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Abstract: Male osteoporosis is associated with higher rates of disability and mortality. Hence the
search for suitable intervention and treatment to prevent the degeneration of skeletal health in
men is necessary. Eurycoma longifolia (EL), a traditional plant with aphrodisiac potential may be
used to treat and prevent male osteoporosis. The skeletal protective effect of quassinoid-rich EL
extract, which has a high content of eurycomanone, has not been studied. This study aimed to
determine whether EL could prevent skeletal deteriorations in gonadal hormone-deficient male rats.
Ninety-six male Sprague–Dawley rats were randomly assigned to baseline, sham-operated (Sham),
orchidectomised or chemically castrated groups. Chemical castration was achieved via subcutaneous
injection of degarelix at 2 mg/kg. The orchidectomised and degarelix-castrated rats were then divided
into negative control groups (ORX, DGX), testosterone-treated groups (intramuscular injection at
7 mg/kg weekly) (ORX + TES, DGX + TES), and EL-supplemented groups receiving daily oral
gavages at doses of 25 mg/kg (ORX + EL25, DGX + EL25), 50 mg/kg (ORX + EL50, DGX + EL50),
and 100 mg/kg (ORX + EL100, DGX + EL100). Following 10 weeks of treatment, the rats were
euthanized and their blood and femora were collected. Bone biochemical markers, serum testosterone,
osteoprotegerin (OPG), and receptor activator of nuclear factor kappa β-ligand (RANKL) levels and
histomorphometric indices were evaluated. Quassinoid-rich EL supplementation was found to
reduce degenerative changes of trabecular structure by improving bone volume, trabecular number,
and separation. A reduction in the percentage of osteoclast and increase in percentage of osteoblast
on bone surface were also seen with EL supplementation. Dynamic histomorphometric analysis
showed that the single-labeled surface was significantly decreased while the double-labeled surface
was significantly increased with EL supplementations. There was a marginal but significant increase
in serum testosterone levels in the ORX + EL25, DGX + EL50, and DGX + EL100 groups compared
to their negative control groups. Quassinoid-rich EL extract was effective in reducing skeletal
deteriorations in the androgen-deficient osteoporosis rat model.
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1. Introduction

Sex steroids play a crucial role in the development and maintenance of the skeletal system in
human and in experimental animals [1]. Androgens modulate the bone remodeling cycle through
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direct androgenic activity via androgen receptors that are present on bone compartments or by indirect
action through aromatization into estrogens [2]. It has been established that lack of estrogen in females
causes rapid bone loss and lack of androgen in males induces osteopenia. Although osteoporosis is
less common in men compared to women, it has been recognized that the morbidity and mortality
after osteoporotic fractures in men are a major public health issue. The major causes of osteoporosis
reported in men have been mainly separated into primary (age-related and idiopathic osteoporosis)
and secondary causes (alcohol abuse, glucocorticoid excess, and hypogonadism) [3]. Hypogonadism
(i.e., reduction in circulating androgens level) has been associated with low bone mineral density
(BMD) and an increased risk of fractures [4].

The orchidectomised male rat has been widely used as an animal model for the study of
male osteoporosis related to androgen deficiency [5]. Androgen deficiency in male rats caused a
substantial loss of cancellous bone that was associated with a sustained increase in bone turnover [6].
Administration of pharmaceutical agents such as gonadotropin releasing hormone (GnRH) agonists,
androgen receptor antagonists, and aromatase inhibitors were reported to cause osteopenia in
experimental animals [7,8]. In adult men, androgen withdrawal by surgical or chemical castration
induced high turnover bone loss [6]. Orchidectomy and hormonal therapy such as GnRH agonists
buserelin, goserelin, and leuprolide are the androgen deprivation therapies available for prostate
cancer patients [9]. These therapeutic options have been linked to secondary osteoporosis in men [10].

In addition to agonists, GnRH antagonists have been developed as a new approach for the
treatment of prostate cancer [9]. Degarelix is a potent and long-acting GnRH antagonist that is
capable of producing a rapid reduction of testosterone through their competitive binding to GnRH
receptors [11]. Therefore, it is anticipated that degarelix administration may also cause profound bone
loss due to hypothalamic-pituitary-gonadal (HPG) suppression. However, to date, the adverse skeletal
changes following GnRH antagonist, degarelix administration have never been studied. This study
utilized both surgical and chemical castration for development of androgen-deficient osteoporosis rat
models. Administration of a potent GnRH antagonist, degarelix in intact rats and surgical castration
with bilateral orchidectomy may cause testosterone-deficient osteoporosis in experimental rats.

Clinical trials have shown that long-term testosterone replacement therapy (TRT) moderately
increased BMD in hypogonadal men with osteoporosis [12]. Combination of TRT and anti-resorptive
therapy such as alendronate to hypogonadal men produced more pronounced effects [13]. However,
these pharmacological agents are not free from side effects [14,15]. For instance, TRT has been
associated with increased risks of stroke and cardiovascular events due to the increase in blood
viscosity [16]. TRT is also not recommended for patients with underlying or high-risk factors of
cancer [17]. Upper gastro-intestinal tract complaints were reported in osteoporotic patients with
history of taking alendronate medication [18]. Long-term use of alendronate in the treatment of
osteoporosis must be performed with more caution as it may result in a new form of insufficiency
fracture of the femur due to prolonged suppression of bone remodeling [19]. Hence the search for a
natural alternative with similar efficacy but free from side effects is highly desirable.

