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A B S T R A C T

Styrene and ethylbenzene (S/EB) are identified as hazardous air contaminants that raise significant concerns. The
association between S/EB exposure and the incidence of type 2 diabetes mellitus (T2DM), and the interaction
between genes and environment, remains poorly understood. Our study consisted of 2219 Chinese adults who
were part of the Wuhan-Zhuhai cohort. A follow-up assessment was conducted after six years. Exposure to S/EB
was quantified by determining the concentrations of urinary biomarkers of exposure to S/EB (UBE-S/EB; urinary
phenylglyoxylic acid level plus urinary mandelic acid level). Logistic regression models were constructed to
investigate the relations of UBE-S/EB and genetic risk score (GRS) with T2DM prevalence and incidence. The
interaction effects of UBE-S/EB and GRS on T2DM were investigated on multiplicative and additive scales. UBE-S/
EB was dose-dependently and positively related to T2DM prevalence and incidence. Participants with high levels
of UBE-S/EB [relative risk (RR) ¼ 1.930, 95% confidence interval (CI): 1.157–3.309] or GRS (1.943,
1.110–3.462) demonstrated the highest risk of incident T2DM, in comparison to those with low levels of UBE-S/
EB or GRS. Significant additive interaction between UBE-S/EB and GRS on T2DM incidence was discovered with
relative excess risk due to interaction (95% CI) of 0.178 (0.065–0.292). The RR (95% CI) of T2DM incidence was
2.602 (1.238–6.140) for individuals with high UBE-S/EB and high GRS, compared to those with low UBE-S/EB
and low GRS. This study presented the initial evidence that S/EB exposure was significantly related to
increased risk of T2DM incidence, and the relationship was interactively aggravated by genetic predisposition.
1. Introduction

Diabetes poses a significant global public health challenge, with a
dramatically increasing prevalence projected in the coming years. In
2021, the global count of adults with diabetes reached 537 million, with
estimatespredicting an increase to643millionby2030and783millionby
2045 [1].Over 90%of thesediabetes instances are type2diabetesmellitus
(T2DM), which has been recognized as a major global health threat [2].
Numerous epidemiological studies have linked environmental pollution
to a higher incidence of T2DM, underscoring its significant impact [3–6].

Identified as hazardous contaminants in the air, styrene and ethyl-
benzene (S/EB) have drawn worldwide concern [7]. As fundamental
building blocks of materials like polystyrene and polyethylene, S/EB
emissions persist in the environment due to the widespread use of related
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products, including plastics, synthetic rubbers, and various resins [8].
Additionally, S/EB are present in food packed using polystyrene and
polyethylene materials [9], and are also found in tobacco smoke, vehicle
exhaust [10], and sanitizers [11]. The use of hand sanitizers containing
S/EB has witnessed a significant increase during the global coronavirus
pandemic that began in 2019 (COVID-19) as they aid in preventing viral
spread [11]. Considering the ubiquity of S/EB in the environment and the
heightened exposure of the general population to these substances, it is
imperative to investigate the potential health implications associated
with S/EB exposure. Of particular interest is the possible role of S/EB
exposure in the development of abnormal glucose metabolism, a risk
factor and precursor of T2DM, as prior animal studies have indicated [12,
13]. However, to our knowledge, no prior epidemiological research has
explored the link between S/EB exposure and T2DM.
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Genetics has been firmly established as a significant determinant in
the development of T2DM [14]. However, single nucleotide poly-
morphisms (SNPs) provide limited genetic information. Over the past
decade, genome-wide association studies (GWAS) have pinpointed
numerous SNPs linked to T2DM [15–17]. These SNPs can be used to
calculate a genetic risk score (GRS), providing a comprehensive assess-
ment of cumulative genetic effects [18]. However, the contribution of
genetic susceptibility to the relationship between S/EB exposure and the
risk of T2DM remains poorly understood. Exploring the potential inter-
action between GRS and S/EB exposure to T2DM could facilitate targeted
intervention for high-risk populations and inform public health strategies
for T2DM prevention [19,20].

