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Background: Local cellular microenvironment plays a crucial role in the HPV-induced
cervical malignant transformation. Characterization of the dynamic infiltration changes of
microenvironment cells during cervical carcinogenesis would contribute to a better
understanding of involved mechanisms.

Methods: Three public gene expression datasets of cervical squamous epithelium
samples were collected and combined. We applied seven up-to-date computational
methods for infiltrating estimation and compared their results (CD4+ and CD8+ T cells) to
the known fraction. After benchmarking the applied methods, the cell filtration patterns
were determined and clustered through fuzzy c-means algorithm.

Results: Most methods displayed better performance in predicting the abundance of
CD4+ T cell than that of CD8+ T cell. The infiltration patterns of 33 microenvironment cell
types (including 31 immune cells and 2 non-immune cells) were determined, and five
immune cell clusters with distinct features were then derived. Meanwhile, opposite
changes in abundance were observed between the activated and resting state of some
immune cells from the progression perspective.

Conclusions: Based on characteristics and evaluation performance of different methods,
as well as previous findings, for the first time we provide a comprehensive overview of the
infiltration patterns of microenvironment cells throughout cervical cancer progression.

Keywords: cervical cancer, squamous intraepithelial lesions, microenvironment, infiltration pattern,
immune response
INTRODUCTION

Cervical cancer is thought to result from persistent infection with high-risk human papillomavirus
(HR-HPV), which causes a continuum of progressive neoplastic changes known as squamous
intraepithelial lesions (SILs) (1). However, precancerous lesions are not the only manifestation
during cervical carcinogenesis. The cellular and acellular microenvironment surrounding the
lesions undergo alterations, that also play a positive role in tumorigenesis and tumor progression
(2, 3). The cellular tumor microenvironment (TME) is mainly composed of tumor vessels and
org July 2022 | Volume 13 | Article 8881761
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perivascular cells, cancer-associated fibroblasts (CAFs),
mesenchymal cells, and immune cells. Meanwhile, it is believed
that non-neoplastic epithelium is also a critical component in the
microenvironment of cervical lesions (4).

In premalignant lesions and cervical cancer, the host immune
system (innate and adaptive immune) is closely related to HR-
HPV infection. The virus induces multi mechanisms to evade
immune detection, leading to chronic infection and host cell
transformation (5, 6). Still, the majority of infections are
spontaneously eliminated by the host immune response (7).
Increasing evidence suggests that many immune cells in
cervical tissue are involved in this immune response to against
viruses (8). For example, NK cells could kill HPV-infected cells
directly and then attract other immune cells to the sites of
malignancy (9). Besides, non-immune cells are also associated
with immune surveillance and disease progression (10). For
example, keratinocytes synthesize various signaling
and regulatory molecules (IFN-I, TNF-a and CXCL9, etc.) and
antimicrobial peptides to support the recruitment and activation
of immune cells (8). Hence, a better understanding of
the infiltration features of microenvironment cells in the
progression of the disease would lead to a new sight in the
immunopathogenesis of cervical cancer.

Many traditional studies on immune cellular heterogeneity of
patients with precancerous lesions have focused on peripheral
blood (11, 12). The quantification of the immune infiltrates in
tissue mainly relies on imaging, immunohistochemistry (IHC)
and flow cytometry which generally measure a few cell subsets of
interest at a time. Several current methods have been published
for enumerating cell subsets proportions from gene expression
profiles (13–15). This provides us with an opportunity to fully
reveal the microenvironment changes across cervical disease
stages. Several recent studies based on public expression
profiles have described immune infiltration profiles in the
preinvasive and invasive cervical lesions (16, 17). However, a
comprehensive and accurate landscape of ce l lu lar
microenvironment in cervical cancer progression has not
been elucidated.