Eurycoma longifolia (EL) or locally known as Tongkat Ali in Malaysia, is an evergreen slow-growing
herbal plant that is classified under the Simaroubaceaea family [20]. Almost all parts of this plant,
especially the roots have been used by traditional practitioners to treat various ailments including
sexual insufficiencies, dysentery, persistent fever, and malaria [21]. The roots of EL contain a
wide variety of bioactive compounds including alkaloids, quassinoids, quassinoid diterpenoids,
eurycomaoside, eurycolactone, laurycolactone or eurycomalactona which are responsible for most
of the reported health benefits [20]. Numerous animals studies have been carried out supporting the
aphrodisiac and testosterone enhancing potentials of EL root extract [22,23]. Based on clinical evidence,
the roots of EL extract showed the potential to improve sexual problems such as erectile dysfunction
and appeared to be useful for the management of hypogonadism [24,25].

It was shown that EL was capable of restoring serum testosterone level, thus significantly
improving sexual health [26]. Due to its androgenic properties, EL may have the potential to treat
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diseases related to androgen deficiency including bone loss. The root extract of this plant was reported
to possess anti-osteoporotic activities. Earlier study demonstrated that the aqueous EL extract was
able to prevent bone calcium loss [27]. The combination of EL extract and low-dose testosterone
treatment for six weeks was also able to reduce bone turnover in orchidectomised rats [28]. However,
in another study, supplementation of EL extract alone failed to emulate testosterone action in reducing
degenerative changes on bone volume due to orchidectomy-induced testosterone deficiency [29].

The aqueous extract of EL that was used in previous anti-osteoporotic studies contained 22.0%
eurypeptide, 41.1% glycosaponin, and 1.6% eurycomanone. Earlier studies suggested that glycopeptide
in the aqueous extract of EL was responsible for its aphrodisiac and fertility-enhancing effects [25,30].
However, the methanol extract of EL, which did not contain any glycopeptide also displayed similar
potential [31]. Both aqueous and methanol extracts of EL were reported to have quassinoid amounts
including eurycomanone but at lower concentrations. Hence, it was postulated that the quassinoid,
eurycomanone, which is indigenous in Simaroubaceaea plants, was responsible for the reported effects.
More recently, quassinoid-rich EL extracts that contain more than 10-fold of eurycomanone and its
analogue were studied for its androgenic potential [32,33]. It was found that quassinoid-rich EL
extracts might be worthy of further development as phytomedicine to treat male disease related to
testosterone deficiency.

The present study was therefore undertaken to examine the effects of quassinoid-rich EL extracts
at 25, 50, and 100 mg/kg body weight for 10 weeks on bone turnover and histomorphometry indices
of androgen-deficient rats. To determine the effects of quassinoid-rich EL extract on bone remodeling,
osteocalcin, a bone formation marker, and C-terminal telopeptide of type 1 collagen (CTX), a bone
resorption marker, were measured. The structural, static and dynamic histomorphometric parameters
were evaluated to provide a useful profile of bone turnover [34]. The testosterone-raising ability of
quassinoid-rich EL extract was thought to be responsible for its protective effects on bone. In the present
study, the androgenic potential of quassinoid-rich EL extract was confirmed by the measurement of
serum testosterone level. As androgen also appeared to regulate the levels of osteoprotegerin (OPG)
and receptor activator of nuclear factor kappa β-ligand (RANKL) [35,36] and modification of the
RANKL-OPG signaling pathway has major effects on bone remodeling [37], serum OPG and RANKL
levels were measured in the androgen-deficient rat model.

2. Materials and Methods

2.1. Animals and Treatment

The study was conducted in accordance with the recommendations of Universiti Kebangsaan
Malaysia (UKM) Animal Ethics Committee (Approval Code: FP/FAR/2015/NAZRUN/25-MAR./
665-MAR.-2015-DEC.-2017). Ninety-six intact-male Sprague–Dawley rats (3 months old) were allowed
to acclimatize to an environmentally controlled room (12-h light/dark cycle, room temperature) in an
animal care facility for one week. The animals were housed in plastic cages and were given access to
standard pellet diet and water ad-libitum.

Then, the rats (weighing between 300 g and 350 g) were randomized into four main groups,
which were the baseline group (Baseline, n = 8), sham-operated (Sham, n = 8), surgically- and
chemically-castrated groups. The baseline rats that did not undergo any surgical treatment or
intervention were sacrificed at the beginning of the study. Surgical castration was carried out by
orchidectomy, where both testes were permanently removed under anesthesia. Chemical castration was
performed via two subcutaneous injections of degarelix at a dose of 2 mg/kg with the testes remaining
intact. The first injection was given at the beginning of the study and the second injection 6 weeks later.
The surgically castrated rats which consisted of forty rats were further subdivided into five groups
of orchidectomised control (ORX), orchidectomised and given testosterone at 7 mg/kg (ORX + TES),
orchidectomised and given standardized quassinoid-rich EL extracts at 25 mg/kg (ORX + EL25),
50 mg/kg (ORX + EL50) and 100 mg/kg (ORX + EL100). The chemically castrated groups were
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subdivided into degarelix-induced control (DGX), degarelix-induced, and given testosterone at
7 mg/kg (DGX + TES), degarelix-induced and given standardized quassinoid-rich EL extracts at
25 mg/kg (DGX + EL25), 50 mg/kg (DGX + EL50), and 100 mg/kg (DGX + EL100) with eight rats
in each group. One week of recovery period from castration procedures was given to the rats before
starting the treatments. Testosterone enanthate was injected intramuscularly once a week while the
standardized quassinoid-rich EL extracts were given daily for 10 weeks via oral gavages.

