1
2 0 0

⎤⎥⎥⎥⎦ and 𝐴W†𝑑 =
⎡⎢⎢⎣
𝜀
1
2
0
0

⎤⎥⎥⎦ . (5.3)

Let 
[
𝑦1 𝑦2 𝑦3

]𝑇 =
[
𝑦1 𝑦2 𝑦3

]𝑇 + 𝜀 
[
𝑦10 𝑦20 𝑦30

]𝑇
, which 𝑦1, 𝑦2, 𝑦3, 𝑦10, 𝑦20 and 𝑦30 are all real numbers. Since

⟨
𝐴𝑦− 𝑑

⟩
=

⟨⎡⎢2 + 𝜀3 0 𝜀2
0 𝜀4 −𝜀

⎤⎥ ⎡⎢𝑦1𝑦2 ⎤⎥− ⎡⎢𝜀1⎤⎥⟩ =

⟨⎡⎢2𝑦1 + 𝜀
(
2𝑦10 + 3𝑦1 + 2𝑦3 − 1

)
−1 + 𝜀

(
4𝑦2 − 𝑦3

) ⎤⎥⟩
8

⎢⎣ 𝜀 0 −𝜀2⎥⎦ ⎢⎣𝑦3 ⎥⎦ ⎢⎣0⎥⎦ ⎢⎣ 𝜀
(
𝑦1 − 2𝑦3

) ⎥⎦
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=
‖‖‖‖‖‖‖
⎡⎢⎢⎣
2𝑦1
−1
0

⎤⎥⎥⎦
‖‖‖‖‖‖‖+

‖‖‖‖‖‖‖
⎡⎢⎢⎣
2𝑦10 + 3𝑦1 + 2𝑦3 − 1

4𝑦2 − 𝑦3
𝑦1 − 2𝑦3

⎤⎥⎥⎦
‖‖‖‖‖‖‖ ,

min
𝑦1

‖‖‖‖‖‖‖
⎡⎢⎢⎣
2𝑦1
−1
0

⎤⎥⎥⎦
‖‖‖‖‖‖‖ = 1 𝑎𝑛𝑑 min

𝑦1 ,𝑦2 ,𝑦3 ,𝑦10

‖‖‖‖‖‖‖
⎡⎢⎢⎣
2𝑦10 + 3𝑦1 + 2𝑦3 − 1

4𝑦2 − 𝑦3
𝑦1 − 2𝑦3

⎤⎥⎥⎦
‖‖‖‖‖‖‖ = 0,

then

min
𝑦1 ,𝑦2 ,𝑦3

⟨
𝐴

⎡⎢⎢⎣
𝑦1
𝑦2
𝑦3

⎤⎥⎥⎦− 𝑑

⟩
= 1.

Furthermore, applying (5.3) gives

⟨
𝐴𝐴W†𝑑 − 𝑑

⟩
=

⟨⎡⎢⎢⎣
2 + 𝜀3 0 𝜀2

0 𝜀4 −𝜀
𝜀 0 −𝜀2

⎤⎥⎥⎦
⎡⎢⎢⎣
𝜀
1
2
0
0

⎤⎥⎥⎦−
⎡⎢⎢⎣
𝜀

1
0

⎤⎥⎥⎦
⟩

= 1.

Therefore, 𝐴W†�̂� is the least-squares solution to (5.2).

From the above examples, we see that WDGI can solve some problems that DMPGI cannot. We also note that it is difficult to give 
a general solution, and we will continue to explore it in the subsequent research.

6. Conclusions

This paper focuses on the weak dual generalized inverse (WDGI), which is one generalized DMPGI. This idea comes from the fact 
that any complex matrix in the complex field has the Moore-Penrose generalized inverse. Naturally, consider whether it is possible 
to find a class of dual generalized inverses in the dual ring that exist for any dual matrix. The WDGI is different from the DMPGI 
in that any dual matrix has WDGI. The weak dual generalized inverse definition is given and described by four dual equations. It 
exists and is unique for any dual matrix. The explicit expression and properties of WDGI are obtained. Furthermore, we discuss the 
relationship among WDGI, MPDGI and DMPGI, and give the equivalent characterization and illustrate with numerical examples. It is 
proved that the weak dual generalized inverse is different from the existing dual generalized inverse. Interestingly, DMPGI is equal 
to WDGI when the DMPGI of the dual matrix exists. In other words, if the problem can be solved by DMPGI, the same result can 
be obtained by using WDGI, and there is no need to judge the existence of WDGI, because WDGI exists for any dual matrix. DMPGI 
exists under strong conditions, and not all problems can be handled by DMPGI. WDGI can solve some problems that DMPGI cannot 
solve. Finally, we give two examples where the DMPGI does not exist, but the WDGI gives good results.

In this paper, the weak dual generalized inverse and its explicit expressions are given in the hope that they will be useful for 
practical problems in science and engineering, especially in dealing with systems of equations in problems such as robotics and rigid 
body motion.
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