Herein, we performed a benchmarking between seven
methods and compared their results (CD4+ and CD8+ T cells)
to gold-standard measures from a meta-analysis (18). Based on
the methods’ characteristics and predictive performance, we
combined the estimated results of 33 cell types from various
methods and construc ted a landscape of ce l lu lar
microenvironment transitions during cervical carcinogenesis.
MATERIALS AND METHODS

Microarray Datasets Search
and Processing
We downloaded the publicly available gene expression datasets
of cervical tissue samples from Gene Expression Omnibus
(GEO) database as of Oct 1st, 2021. The inclusion criteria were
being no less than 25 samples, having at least three disease stages
from normal, low-grade SIL (LSIL), high-grade SIL (HSIL) and
Frontiers in Immunology | www.frontiersin.org 2
squamous cell carcinoma (SCC), and being on Affymetrix
platform. Three eligible microarray datasets, GSE63514 (19),
GSE27678 (20) and GSE7803 (21), were collected in this study.
Of note, the specimens in three studies were microdissected
squamous epithelial samples. Raw CEL files of each dataset were
downloaded and then preprocessed (including background
correction, quantile normalization, and log2-transformation)
using the Robust Multi-array Average (RMA) algorithm of the
“affy” package (version 1.66.0, R foundation) (22). The datasets
were combined and processed by the Combat function in the
“sva” package (version 3.36.0, R foundation) (23, 24) to remove
non-biological batch effects. Hierarchical clustering heatmap
(Euclidean distance and Ward’s algorithm) was used to
visualize correlation values between samples and detect outliers.

Estimation of Microenvironment Cells
Computational methods, including CIBERSORTX (Relative and
Absolute, web portal) (13), EPIC (version 1.1.5, R foundation)
(25), ImmuCellAI (web portal) (14), MCP-counter (version
1.2.0, R foundation) (26), quanTIseq (implemented via the R
package immunedeconv, version 2.0.4) (27, 28), TIMER2.0 (web
portal) (29), xCell (version 1.1.0, R foundation) (15), were
applied for microenvironment estimation. Firstly, we
constructed a compendium of gene signatures collected from
the tools above. Secondly, our custom probe annotation function
from the in-house package was used for probes mapping. The
probe mapped to multiple genes was annotated preferentially to
the gene presented in the compendium. When multiple probes
were mapped to the same gene, the probe with the highest mean
expression was used. Finally, the results of cell composition were
generated according to annotated gene expression matrix.
CIBERSORTX-Relative and -Absolute scores reflect the relative
fraction and absolute proportion of each cell type in a mixture,
respectively. Unless otherwise specified, CIBERSORTX refers to
the CIBERSORTX-Absolute score in the context.

Analysis of CD4+ and CD8+ T Cells
We quantified CD4+ and CD8+ T cells and compared the results
to the recently published formal meta-analysis (18). It should be
taken into account that CIBERSORTX did not predict CD4+ T
cell directly. Thus, the CD4+ T cell score was calculated as the
sum of “CD4+ naïve T cell”, “CD4+ memory resting T cell”,
“CD4+ memory activated T cell”, “T follicular helper cell (Tfh)”
and “regulatory T cell (Treg)”.

CD4/CD8 ratio was also calculated. CIBERSORTX, EPIC,
and quanTIseq generate relative cell fractions and allow intra-
sample comparisons between cells. Other methods provide
scores in arbitrary units that support inter-sample
comparisons. While for xCell, we took the approach described
by Marderstein et al. to calculate the ratio, adding ϵ = 10−10 to
both the numerator and the denominator and then applying a
rank-inverse normal transformation (30).

Evaluation of Microenvironment Feature
To describe the microenvironment feature, we selected 31
immune cell types and 2 non-immune cell types for further
analysis. Immune cells included 11 innate immune cell subsets
July 2022 | Volume 13 | Article 888176
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[monocyte, macrophage (M0, M1 and M2), monocyte-derived
dendritic cell (Mo-DC), myeloid DC (mDC), neutrophil,
eosinophil, basophil, mast and natural killer (NK) cells], 3
innate-like lymphocyte subsets [natural killer T (NKT), gamma
delta T (Tgd) and mucosal‐associated invariant T (MAIT) cells]
and 17 adaptive immune cell subsets [CD4+/CD8+ naïve T, CD4+

memory T, CD4+/CD8+ central memory T (Tcm), CD4+/CD8+

effector memory T (Tem), cytotoxic T (Tc), exhausted T (Tex),
Th1, Th2, Th17, Tfh, Treg, naïve B, memory B, plasma cells].
Moreover, epithelial cells and keratinocytes, as essential
components of cervical epithelial microenvironment, were
also incorporated.