2.2. Blood and Bone Sampling

Rats in the baseline group were killed by ether overdose before the start of the study
while the other rats were sacrificed upon completion of their treatments. The rat bones were
fluorochrome-labelled by intraperitoneal injection of 20 mg/kg calcein for dynamic histomorphometry
measurements at 9 days and 2 days before euthanasia. The rats were fasted overnight before blood
collection was performed. Blood was collected from the orbital sinus. After three hours at room
temperature, serum was extracted by centrifugation (3000 rpm × 10 min) and stored at −80 ◦C
until biochemical analyses were performed. The left femora were dissected out and prepared for
histomorphometric analyses.

2.3. Bone Biochemical Markers

Serum osteocalcin and C-terminal telopeptide of type 1 collagen (CTX) were measured using
an enzyme-linked immunosorbent assay (ELISA) technique and analyzed using ELISA reader
(VERSAmax, Sunnyvale, CA, USA). The kits used were rat osteocalcin ELISA (IDS, Tyne & Wear,
Boldon Colliery, UK) and Ratlaps ELISA CTX (IDS, Nordic Biosciences, Boldon Colliery, UK).

2.4. Bone Histomorphometry

The histomorphometric parameters were defined as structural, static, and dynamic indices
according to the American Society for Bone and Mineral Research Committee. The distal part of the
left femora was sawed into halves and fixed with 10% neutral-buffered formalin. One part of the bone
samples was decalcified using ethylenediaminetetra-acetic acid (Sigma-Aldrich, St. Louis, MO, USA)
while the other part was processed as undecalcified specimens. Decalcification was carried out for
8 weeks during which time the decalcifying solution was changed weekly. The decalcified bones were
dehydrated and processed to form paraffin blocks. Paraffin sections of 5.0 µm thick were stained with
hematoxylin and eosin stain (H & E).

The undecalcified specimens were embedded in polymer methyl methacrylate (Osteo-Bed Bone
Embedding Kit; Polysciences, Warrington, PA, USA) and sectioned at 9.0 µm thickness using a microtome
(Leica RM2155, Wetzlar, Germany). The sections were then stained using Von Kossa’s method for
structural histomorphometry. The histological slides were analyzed using Nikon Eclipse 80i microscope
(Nikon Instrument Inc., Melville, NY, USA) with an image analyzer software Pro-Plus v. 5.0 (Media
Cybernatics, Silver Spring, MD, USA) and a Weibel grid as described previously (Parfitt et al. 1987).
The unstained bones were analyzed for dynamic bone parameters using a fluorescence microscope
(Nikon Eclipse 80 µ, Nikon, Tokyo, Japan) and an image analyzer Pro-Plus (Media Cybernetics, Silver
Spring, MD, USA). The measurements were performed at the metaphyseal region, which is located
1 mm from growth plate, excluding the endocortical region. This is the secondary spongiosa area,
which is rich in trabecular bone. Trabecular bone was chosen because its remodeling process is more
dynamic than the cortical bone. All the histomorphometric parameters measured were listed in Table 1.
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Table 1. Bone histomorphometry parameters.

Parameters Measured Abbreviation

Structural Parameters
Trabecular Volume BV/TV

Trabecular Thickness TbTh
Trabecular Number TbN

Trabecular Separation TbSp

Static Parameters
Osteoblast Surface ObS/BS
Osteoclast Surface OcS/BS

Eroded Surface ES/BS
Osteoid Volume OV/BV
Osteoid Surface OS/BS

Dynamic Parameters
Single-labeled Surface sLS/BS

Double-labeled Surface dLS/BS
Mineralizing Surface MS/BS

Mineral Apposition Rate MAR
Bone Formation Rate BFR/BS

2.5. Serum Testosterone, OPG & RANKL

Testosterone was measured in blood using a mouse/rat testosterone ELISA kit (BioVendor, Brno,
Czech Republic), with a low detection limit of 0.066 ng/mL. Serum level of OPG and RANKL were
measured with commercially available ELISA kit (Elabscience Biotechnology Co., Ltd., Wuhan, China)
and detected with a multimode microplate reader (EnSpire Multimode, Perkin Elmer, Singapore).

2.6. Statistical Methods

Results were expressed as mean ± standard error of the mean (SEM). All data were analyzed
using the Statistical Package for the Social Sciences (SPSS, version 23.0, Chicago, IL, USA). Distribution
of the data was assessed using the Shapiro–Wilk test. A parametric one-way analysis of variance
(ANOVA) was performed to detect any significant difference among the groups. If the results were
significant (p ≤ 0.05), the Multiple Comparisons Post Hoc Tests, either Tukey’s or Dunnett’s T3 were
used to determine the specific differences between means: p-value less than 0.05 was considered as
statistically significant.

3. Results

3.1. Body Weight

At the beginning of the study, the difference in the mean body weight for all groups was not
statistically significant (p > 0.05). Following 10 weeks of treatment, the mean body weight within
groups was significantly increased but there was no significant difference (p > 0.05) between groups
(Figure 1).