Therefore, we conducted this prospective cohort study aiming to
evaluate the link between exposure to S/EB and the incidence of T2DM in
an urban general population. Additionally, GRS for T2DM was intro-
duced into our study to assess the impact of gene–environment interac-
tion on T2DM.

2. Methods

2.1. Study population

All participants of this research were derived from the Wuhan-Zhuhai
cohort, which has been thoroughly described in a previous publication
[21]. Briefly, the cohort originally recruited 4812 individuals aged 18–80
years in China between 2011 and 2012, and physical examinations,
questionnaires, and blood and urine samples were gathered. In the ques-
tionnaire, data concerning the occupational histories of the participants
were collected. The subjects involved in this study had no occupational
exposure to S/EB. After excluding individuals withmissing data on urinary
biomarkers of exposure to S/EB (UBE-S/EB) (n ¼ 1089) or genotyping
(n ¼ 1405), as well as those with kidney disease (n ¼ 99), a total of 2219
individuals were included for the cross-sectional analysis. At the follow-up
after six years, 1236 participants completed the glycemic test and
UBE-S/EB detection, after excluding those with T2DM at baseline or with
kidney disease at follow-up. The fundamental characteristics and
health-related factors, such as age, smoking status, drinking status, phys-
ical exercise, and family history of diabetes, showed no significant statis-
tical differences between the included and excluded populations
(P> 0.05). All participants provided informed consent. The study received
approval from the Ethics and Human Subject Committee of Tongji Medical
College Huazhong University of Science and Technology (No. 2011-17).
2.2. Measurement of S/EB exposure biomarker

According to previous studies, the sum of urinary mandelic acid (MA)
and phenylglyoxylic acid (PGA) levels serves as credible UBE-S/EB [9,
22]. The quantifications of PGA and MA were conducted through
ultra-high performance liquid chromatography (Agilent 1290 Infinity II;
Agilent Technologies Inc., Santa Clara, CA)-tandem mass spectrometry
(Sciex API 6500 Triple Quad; Applied Biosystems, Foster City, CA). The
measurement methodology and quality control procedures were detailed
in our previously published study [22]. The limits of detection (LODs)
were 4.0 ng/mL for PGA and 13.0 ng/mL for MA. For participants (less
than 11%) with MA or PGA concentration below the LOD, an imputed
value of 1=

ffiffiffi
2

p
LODwas applied. To account for urinary dilution, the S/EB

metabolite levels were adjusted for urinary creatinine (Cr) levels and
reported in mg/g Cr.
2.3. T2DM ascertainment

Following the guidelines of the American Diabetes Association, the
identification of T2DM was established through one or more of the
following criteria: (1) utilization of antidiabetic medicine, (2) a diagnosis
of T2DM confirmed by a physician and reported by the patient, or (3) a
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fasting plasma glucose level of 7.0 mmol/L or above [23]. The fasting
plasma glucose measurement was performed using the RX Daytona
fully-automatic biochemical analyzer (Randox Laboratories, Crumlin,
U.K.).
2.4. Genotyping and genetic risk score calculation

DNA extraction was performed on whole blood samples preserved at
�80 �C utilizing the Bioteke Whole Blood DNA Extraction Kit (Beijing,
China). The genotyping process employed the Illumina Infinium
OmniZhongHua-8 v1.3 BeadChip (CA, USA), which covers >890,000
autosomal SNPs. We performed genotype imputation in EAGLE2 and
Minimac4, using the 1000 Genomes Phase 3 multiethnic reference panel.
Quality control procedures in detail were documented in our previously
published research [24].