The infiltration patterns of each cell type from seven methods
were collected. Furthermore, the final pattern was determined as
follows: (1) CIBERSORTX scores for activated and resting cell
types were added, and the sum preferentially represented the
pattern of the corresponding cell type. (2) The results of
ImmuCellAI, a method for predicting comprehensive T cell
subsets, preferentially represented the pattern of T cells. (3) If
more than one method provides estimates for the same cell type,
the pattern supported by most methods was selected. (4) If the
infiltration feature of a cell type has been reported in cervical
precancerous lesion or SCC (through experimental
measurements), the pattern was finally corrected with reference
to the previous reports (Supplementary Table 1).

Fuzzy C-Means Clustering
Immune cell infiltration patterns along disease progression were
clusterd using soft clustering approach of fuzzy c-means (FCM)
algorithm implemented with “Mfuzz” package (version 2.48.0, R
foundation) (31, 32). FCM algorithm allows each data point to
belong to multiple clusters with varying degrees of membership,
providing more flexibility than hard clustering. The optimal
number of clusters (c) was set to five in this case. Heatmap of
clusters was drawn by “pheatmap” package (version 1.0.12,
R foundation).

Statistical Analysis
R statistical software (version 4.0.3) was used for statistical
analyses and graphical visualization. The Pearson correlation
was used to evaluate similarity of gene expression profiles.
Correlation between abundance of immune cells inferred by
different methods was evaluated by Spearman correlation.
Wilcoxon rank-sum test with Benjamini-Hochberg (BH)
correction was applied to compare CIBERSORTX-Absolute
Frontiers in Immunology | www.frontiersin.org 3
scores. All p-values were two-sided; p < 0.05 was considered
statistically significant unless otherwise specified.
RESULTS

Data Integration and Quality Management
This study merged three microarray datasets containing 46
normal, 25 LSIL, 90 HSIL and 49 SCC samples based on 13018
shared and filtered genes. A detailed description of included
datasets is summarized in Table 1. Pearson’s correlation
coefficients between samples were calculated, and a clustering
heatmap was generated. Eight samples (5 normal, 1 LSIL and 2
SCC) that correlated poorly with other samples were removed
from the subsequent analysis (Figure 1A). Next, boxplots and
principal component analysis (PCA) plots were used to verify
quality of gene expression data before and after batch effect
correction (Figures 1B-E). After removing outliers and batch
effect, the meta-dataset showed consistent expression
distribution and reduced variance, indicating that it was
suitable for further microenvironment estimation.
Benchmark of Quantification Methods
A recent systematic review and meta-analysis of infiltrating T-
cell populations in cervical carcinogenesis reported fewer CD4+

and CD8+ T cells in the epithelium of SILs than in normal and
SCC tissue (18). We inferred microenvironment cell types with
seven computational methods and compared the estimated
CD4+ and CD8+ T cells infiltration patterns to the result from
meta-analysis to assess predictive accuracy of selected methods.

We calculated the disease-stage correlation and average
correlation of tested methods for the abundance of CD4+ and
CD8+ T cells. In total, quanTIseq showed negative correlations
with other methods in estimating CD4+ T cell (all Spearman’s
rho < 0, Figure 2A). ImmuCellAI showed weak correlations with
other methods in estimating CD8+ T cell (all Spearman’s rho <
0.4, Figure 2A). Moreover, the level of prediction agreement in
SCC was higher than in other stages (Supplementary Figure 1).
The analysis of CD4+ T cell infiltration pattern showed high
similarity among methods except for quanTIseq and is consistent
with the description in the meta-analysis (Figure 2B). In
contrast, the methods’ predication on CD8+ T cell was
inconsistent with the known pattern. Four methods
(ImmuCellAI, quanTIseq, MCP-counter and xCell) showed
TABLE 1 | Microarray datasets included in this study.

Dataset Year Platform Country Participants

Normal LSIL HSIL SCC

GSE63514a 2015 HG-U133 Plus 2.0 USA 24 14 62 28
GSE27678b 2013 HG-U133A 2.0 UK 12 11 21 –

GSE7803 2007 HG-U133A USA 10 – 7 21
July 2022 | Vo
lume 13 | Article 88
aGSE63514 contains five types of samples: normal, CIN1, CIN2, CIN3 and SCC. CIN1 was defined as LSIL and CIN2/3 as HSIL.
bGSE27678 contains two platforms, and the dataset of HG-U133A 2.0 platform was analyzed.
CIN, cervical intraepithelial neoplasia.
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higher CD8+ T cell infiltration in normal and HSIL, as well as
high variances between the LSIL samples (Figure 2C).