3.2. Bone Biochemical Markers

The serum osteocalcin level of all groups was significantly lower than the baseline group except for
ORX + EL50 group. The serum osteocalcin level of ORX + EL100, DGX, DGX + EL25, DGX + EL50, and
DGX + EL100 groups were significantly higher than Sham group (p < 0.01). The serum osteocalcin level
of ORX + TES group was significantly lower than ORX and ORX + EL100 groups (p < 0.05). The serum
osteocalcin level of DGX + TES group was also lower than DGX, DGX + EL50 and DGX + EL100
groups but the differences were only significant for the latter two groups (p < 0.05) (Figure 2a).

The CTX-1 levels were significantly lower in all groups compared to the baseline group (p < 0.001).
There were no other significant findings (Figure 2b).
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Figure 1. Mean body weight before and after treatment. Data expressed as mean ± standard error of the
mean (SEM.) n = 8 rats in each group. p < 0.05 is considered as significant. Abbreviations: orchidectomised
= ORX; TES = testosterone; DGX = degarelix-induced; EL = Eurycoma longifolia. Experimental groups:
Sham, Sham-operated; ORX, orchidectomised control; ORX + TES, orchidectomised + testosterone
injection; ORX + EL25, orchidectomised + 25 mg/kg EL extract; ORX + EL50, orchidectomised +
50 mg/kg EL extract; ORX + EL100, orchidectomised + 100 mg/kg EL extract; DGX, degarelix-induced;
DGX + TES, degarelix-induced + testosterone injection; DGX + EL25, degarelix-induced + 25 mg/kg
EL extract; DGX + EL50, degarelix-induced + 50 mg/kg EL extract; DGX + EL100, degarelix-induced +
100 mg/kg EL extract * Significant difference versus baseline of the same group.

Figure 2. (a) Mean osteocalcin level in the serum after treatment; (b) Mean C-terminal telopeptide
of type 1 collagen (CTX-1) level in the serum after treatment. Data expressed as mean ± SEM. n = 8
rats in each group. p < 0.05 is considered as significant. Abbreviations: orchidectomised = ORX;
TES = testosterone; DGX = degarelix-induced; EL = Eurycoma longifolia. Experimental groups: Sham,
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Sham-operated; ORX, orchidectomised control; ORX + TES, orchidectomised + testosterone injection;
ORX + EL25, orchidectomised + 25 mg/kg EL extract; ORX + EL50, orchidectomised + 50 mg/kg EL
extract; ORX + EL100, orchidectomised + 100 mg/kg EL extract; DGX, degarelix-induced; DGX + TES,
degarelix-induced + testosterone injection; DGX + EL25, degarelix-induced + 25 mg/kg EL extract;
DGX + EL50, degarelix-induced + 50 mg/kg EL extract; DGX + EL100, degarelix-induced + 100 mg/kg
EL extract * Significant difference versus baseline; a Significant difference versus Sham; b Significant
difference versus ORX; c Significant difference versus ORX + TES; d Significant difference versus DGX.

3.3. Serum OPG and RANKL Level

Orchidectomy and DGX administration resulted in significantly lower serum OPG in all
orchidectomised and degarelix-induced groups compared to the baseline group (p < 0.05).
The reduction in serum OPG was only significant in the ORX group when compared to the Sham group
(p < 0.05) (Figure 3a). There were no significant differences in serum RANKL for all experimental
groups (p > 0.05) (Figure 3b).

Figure 3. (a) Mean osteoprotegerin (OPG) level in the serum after treatment; (b) Mean receptor activator
of nuclear factor kappa β-ligand (RANKL) level in the serum after treatment. Data expressed as mean
± SEM. n = 8 rats in each group. p < 0.05 is considered as significant. Abbreviations: orchidectomised =
ORX; TES = testosterone; DGX = degarelix-induced; EL = Eurycoma longifolia. Experimental groups: Sham,
Sham-operated; ORX, orchidectomised control; ORX + TES, orchidectomised + testosterone injection;
ORX + EL25, orchidectomised + 25 mg/kg EL extract; ORX + EL50, orchidectomised + 50 mg/kg EL
extract; ORX + EL100, orchidectomised + 100 mg/kg EL extract; DGX, degarelix-induced; DGX + TES,
degarelix-induced + testosterone injection; DGX + EL25, degarelix-induced + 25 mg/kg EL extract; DGX +
EL50, degarelix-induced + 50 mg/kg EL extract; DGX + EL100, degarelix-induced + 100 mg/kg EL
extract * Significant difference versus baseline; a Significant difference versus Sham.
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3.4. Serum Testosterone Level

The serum testosterone level was significantly higher in ORX + TES and DGX + TES groups but
was found to be significantly lower in all other groups compared to the baseline group (p < 0.001)
(Table 2). There were significant reductions in serum testosterone levels for all orchidectomised
and degarelix-induced groups compared to the Sham group (p < 0.05), except for ORX + TES and
DGX + TES groups, which were significantly higher than the Sham group and their respective negative
control groups (p < 0.001). The serum testosterone level in ORX + TES and DGX + TES groups was
also significantly higher compared to the EL-supplemented groups (p < 0.05). The marginal increase in
the serum testosterone level in ORX + EL25, DGX + EL50 and DGX + EL100 groups was significant
when compared to their negative control groups (p < 0.01).

Table 2. Results of serum testosterone level.