GRS for T2DM was developed using summary statistics from GWAS
available in the Biobank Japan (BBJ) dataset (http://jenger.riken.jp/en/r
esult). For this study, we utilized 205 SNPs identified from previously
published literature [25,26], as detailed in Supplementary Table S1. The
number of risk alleles for every SNP was weighted according to the as-
sociation strength with T2DM in the BBJ dataset, as follows:

GRS¼
X

i¼1…n

wiXi

The PRSice 2.0 program was employed to compute GRS. The GRS
incorporates n SNPs, and each variant is assigned a weight wi based on its
association with the trait; Xi represents the count of effective alleles for
each SNP, which can take on values of 0, 1, or 2. The GRS was normalized
to a Z-score [mean ¼ 0 and the standard deviation (SD) ¼ 1]. The top ten
principal components of ancestry were derived from PLINK's Principal
Components Analysis.
2.5. Statistical analysis

The value of UBE-S/EB was naturally log-transformed, given the
skewed distribution. The study population was classified into three cat-
egories based on the lower (P25) and upper (P75) quartiles of UBE-S/EB
concentration at baseline (<P25, P25–P75, and �P75). Trend tests were
performed using analysis of variance (ANOVA) for continuous data,
while trend chi-square tests were employed for categorical data.

Logistic regression models were utilized to evaluate the cross-
sectional and longitudinal associations of UBE-S/EB and GRS, both as
continuous and categorical variables, with the risk of T2DM. In longi-
tudinal analysis, the S/EB exposure level of each participant was deter-
mined by calculating the average concentration derived from baseline
and follow-up measurements. The analysis accounted for a range of
covariates identified through a review of the literature and preliminary
analysis, including age (years), gender (male/female), body mass index
(BMI, kg/m2), smoking status (smoker/ex-smoker/non-smoker), passive
smoking (yes/no), drinking status (drinker/ex-drinker/non-drinker),
physical activity (active/inactive), educational attainment (up to primary
school/junior or senior high school/college degree or beyond), annual
household income (<forty thousand yuan/�forty thousand yuan), family
history of T2DM (yes/no), and city (Wuhan/Zhuhai). Furthermore, the
association between GRS and T2DM was additionally adjusted for the
first ten principal components of ancestry. Stratified analyses were per-
formed based on several covariates such as age, gender, BMI, passive
smoking, drinking status, smoking status, physical activity, educational
attainment, annual household income, and family history of diabetes. To
assess the potential modification effect of these covariates on the rela-
tionship between UBE-S/EB and T2DM, a product term of UBE-S/EB with
each covariate was included in the regression model, with P for modifi-
cation accordingly estimated.

For the gene–environment interaction assessment, participants
were classified into four groups based on their S/EB exposure status
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[low (<P75)/high (�P75) level of UBE-S/EB] and GRS level [low
(<P75)/high (�P75)]. The relative risk (RR) of developing T2DM was
estimated using logistic regression models, with the reference group
being those with low UBE-S/EB and low GRS. To estimate the mul-
tiplicative interaction between genetic predisposition and S/EB
exposure, we added an interaction term between UBE-S/EB and GRS
into the regression models. In addition, the relative excess risk due to
interaction (RERI) and attributable proportion (AP) was estimated to
assess the additive interaction between genetic predisposition and S/
EB exposure regarding T2DM. The additive interaction was considered
insignificant if the 95% confidence interval (CI) of RERI or AP
included 0 [27,28].

To examine the robustness of the relations between UBE-S/EB, GRS,
and the risk of T2DM, further adjustment for diet frequency and ambient
ozone was performed. Diet is one of the main factors affecting the risk of
T2DM [29]. Diet frequency was evaluated by the number of times per
month for consuming seven food categories, including fishery products,
meats, cereals, coarse grains, fruits and vegetables, pickles and smoked
items, as well as eggs and milk. Volatile organic compounds, including
S/EB, are key precursors to ozone [30], which is also a risk factor for
T2DM. Therefore, adjusting for ozone levels when assessing the health
impacts of S/EB on T2DM provides a more precise understanding of the
effects of S/EB. The ambient ozone level was estimated by a random
forest model at 1 km spatial resolution [31].

Statistical evaluations were executed using R software, version 4.1.3.
Logistic regression analysis was conducted using “lmerTest” package,
additive interaction analysis was conducted using “epiR” package. A P-
value of less than 0.05, determined via a two-tailed test, was considered
to indicate statistical significance.