Furthermore, the ratio of CD4+ to CD8+ T cells could be
calculated through four feasible methods. Three of them showed
high consistency and featured higher ratios in SCC. QuanTIseq
showed a decreased ratio in HSIL and SCC, which corresponded
to the characterization of the meta-analysis (Figure 2D).

Dynamic Changes of Cellular
Microenvironment During
Cervical Carcinogenesis
According to the variety and accuracy of predictions from
applied methods, CIBERSORTX, ImmuCellAI, and xCell were
selected as guidelines and the rest methods were considered as
references. Specifically, the microenvironment cells and their
infiltration patterns were decided preferentially by guidelines
methods. We presented a set of 33 cell types, spanning 31
immune cell types from distinct subsets of innate, innate-
like, and adaptive immune cells and 2 non-immune cell
types (epithelial cell, keratinocyte) to reveal an evolving
microenvironment with the progression of cervical lesions.
Then, we enumerated these cell types available in each of the
seven analytical methods. The final infiltration pattern of each
cell type was determined on the basis of several criteria (see the
Materials and methods section). The complete list of selected
Frontiers in Immunology | www.frontiersin.org 4
cells and corresponding estimates are shown in Figure 3 and
Supplementary Table 2.

We performed the FCM clustering to characterize the
dynamic changes in abundance of 31 immune cell types across
the spectrum of cervical diseases. Five distinct clusters containing
between 4 and 8 members per each were identified (Figure 4A).
Clusters 1 and 3 showed linear evolution from normal to SCC
(termed “Ascending” and “Descending”, respectively). Cluster 2
displayed an increased abundance from LSIL that continued to
SCC; no significant difference between normal and LSIL was
found (termed “Ascending from LSIL”). Two clusters had
biphasic abundance evolutions; cluster 4 reached a nadir of
abundance at LSIL (termed “biphasic 1”) while cluster 5
reached a peak of abundance at LSIL (termed “biphasic 2”)
(Figure 4A). The immune cells of each cluster and their
abundance changes in all samples ordered by disease
progression were shown in the heatmap (Figure 4B). Of note,
some immune cells with low membership values were not fully
presented by corresponding clusters, like NK cell, Th1 cell and
CD8+ Tcm cell in C1, Mo-DC in C2, Tc cell and mDC in C3.

We further analyzed the subsets of immune cells in each
cluster. As shown in Figure 4C, adaptive immune cells were
distributed in all five clusters, with a strong preference for C4
(n = 5, 100%) while low proportion in C2 (n = 1, 16.7%). Innate-
like lymphocytes were only found in C1 and C2 (n = 2 and n = 1,
A

B

D

E

C

FIGURE 1 | Removal of outliers and batch effect. (A) Heatmap displaying Pearson correlations between pairwise comparisons of meta-dataset. Clear outliers are
highlighted with a black frame. Boxplots of log2-transformed gene expression distributions before (B) and after (C) batch effect correction. The boxes are colored
according to datasets. Scatter plots of the first three principal components from the PCA of expression data before (D) and after (E) batch effect correction. Symbols
are colored according to datasets and shaped according to disease stage.
July 2022 | Volume 13 | Article 888176
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respectively), showing the increase tends along the
carcinogenesis. Innate immune cells were mainly distributed in
C1-C3 (n = 2, n = 4 and n = 4, respectively). Interestingly,
macrophages M0 were in C1, while M1 and M2 were in C2.

In addition, epithelial cells and keratinocytes showed similar
infiltration patterns that the abundance slightly decreased from
normal to LSIL and then dropped sharply from LSIL to SCC
(Figure 3 and Supplementary Figure 2).

Evolving Immune Response During
Cervical Carcinogenesis
The abundance of 22 immune cell subsets of each development
stage was compared using CIBERSORTX, a gene expression-
based deconvolution algorithm (Figure 5A). Of note,
CIBERSORTX could distinguish activated and resting of some
cell types. Here, we explored changes in the immune status, from
resting to activated and from naive to memory (Figure 5B).