Mean (ng/mL) SEM

Baseline 12.803 2.12
Sham 6.033 * 0.74
ORX 0.604 *,a 0.06

ORX + TES 19.263 *,a,b 2.018
ORX + EL25 1.132 *,a,b,c 0.03
ORX + EL50 1.042 *,a,c 0.21
ORX + EL100 1.186 *,a,c 0.083

DGX 0.594 *,a 0.02
DGX + TES 23.218 *,a,d 1.21
DGX + EL25 1.304 *,a,e 0.12
DGX + EL50 1.589 *,a,d,e 0.14
DGX + EL100 1.1314 *,a,d,e 0.03

Abbreviations: orchidectomised = ORX; TES = testosterone; DGX = degarelix-induced; EL = Eurycoma longifolia.
Experimental groups: Sham—Sham-operated; ORX—orchidectomised control; ORX + TES—orchidectomised +
testosterone injection; ORX + EL25—orchidectomised + 25 mg/kg EL extract; ORX + EL50—orchidectomised +
50 mg/kg EL extract; ORX + EL100—orchidectomised + 100 mg/kg EL extract; DGX—degarelix-induced; DGX +
TES—degarelix-induced + testosterone injection; DGX + EL25—degarelix-induced + 25 mg/kg EL extract; DGX +
EL50—degarelix-induced + 50 mg/kg EL extract; DGX + EL100—degarelix-induced + 100 mg/kg EL extract. Value
expressed as mean ± SEM. n = 8 rats in each group. p < 0.05 is considered as significant. * Significant difference
versus Baseline; a Significant difference versus Sham; b Significant difference versus ORX; c Significant difference
versus ORX + TES; d Significant difference versus DGX; e Significant difference versus DGX + TES.

3.5. Static Histomorphometric Parameters

ObS/BS for ORX + EL50, DGX + TES, DGX + EL25, DGX + EL50 and DGX + EL100 groups was
significantly higher than the baseline group (p < 0.01). The ObS/BS of DGX+TES, DGX + EL25 groups
was also significantly higher than the Sham and DGX groups (p < 0.01).

Surgical and chemical castration caused significantly higher OcS/BS for ORX, ORX + TES, DGX
and DGX + TES groups compared to the baseline group (p < 0.05). The OcS/BS of ORX, ORX + TES
and DGX groups was also significantly higher than the Sham group (p < 0.05). Supplementations
with 50 and 100 mg/kg of quassinoid-rich EL extract to orchidectomised rats (ORX + EL50 and
ORX + EL100 groups) resulted in lower OcS/BS compared to ORX group (p < 0.01). The OcS/BS
value was also lower in ORX + EL25 group but the difference was not statistically significant
(p = 0.053). The ORX + EL50 group also had a significantly lower OcS/BS compared to the ORX + TES
group (p < 0.01). In degarelix-induced groups, only supplementations with 25 and 50 mg/kg of
quassinoid-rich EL extract (DGX + EL25 and DGX + EL50 groups) resulted in significantly lower
OcS/BS compared to the DGX group (p < 0.05).

The OS/BS of Sham, ORX + TES, ORX + EL25, ORX + EL50, ORX + EL100 and DGX + TES groups
was significantly higher than the baseline group (p < 0.05). The OV/BV for all groups, except for DGX
group was significantly higher than baseline group (p < 005). No significant differences were seen for
ES/BS parameter (p > 0.05) (Table 3).
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Table 3. Results of bone static histomorphometric parameters.

ObS/BS (%) OcS/BS (%) ES/BS (%) OS/BS (%) OV/BV (%)

Baseline 8.77 ± 0.52 1.52 ± 0.36 5.43 ± 0.50 2.68 ± 0.39 3.07 ± 0.32
Sham 12.53 ± 0.75 2.96 ± 0.36 4.98 ± 0.57 5.02 ± 0.32 * 6.12 ± 0.41 *
ORX 9.74 ± 0.81 7.24 ± 0.44 *,a 4.13 ± 0.54 4.73 ± 0.31 5.94 ± 0.59 *

ORX + TES 11.17 ± 0.34 5.23 ± 0.24 *,a 4.81 ± 0.39 4.81 ± 0.57 * 6.27 ± 0.78 *
ORX + EL25 12.93 ± 0.77 4.11 ± 0.59 5.04 ± 0.47 5.74 ± 0.47 * 7.37 ± 0.62 *
ORX + EL50 15.72 ± 1.87 * 2.87 ± 0.28 b,c 3.70 ± 0.39 5.81 ± 0.69 * 6.97 ± 0.66 *

ORX + EL100 12.40 ± 0.89 3.49 ± 0.42 b 4.55 ± 0.41 5.63 ± 0.45 * 6.90 ± 0.82 *
DGX 12.16 ± 0.51 4.67 ± 0.23 *,a 5.98 ± 0.81 4.60 ± 0.21 5.32 ± 0.40

DGX + TES 19.36 ± 1.20 *,a,d 3.98 ± 0.35 * 4.42 ± 0.59 5.58 ± 0.30 * 7.75 ± 0.64 *
DGX + EL25 17.95 ± 0.94 *,a,d 2.38 ± 0.20 d 4.76 ± 0.51 4.55 ± 0.27 6.12 ± 0.41 *
DGX + EL50 16.71 ± 1.45 * 2.55 ± 0.32 d 3.63 ± 0.53 4.56 ± 0.59 5.93 ± 0.55 *
DGX + EL100 15.46 ± 1.19 * 2.91 ± 0.40 3.54 ± 0.40 4.59 ± 0.48 5.84 ± 0.40 *