3. Results

3.1. Baseline characteristics of the study population

This study involved 2219 participants, with a proportion of males of
30.91%, themeanagewas53.62years, and the averageBMIwas24.25kg/m2.
Table 1
Baseline characteristics of participants stratified by UBE-S/EB level (n ¼ 2219).

Characteristics All participants UBE-S/EB level (m

<P25 (0.12)

No. subjects 2219 555
Age, years 53.62 � 11.58 53.17 � 12.25
Male, % 686 (30.91) 167 (30.09)
BMI, kg/m2 24.25 � 3.44 24.25 � 3.28
Smoker, %
Smoker 347 (15.64) 52 (9.37)
Ex-smoker 119 (5.36) 29 (5.23)
Non-smoker 1753 (79.00) 474 (85.41)

Drinking status, %
Drinker 314 (14.15) 67 (12.07)
Ex-drinker 67 (3.02) 23 (4.14)
Non-drinker 1838 (82.83) 465 (83.78)

Passive smoking, %
Yes 942 (42.45) 244 (43.96)
No 1277 (57.55) 311 (56.04)

Physical activity, %
Active 1067 (48.08) 262 (47.21)
Inactive 1152 (51.92) 293 (52.79)

Educational attainment, %
Up to primary school 587 (26.45) 121 (21.80)
Junior or senior high school 1389 (62.60) 362 (65.23)
College degree or beyond 243 (10.95) 72 (12.97)

Annual household income
<forty thousand yuan 1241 (55.93) 307 (55.32)
�forty thousand yuan 978 (44.07) 248 (44.68)

Family history of diabetes, % 135 (6.08) 30 (5.41)
T2DM, % 202 (9.10) 38 (6.85)

Data are mean � SD or percentage (%). BMI, body mass index; SD, standard deviation
type 2 diabetes mellitus.
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As the levels of UBE-S/EB increased, significant positive trends were observed
in age and the percentages of drinkers, smokers, participants with lower
educational achievements (up to primary education), and those with a family
history of diabetes, as well as the prevalence of T2DM (Table 1).

3.2. Associations between UBE-S/EB, GRS, and T2DM

After adjusting for covariates, significant positive associations were
observed between UBE-S/EB and the risks of T2DM prevalence and inci-
dence. Each 1 unit increment in the ln-transformed level of UBE-S/EB was
related to a 45.5%higher risk of prevalent T2DM [odds ratio (OR)¼ 1.455,
95% CI: 1.189–1.776] (Fig. 1). In the longitudinal analysis, subjects with
upper quartile level of UBE-S/EB showed a 93% increased risk of devel-
oping T2DM (RR ¼ 1.930, 95% CI: 1.157–3.309) when compared with
those in the lowest quartile (Fig. 1). A significant increasing trend in inci-
dent T2DM risk was observed with an elevating level of UBE-S/EB (P for
trend¼ 0.018). We observed similar results after further adjusting for diet
frequency and ambient ozone (Tables S2 and S3). Stratified analyses
indicated that age, gender, BMI, smoking status, drinking status, passive
smoking, physical activity, educational attainment, annual household in-
come, or city did not significantly alter the relationship between UBE-S/EB
and T2DM risk (all P for modification > 0.05) (Tables S4 and S5).

In addition, an SD increase in GRS was related to a 50.5% increase in
the risk of prevalent T2DM (OR ¼ 1.505, 95% CI: 1.311–1.728) (Fig. 2).
Compared to participants with lower quartile levels of GRS, those with
upper quartile levels of GRS had a 94.3% elevated risk of incident T2DM
(RR ¼ 1.943, 95% CI: 1.110–3.462) (P and P for trend < 0.05) (Fig. 2).
The results barely changed after further adjusting for diet frequency and
ambient ozone (Tables S2 and S3).