Overall, the opposite changes in abundance existed between
the activated and resting state of the same immune cell type. The
alterations of activated and resting Mo-DC and NK cell
abundance mainly occurred in the transition from normal to
LSIL. After the relative abundance of the two states was reversed,
they showed a steady infiltration from LSIL to SCC. Resting
memory CD4+ T cell abundance was significantly higher at all
stages compared to activated memory CD4+ T cell, but the
difference between them decreased with the disease
Frontiers in Immunology | www.frontiersin.org 5
development. Interestingly, the abundance of activated mast
cell decreased from normal to HSIL and then increased in
SCC. Resting mast cell followed the opposite pattern and
showed approximate abundance as activated mast cell in SILs.
Naïve CD4+ T cell and activated memory CD4+ T cell were more
abundant in SCC compared to normal and SILs. The abundance
of naïve and memory B cells was basically at the same level,
except for a significant separation at LSIL with a rapid decrease of
memory B cell and a slight increase of naïve B cell. It also should
be mentioned that all cell types discussed here were included in
the microenvironment cell set.
DISCUSSION

The microenvironment could be characterized using either single
sample gene set enrichment analysis (ssGSEA) (33) with previously
defined cell signatures or published computational methods
directly. The former method has an advantage in defining
customized cell subsets according to our needs. Therefore, we
firstly constructed a compendium of signatures related to a set of
microenvironment cells from xCell, ImmuCellAI, Xiao et al.’s study
(324 genes selected from CIBERSORT) (34) and Bagaev et al.’s
study (35). Then, we used ssGSEA to calculate the enrichment score
to represent the abundance of each cell type in each sample. We
found some degree of consistency between our estimation and the
A

B

D

C

FIGURE 2 | CD4+ and CD8+ T cells estimation. (A) Heatmap displaying average Spearman correlations of seven computational methods for the CD4+ (left bottom)
and CD8+ (right top) T cells abundance across disease stages. (B, C) Line plots showing the abundance of CD4+ and CD8+ T cells (mean ± SEM) changes over
disease stages. The estimated scores were normalized between zero and one. (D) Line plots showing the CD4/CD8 ratio (mean ± SEM) changes over disease
stages.
July 2022 | Volume 13 | Article 888176
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original methods which the signatures were extracted from (data
not shown). However, the infiltration patterns of some cells varied
widely between existing methods. Hence, the estimations from
ssGSEA hardly represent the full final patterns. Finally, we
combined the results of multiple methods with a manual
correction rather than solely depending on ssGSEA results.

It is important to reiterate that additional corrections to the
estimation of bioinformatic methods based on previous studies
made our conclusion more reliable. For example, recently, Wang
et al. reported a decreased abundance of neutrophils from normal to
SCC through bioinformatic analysis; however, the opposite results
were found by flow cytometry (16). Likewise, another study also
Frontiers in Immunology | www.frontiersin.org 6
observed an increased number of neutrophils in cervical cancer
compared to precursor cervical lesions (36). Consequently, we chose
TIMER to describe the neutrophil pattern, which also showed the
highest neutrophil infiltration in SCC, although many other
methods displayed decreasing trends instead. Furthermore, Wang
et al. also discovered an increased abundance of monocyte lineages
as disease progressed through MCP-counter. After flow cytometry
evaluation of CD14, they concluded that monocytes increasingly
infiltrated in parallel along with increasing cervical lesion grade (16).
In our view, flow cytometry could not reflect changes in monocytes
due to CD14 being an antigen on the surface of myelomonocyte
lineage rather than the monocyte itself (37). So when we evaluated
FIGURE 3 | Microenvironment cells and their infiltrating patterns. Due to lack of estimation for monocyte by MCP-counter, we used the “monocytic lineage” as a
surrogate. Treg score was calculated as the sum of “nTreg” and “iTreg” in ImmuCellAI. CIBERSORTX scores for activated and resting cell types (Mo-DC, mast, NK
and CD4+ memory T cells) were also added. Yellow squares indicate that the method could predict the cells content and line plots of the predicted infiltrating
patterns were added. Blank squares indicate that the method could not predict the cells content. Line plots in red represented the patterns finally determined. Full
plots with normalized abundance scores of cells are shown in Supplementary Figure 2. CBS, CIBERSORTX; ICA, ImmuCellAI; MCP, MCP-counter; QTS,
quanTIseq.
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monocytes, we still selected the most supported pattern from all
methods instead of correcting for monocytes according to their
study. Additionally, appropriate classification and combination of
immune cells also contribute to the accuracy of our estimation. For
example, none of methods addresses a certain DC subtype except
for MCP-counter. We assigned specific subtypes to DCs estimated
by different methods as reported by Sturm et al. (see their
Supplementary Table 2) (28).
Frontiers in Immunology | www.frontiersin.org 7
However, the results of some cells were inconsistent with those
previously reported, such as Th17 (38), eosinophil (39) and mast
cell (40) in cervical epithelium. Th17 cells in Hou et al.’s study were
validated to be significantly increased in CIN3 and cervical cancer
compared to healthy control through immunohistochemistry (38),
while in our study, it was clustered in C5 and especially enriched in
LSIL. Interestingly, a similar observation was seen in head and neck
squamous cell carcinomas (HNSCC), that lymph nodes of mice
A B