Abbreviations: orchidectomised = ORX; TES = testosterone; DGX = degarelix-induced; EL = Eurycoma longifolia;
ObS/BS = osteoblast surface; OcS/BS = osteoclast surface; ES/BS = eroded surface; OS/BS = osteoid surface;
OV/BV = osteoid volume. Experimental groups: Sham, Sham-operated; ORX, orchidectomised control; ORX + TES,
orchidectomised + testosterone injection; ORX + EL25, orchidectomised + 25 mg/kg EL extract; ORX + EL50,
orchidectomised + 50 mg/kg EL extract; ORX + EL100, orchidectomised + 100 mg/kg EL extract; DGX,
degarelix-induced; DGX + TES, degarelix-induced + testosterone injection; DGX + EL25, degarelix-induced +
25 mg/kg EL extract; DGX + EL50, degarelix-induced + 50 mg/kg EL extract; DGX + EL100, degarelix-induced +
100 mg/kg EL extract. Value expressed as mean ± SEM. n = 8 rats in each group. p < 0.05 is considered as significant.
* Significant difference versus Baseline; a Significant difference versus Sham; b Significant difference versus ORX;
c Significant difference versus ORX + TES; d Significant difference versus DGX.

3.6. Structural Histomorphometric Parameters

BV/TV and TbN of ORX group were significantly lower, while TbSp was significantly higher
than the baseline and Sham groups (p < 0.05). Similar patterns of BV/TV, TbN and TbSp were seen
with the DGX group compared to the baseline and Sham groups (p < 0.01). Testosterone treatments
significantly increased BV/TV and TbN and significantly reduced TbSp of ORX + TES and DGX + TES
groups compared to their respective negative control groups (p < 0.05). The exception was for the TbN
of ORX + TES group, which was not significantly different to the ORX group (p > 0.05). In general,
supplementations of quassinoid-rich EL at all doses to degarelix groups could cause improvements
in BV/TV, TbN, and TbSp parameters compared to the DGX group (p < 0.05). The BV/TV was also
higher in the DGX + EL50 group compared to the DGX group but the difference was not statistically
significant (p = 0.051). As for the orchidectomised group, only supplementation with 100 mg/kg
quassinoid-rich EL extract (ORX + EL100) showed improvement in the TbSp compared to ORX group
(p < 0.05). The TbN of the ORX + EL100 group was higher than the ORX group but the change was not
significant (p = 0.059). No significant findings were found for the TbTh parameter (p > 0.05) (Table 4).

Table 4. Results of bone structural histomorphometric parameters.

BV/TV TbTh TbN TbSp

Baseline 42.06 ± 2.06 139.86 ± 8.68 0.0030 ± 0.0001 193.62 ± 9.13
Sham 38.29 ± 2.90 167.09 ± 11.80 0.0029 ± 0.0002 282.06 ± 16.77
ORX 24.45 ± 0.73 *,a 114.37 ± 6.91 0.0021 ± 0.0001 *,a 377.25 ± 9.78 *,a

ORX + TES 38.63 ± 2.07 b 149.65 ± 13.99 0.0026 ± 0.0002 237.97 ± 17.89 b

ORX + EL25 31.55 ± 1.59 * 123.32 ± 3.71 0.0025 ± 0.0002 276.44 ± 25.99
ORX + EL50 28.96 ± 1.29 * 136.82 ± 7.62 0.0020 ± 0.0001 *,a 317.14 ± 16.59 *

ORX + EL100 32.36 ± 1.75 * 128.18 ± 5.83 0.0028 ± 0.0001 281.18 ± 15.56 b

DGX 19.53 ± 0.94 *,a 98.96 ± 5.72 0.0018 ± 0.0001 *,a 419.25 ± 16.67 *,a

DGX + TES 33.08 ± 1.88 *,d 132.31 ± 20.49 0.0029 ± 0.0002 d 212.10 ± 8.55 d

DGX + EL25 30.01 ± 1.83 *,d 125.96 ± 13.59 0.0025 ± 0.0002 d 243.18 ± 11.13 d
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Table 4. Cont.

BV/TV TbTh TbN TbSp

DGX + EL50 29.76 ± 0.78 * 100.47 ± 7.44 0.0029 ± 0.0001 d 240.97 ± 12.53 d

DGX + EL100 33.56 ± 3.00 d 107.95 ± 9.24 0.0029 ± 0.0002 d 228.23 ± 10.78 d

Abbreviations: orchidectomised = ORX; TES = testosterone; DGX = degarelix-induced; EL = Eurycoma longifolia;
BV/TV = trabecular volume; TbTh = trabecular thickness; TbN = trabecular number; TbSp = trabecular separation.
Experimental groups: Sham, Sham-operated; ORX, orchidectomised control; ORX + TES, orchidectomised +
testosterone injection; ORX + EL25, orchidectomised + 25 mg/kg EL extract; ORX + EL50, orchidectomised +
50 mg/kg EL extract; ORX + EL100, orchidectomised + 100 mg/kg EL extract; DGX, degarelix-induced;
DGX + TES, degarelix-induced + injection; DGX + EL25, degarelix-induced + 25 mg/kg EL extract; DGX + EL50,
degarelix-induced + 50 mg/kg EL extract; DGX + EL100, degarelix-induced + 100 mg/kg EL extract. Value expressed
as mean ± SEM. n = 8 rats in each group. p < 0.05 is considered as significant. * Significant difference versus baseline;
a Significant difference versus Sham; b Significant difference versus ORX; d Significant difference versus DGX.