3.3. Combined effect of UBE-S/EB and GRS on T2DM

In cross-sectional analysis, participants with high UBE-S/EB and high
GRS showed a significantly elevated risk of prevalent T2DM compared
with those with low UBE-S/EB and low GRS (OR ¼ 3.182, 95% CI:
1.994–4.930) (Table 2). The RERI (95% CI) and AP (95% CI) for the
g/g Cr) P for trend

P25–P75 (0.12–0.28) �P75 (0.28)

1109 555
53.25 � 11.36 54.81 � 11.25 0.006
303 (27.32) 216 (38.92) <0.001
24.35 � 3.46 24.02 � 3.54 0.206

<0.001
130 (11.72) 165 (29.73)
61 (5.50) 29 (5.23)
918 (82.78) 361 (65.05)

<0.001
134 (12.08) 113 (20.36)
23 (2.07) 21 (3.78)
952 (85.84) 421 (75.86)

0.695
467 (42.11) 231 (41.62)
642 (57.89) 324 (58.38)

0.658
529 (47.70) 276 (49.73)
580 (52.30) 279 (50.27)

0.026
307 (27.68) 159 (28.65)
694 (62.58) 333 (60.00)
108 (9.74) 63 (11.35)

0.145
604 (54.46) 330 (59.46)
505 (45.54) 225 (40.54)
65 (5.86) 40 (7.21) 0.413
87 (7.84) 77 (13.87) <0.001

; UBE-S/EB, urinary biomarker of exposure to styrene and ethylbenzene; T2DM,



Fig. 1. Associations of UBE-S/EB with the prevalence and incidence risk of
T2DM. Adjusted for age, gender, BMI, smoking status, passive smoking, drinking
status, physical activity, educational attainment, annual household income,
family history of diabetes, and city. CI, confidence interval.

Fig. 2. Associations of GRS with the prevalence and incidence risk of T2DM.
Adjusted for age, gender, BMI, smoking status, passive smoking, drinking status,
physical activity, educational attainment, annual household income, family
history of diabetes, city, and the first 10 principal components of ancestry. GRS,
genetic risk score.
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additive interaction between GRS and UBE-S/EB were 0.242
(0.051–0.433) and 0.118 (0.066–0.170), respectively (Table 2). Mean-
while, the multiplicative interaction was not observed with P for
interaction ¼ 0.706.

In longitudinal analysis, participants with high UBE-S/EB and low
GRS had a significantly elevated risk of incident T2DM (RR¼ 2.186, 95%
CI: 1.090–5.012), as did participants with high UBE-S/EB and high GRS
(RR ¼ 2.602, 95% CI: 1.238–6.140) when compared to those with low
UBE-S/EB and low GRS (Table 2). However, no significant multiplicative
interaction between UBE-S/EB and GRS was observed (P for
interaction ¼ 0.099) (Table 2). A positive additive interaction between
UBE-S/EB and GRS on incident T2DM risk was observed. The RERI for
the additive interaction between GRS and UBE-S/EB was 0.178 (95% CI:
0.065–0.292), suggesting the combined effect exceeds the additive in-
dividual effects by 0.178, contributing to 19.8% (AP ¼ 0.198, 95% CI:
0.023–0.372) of the incidence of T2DM in subjects with both high UBE-
S/EB level and high genetic risk (Table 2).

4. Discussion

This study presented the first attempt to examine the cross-sectional
and longitudinal relationship of UBE-S/EB with the risk of T2DM, as
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well as the interaction role of genetic susceptibility and S/EB exposure in
T2DM risk. Our findings indicated that both S/EB exposure and higher
GRS for T2DM were independently associated with increased prevalence
and incidence of T2DM. Individuals with higher GRS combined with
higher S/EB exposure exhibited significantly elevated prevalence and
incidence of T2DM. Additionally, our findings revealed a notable addi-
tive interaction between S/EB exposure and GRS concerning both the
prevalence and incidence of T2DM. This suggests that genetic predispo-
sition amplifies the impact of S/EB exposure on the development and
prevalence of T2DM.