C

FIGURE 4 | Clustering analysis of immune cells abundance. (A) FCM clustering identified five distinct clusters of immune cell infiltration patterns. Each line indicates the
abundance of one immune cell and is colored by membership value. Green colored lines correspond to cells with low membership values. Bule and cyan colored lines
correspond to cells with moderate membership values. The line for each cluster centre is plotted in black. The x axis represents disease stages; the y axis represents
abundance changes. (B) Stage-ordered heatmap showing abundance changes of 31 immune cell types in meta-dataset. The groups were divided according to the
clustering results of FCM algorithm. (C) Stacked bar plot of the number of immune cells in each category (innate, innate-like, and adaptive) for each cluster.
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with premalignant lesions showed increased Th17 cells compared to
controls and HNSCC. It may be explained by the increased levels of
TGF-b during progression from premalignant lesion to HNSCC,
whichmay inhibit Th17 differentiation and decrease Th17 cells (41).
Mast cells clustered in C3, on the other hand, were previously
shown to progressively increase along the continuum from CIN1 to
SCC (40). However, another study with fewer samples reported the
least mast cell count in SCC compared to SILs and normal cervix
(42), which is in line with our results. The role of mast cells in HPV
lesions is uncertain. They could recruit other immune cells inducing
apoptosis of tumor cells and secret IL-10 and VEGF inducing
immunosuppression (43). Further studies are warranted to
investigate these controversial cells and to confirm the patterns of
some cell infiltrations (e.g., Tcm and Tem) firstly described by
our research.

We discovered and defined five distinct clusters through
clustering analysis of immune cells abundance. Extra attention
should be allocated to the cells that cannot completely fit in their
clusters. For example, in cluster 1, using “Ascending” to describe
Th1 and Th2 cells may be inaccurate. As our results demonstrated,
Th1 significantly increased from LSIL to HSIL, and slightly
decreased from HSIL to SCC. The infiltration pattern of Th2 was
opposite to that of Th1. The shift from the Th1 to Th2 response was
found in the late stage, consistent with the previous description (44).

There are several limitations to our study. First, a few non-
immune microenvironment cell subsets estimated by methods were
removed in the current version for their attributes. For instance,
CAFs are a group of activated fibroblasts with significant
heterogeneity in the tumor stroma (45). Estimating the abundance
of CAFs in squamous epithelium samples from normal cervices and
SILs might be off-target. Secondly, not all studies provided the HPV
status of each sample. According to the available information, most
SILs+ (SILs and SCC) samples are HR-HPV positive and normal
Frontiers in Immunology | www.frontiersin.org 8
samples are a mixture of HR-HPV positive and negative samples.
Regarding the impact of HPV on host microenvironment, we believe
that the difference in cellular microenvironment between normal
and other stage samples (especially for LSIL) has been somewhat
diminished in this study (46).
CONCLUSION

To conclude, we summarized the infiltrating patterns of 33
microenvironment cell types in cervical malignant transformation.
Moreover, we reported a continuous shift of immune status for
several typical cells. Our findings provided a reference for further
studies on the mechanisms of microenvironment cells modulated
by HR-HPV and corresponding immune therapies for
virus clearance.
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Supplementary Figure 1 | Correlation matrices of methods. Heatmap displaying
Spearman correlations of seven computational methods for the CD4+ (left bottom)
and CD8+ (right top) T cells abundance in (A) normal, (B) LSIL, (C) HSIL and
(D) SCC.

Supplementary Figure 2 | The infiltration patterns of selected microenvironment
cells estimated by seven methods. Line plots showing the abundance of selected
microenvironment cells (mean ± SEM) changes over disease stages.

Supplementary Table 1 | A collection of studies used as a reference for
correction of cell infiltration patterns.

Supplementary Table 2 | Normalized abundance scores of cells.
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