3.7. Dynamic Histomorphometric Parameters

ORX and DGX groups had significantly higher sLS/BS and significantly lower dLS/BS and MAR
compared to Sham group (p < 0.01). Testosterone treatment to orchidectomised rats (ORX + TES
group) could significantly reverse all the orchdectomy-induced changes on sLS/BS, dLS/BS and MAR
parameters (p < 0.05). While, similar changes could only be seen on dLS/BS for DGX + TES group
when compared to DGX group (p < 0.01). Quassinoid-rich EL extract supplementation at all doses
significantly improved dLS/BS for both orchidectomised and degarelix-induced groups compared
to their respective negative control groups (p < 0.05). Quassinoid-rich EL extract supplementation at
all doses could improve sLS/BS of degarelix-induced groups but significant changes were only seen
in orchidectomised rats supplemented with 25 and 100 mg/kg EL extract (p < 0.05). Similar effects
were not seen for MAR parameter. MAR was significantly higher in ORX + EL50, ORX + EL100 and
DGX + EL25 groups compared to their negative control groups (p < 0.05). MAR was also higher in
DGX + EL50 but the difference was not significant (p = 0.057). There were also no significant differences
noted for MS/BS and BFR/BS parameters (p > 0.05) (Table 5).

Table 5. Results of bone dynamic histomorphometric parameters.

sLS/BS dLS/BS MAR MS/BS BFR/BS

Baseline 8.75 ± 0.68 9.50 ± 0.41 1.39 ± 0.09 40.29 ± 3.67 54.0 ± 7.55
Sham 6.29 ± 0.93 15.11 ± 1.31 * 1.35 ± 0.06 67.95 ± 9.06 73.39 ± 12.85
ORX 15.71 ± 1.21 *,a 6.33 ± 0.84 a 0.76 ± 0.03 *,a 37.92 ± 5.74 40.59 ± 7.99

ORX + TES 8.18 ± 0.65 b 10.99 ± 0.99 b 1.28 ± 0.05 b 48.23 ± 4.95 58.99 ± 8.45
ORX + EL25 6.94 ± 0.68 b 13.80 ± 0.77 b 1.05 ± 0.09 49.22 ± 9.33 55.35 ± 10.84
ORX + EL50 8.43 ± 1.24 11.95 ± 0.57 b 1.33 ± 0.10 b 49.47 ± 9.77 57.0 ± 16.27
ORX + EL100 6.56 ± 0.44 b 13.07 ± 0.89 b 1.23 ± 0.10 b 42.31 ± 4.56 51.37 ± 6.93

DGX 16.94 ± 1.04 *,a 6.66 ± 0.73 a 0.90 ± 0.05 *,a 51.12 ± 0.77 52.76 ± 3.72
DGX + TES 10.75 ± 1.66 13.01 ± 0.93 d 1.26 ± 0.13 54.59 ± 7.85 68.37 ± 9.26
DGX + EL25 9.64 ± 0.93 c 11.83 ± 0.89 d 1.35 ± 0.09 d 51.04 ± 5.61 69.20 ± 7.91
DGX + EL50 7.75 ± 0.83 c 11.11 ± 1.04 d 1.32 ± 0.09 51.59 ± 4.36 62.94 ± 13.70
DGX + EL100 6.22 ± 0.79 c 11.67 ± 0.79 d 1.22 ± 0.08 50.28 ± 6.83 59.28 ± 14.34

Abbreviations: orchidectomised = ORX; TES = testosterone; DGX = degarelix-induced; EL = Eurycoma longifolia;
sLS/BS = single-labeled surface; dLS/BS = double-labeled surface; MS/BS = mineralizing surface; MAR = mineral
apposition rate; BFR/BS = bone formation rate. Experimental groups: Sham, Sham-operated; ORX, orchidectomised
control; ORX + TES, orchidectomised + testosterone injection; ORX + EL25, orchidectomised + 25 mg/kg EL extract;
ORX + EL50, orchidectomised + 50 mg/kg EL extract; ORX + EL100, orchidectomised + 100 mg/kg EL extract;
DGX, degarelix-induced; DGX + TES, degarelix-induced + testosterone injection; DGX + EL25, degarelix-induced +
25 mg/kg EL extract; DGX + EL50, degarelix-induced + 50 mg/kg EL extract; DGX + EL100, degarelix-induced +
100 mg/kg EL extract. Value expressed as mean ± SEM. n = 8 rats in each group. p < 0.05 is considered as significant.
* Significant difference versus baseline; a Significant difference versus Sham; b Significant difference versus ORX;
c Significant difference versus ORX + TES; d Significant difference versus DGX.
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4. Discussion

In addition to pharmacological agents, nutrient supplements and functional foods have been
considered as therapeutic options for male osteoporosis [38]. The use of medicinal plants in the
prevention and treatment of osteoporosis is also gaining more interest as they may provide cost
effective and convenient alternatives with fewer side effects. In this study, standardized quassinoid-rich
EL extract was evaluated as an alternative option for the prevention of degenerative bone changes in
osteoporosis due to androgen deficiency in rats.

In the present study, it was found that testosterone deficiency due to orchidectomy or chemical
castration by degarelix resulted in unfavorable changes of static, structural, and dynamic bone
histomorphometry indices. The deterioration of trabecular bone was evidenced by significant
reductions in structural parameters such as bone volume (BV/TV) and trabecular number (TbN) as well
as an increase in trabecular separation (TbSp). In an earlier study, only bone volume parameter was
adversely affected by orchidectomy and supplementation with crude EL extract at 15 mg/kg dose was
unable to reduce the bone volume changes [29]. In the present study, testosterone treatment was able
to reduce degenerative bone changes by improving BV/TV, TbN and TbSp. Similar bone protective
effects were also seen with supplementation of quassinoid-rich EL extracts to androgen-deficient
rats, more in the case of degarelix-induced rats than orchidectomised rats. Based on the findings,
quassinoid-rich EL was as effective as testosterone in protection against androgen deficient-bone
structural changes, especially for the chemical castration model.