Despite the U.S. Environmental Protection Agency identifying S/EB
as significant environmental contaminants [7], research into the risk of
T2DM due to S/EB exposure remains limited. Two population-based
studies have examined the association of exposure to S/EB with
elevated levels of blood glucose, a physical state of evolution towards
T2DM [13,32]. A cross-sectional analysis of 3950 individuals from
Canada revealed a positive correlation between S/EB exposure and
elevated blood glucose levels, specifically in female participants [12]. A
possible explanation for the unobserved gender difference in the results
of our current study may be the lack of gender difference regarding S/EB
exposure level (median level of UBE-S/EB: 0.20 mg/g Cr for men vs.
0.19 mg/g Cr for women, P ¼ 0.471), T2DM genetic susceptibility (mean
level of Z-score normalized GRS: 0 for men vs. 0 for women, P ¼ 0.703),
and ethnicity (proportion of Han Chinese: 99.4% for men vs. 99.5% for
women, P¼ 0.948). Similarly, a case-control study revealed that workers
who were exposed to styrene, a type of S/EB, exhibited higher levels of
fasting glucose, homeostasis model assessment of insulin resistance, and
fasting insulin [13], which are typical characteristics and early indicators
of T2DM [33]. According to previous literature [34–36], the UBE-S/EB
(60.90–137.80 mg/g Cr) concentration in workers occupationally
exposed to S/EB is generally 300 to 1000 times higher than that in the
population of this study. In our prospective cohort study, encompassing a
representative sample of the general adult population, we provided
potent evidence demonstrating a substantial rise in the risks of both
prevalent and incident T2DM associated with elevated levels of
UBE-S/EB, even at relatively lower concentrations. This finding sug-
gested that S/EB exposure was related to the risk increment of developing
T2DM.

The mechanisms explaining how exposure to S/EB leads to a
heightened risk of T2DM remain not fully understood. Animal studies
have documented dose-dependent increments in reactive oxygen species
(ROS) and lipid peroxidation (LPO) following S/EB exposure [37,38].
The accumulation of ROS and LPO plays significant roles in promoting
the development of T2DM and its complications [39,40]. Furthermore,
S/EB exposure may influence the activation of crucial enzymes involved
in gluconeogenesis [37] and the regulation of genes associated with islet
glycogenolysis, leading to impairments in fasting glucose and glucose
tolerance [41], both of which serve as preliminary signs of T2DM. It is
worth noting that common genetic variants associated with T2DM may
also be involved in the regulation of oxidative stress [42]. Thus, there is a
possibility of an interaction effect between exposure to S/EB and genetic
risk, which collectively contribute to the risk of developing T2DM.

Genetic susceptibility significantly contributes to T2DM onset, with
estimated heritability rates ranging between 30% and 70% [43]. Over
the past few decades, GWAS, with large sample sizes, have successfully
identified numerous genes associated with T2DM susceptibility, pri-
marily in European populations. However, a limited number of these
European-derived loci have been identified in East Asian populations,
with less than 50% showing consistent associations [44]. Notable ex-
ceptions include variants near TCF7L2, CDKAL1, IGF2BP2, SLC30A8,
HNF1B, and FTO, which have shown associations with T2DM in both
European and East Asian populations [45,46]. The lack of replication in
East Asian populations may be attributable to notable interethnic dis-
parities in both the frequency and effect size of these risk alleles. In our
study, which was conducted on a general Chinese population with the
vast majority (>99%) being Han Chinese, we constructed a GRS for



Table 2
The joint effect of UBE-S/EB and GRS on T2DM risk.

Category RR (95% CI) P for interaction RERI (95% CI) AP (95% CI)

Baseline
Low UBE-S/EB þ low GRS Ref 0.706 0.242 (0.051, 0.433) 0.118 (0.066, 0.170)
Low UBE-S/EB þ high GRS 2.114 (1.468, 3.021)
High UBE-S/EB þ low GRS 2.070 (1.427, 2.977)
High UBE-S/EB þ high GRS 3.182 (1.994, 4.930)

Follow-up
Low UBE-S/EB þ low GRS Ref 0.099 0.178 (0.065, 0.292) 0.198 (0.023, 0.372)
Low UBE-S/EB þ high GRS 1.842 (0.644, 5.152)
High UBE-S/EB þ low GRS 2.186 (1.090, 5.012)
High UBE-S/EB þ high GRS 2.602 (1.238, 6.140)

Adjusted for age, gender, BMI, smoking status, passive smoking, drinking status, physical activity, educational attainment, annual household income, family history of
diabetes, city, and the first 10 principal components of ancestry. RR, relative risk; RERI, relative excess risk due to interaction; AP, attributable proportion due to
interaction.
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T2DM using the SNPs reported in GWAS conducted on large East Asian
populations. We observed a consistent positive association between the
GRS and the risk of T2DM.

Most previous studies examining gene–environment interactions
related to T2DM have focused on individual genetic risk variants [19,47].
Few studies have investigated the interaction effects between environ-
mental factors and GRS, which represents cumulative genetic effects, on
the risk of T2DM. Our study revealed that individuals with a high GRS
(indicating higher T2DM genetic susceptibility) had a significantly
increased risk of developing T2DM associated with S/EB exposure. We
revealed that genetic susceptibility exacerbated the impact of S/EB
exposure on T2DM risk through an additive interaction. This allowed us
to identify the specific diabetic effects of S/EB exposure on individuals
with varying levels of genetic susceptibility. These findings have the
potential to inform the development of personalized and precise strate-
gies for T2DM prevention.

Our study has several notable strengths. Firstly, it represents the first
investigation to assess the multiplicative and additive interaction effects
of S/EB exposure and genetic variants on the prevalence and incidence of
T2DM. This novel approach expands our understanding of the interplay
between environmental and genetic factors in T2DM development. Sec-
ondly, we employed UBE-S/EB, namely the sum of MA and PGA in urine,
as a robust indicator of individual S/EB exposure levels from all latent
sources. This comprehensive assessment of S/EB exposure enhances the
accuracy and validity of our findings. Thirdly, our study benefits from a
relatively large, representative sample of the general urban middle-aged
and elderly population with daily-life S/EB exposure in China [21],
ensuring a prospective design that enhances statistical power and
strengthens the credibility of our findings.

Nevertheless, some limitations should be acknowledged in our study.
Firstly, we were unable to obtain external S/EB exposure data, such as
ambient S/EB levels, which could have provided additional insights.
Future investigations could explore the association between exposure to
external S/EB and T2DM risk to provide a more comprehensive under-
standing of the environmental factors at play. Secondly, environmental
pollutants consist of various components besides S/EB, and we were
unable to include other unmeasured chemicals, such as perfluoroalkyl
compounds, which may be associated with T2DM. Addressing the chal-
lenge of multi-pollutant exposure is complex and a great challenge in
environmental epidemiology research. Thirdly, the measurement of UBE-
S/EB concentration was performed using a spot morning urine sample
rather than a 24-h urine sample. This approach may incur measurement
error and the possibility of inaccurately categorizing S/EB exposure
levels. Nonetheless, it is worth noting that conducting 24-h urine
collection in large-scale epidemiological studies poses significant logis-
tical and financial challenges. In contrast, the use of spot morning urine
samples is extensively accepted and recognized, and employed in a large
number of relevant research [22,48–50]. Additionally, we employed
mean UBE-S/EB concentrations to represent S/EB exposure levels over a
six-year period. While this method streamlines the analysis, it may not
456
precisely capture the fluctuations and potential peak exposures that
could influence the risk of developing T2DM.

5. Conclusions

In conclusion, our study provided novel and potent evidence
demonstrating significant associations between S/EB exposure and
increased risks of both prevalent and incident T2DM. Moreover, we
found that genetic predisposition factors exacerbated the adverse impact
of S/EB on T2DM risk increment. These findings provide scientific evi-
dence for formulating preventive strategies targeting T2DM and estab-
lishing regulations related to environmental pollution by S/EB.
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