Static bone histomorphometry is used to quantitatively evaluate the activity of bone cells
at a specific time [39]. It measures the number of osteoblasts and osteoclasts. In our present
study, most of the findings were focused on the ObS/BS and OcS/BS of static histomorphometric
parameters. Orchidectomy and degarelix administration caused more significant effects on the
osteoclasts surface (OcS/BS) than the osteoblast surface (ObS/BS). The protective effects of testosterone
and quassinoid-rich EL supplementation were demonstrated more on OcS/BS. The best doses of
quassinoid-rich EL were 50 and 100 mg/kg for orchidectomised rats and 25 and 50 mg/kg for degarelix
rats. Surprisingly, 50 mg/kg dose of quassinoid-rich EL was able to promote Obs/BS until it was
higher than the Sham value. Based on the static histomorphometric parameters, quassinoid-rich
EL offered bone protection in both orchidectomised and degarelix models with the 50 mg/kg dose
demonstrating good activities.

Dynamic histomorphometry evaluation provides a quantitative assessment of bone formation
over a period of time [34]. The results of dynamic histomorphometric analyses showed that the
single-labeled surface (sLS/BS) was significantly increased, while the double-labeled surface (dLS/BS)
and mineral apposition rate (MAR) were significantly decreased in both orchidectomised and
degarelix-induced groups. The dLS/BS and MAR parameters correspond to new bone formation
and bone surfaces with mineralization while the sLS/BS corresponds to bone surfaces with poor
or no new bone formation [40]. The increase in sLS/BS with testosterone deficiency in this study
indicated that either bone resorption activity was increased or bone formation was inadequate [41].
The sLS/BS was reduced by testosterone treatment and quassinoid-rich EL extract supplementation
while dLS/BS was significantly improved in all treatment groups. These results showed that both
testosterone treatment and quassinoid-rich EL extract supplementation were capable of increasing
bone formation and reducing bone resorption.

Although the dynamic histomorphometry parameters clearly showed that both testosterone
treatment and quassinoid-rich EL extract supplementation were able to improve bone formation and
bone resorption activities, the findings were not replicated with serum biochemical markers. Serum
osteocalcin level was elevated in both orchidectomised and degarelix-induced groups. According to
Erben, Eberle [6], bone loss may result in high bone turnover as shown by increased serum osteocalcin.
Supplementations of quassinoid-rich EL extract to both orchidectomised and degarelix-induced groups
also resulted in higher serum osteocalcin levels. Elevated bone turnover might suggest ongoing bone
loss or may be as a result of active bone accrual [42]. Therefore, we speculated that the substantial
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increase in serum osteocalcin in the orchidectomised and degarelix-induced groups supplemented
with quassinoid-rich EL extract was not due to bone loss but due to active bone formation instead.
A significantly lower bone resorption marker, CTX was seen in all treated groups at the end of
10 weeks of study period compared to the baseline group. A previous study reported that serum
CTX level was significantly lower at the end of the treatment period for all groups treated with
tocotrienol, a vitamin E [43]. The anti-osteoporotic effects of EL were better illustrated in the dynamic
histomorphometry parameters since findings in bone were more stable and were not affected by
circadian rhythm compared to serum findings.

The failure of the testis to produce physiological levels of androgens particularly testosterone in
hypogonadal men occur due to the disruption of one or more levels of the HPG axis [17]. As androgens
play a significant role in the skeletal system, they protect men against osteoporosis. Orchidectomy
was reported to cause 80% reduction in serum testosterone in male rats [6]. The testosterone levels
of the orchidectomised and degarelix-induced rats in our study were significantly reduced and
may be responsible for the changes in all bone parameters measured. As expected, testosterone
treatment to both orchidectomised and degarelix-induced rats significantly raised the testosterone level.
The increase in testosterone level in orchidectomised rats treated with testosterone was even higher
than the Sham and baseline level. The testosterone levels in orchidectomised and degarelix-induced rats
supplemented with quassinoid-rich EL extracts was significantly lower when compared to the Sham
and baseline level, but interestingly, the marginal increase in testosterone level was also accompanied by
an improvement in bone histomorphometric parameters in both orchidectomised and degarelix models.

Based on their roles, the relative balance of OPG and RANKL has been proposed to be an important
determinant of bone resorption [44]. Androgens might maintain bone mass in part by increasing
OPG and/or by suppressing RANKL [45]. A recent study demonstrated that androgen ablation via
orchidectomy was associated with an increase in skeletal RANKL mRNA expression [46]. In the
current study, though insignificant, there was an increase in the serum RANKL in the orchidectomised
and degarelix-induced rats. The changes in peripheral serum RANKL were also not significant in an
earlier study, but the RANKL levels in bone marrow plasma and bone marrow cells were found to be
significantly increase in the orchidectomised rats. Nevertheless, there were significant reductions in
serum OPG levels for both orchidectomised and degarelix-induced groups in this study and there were
trends toward elevated serum OPG levels in the quassinoid-rich EL-supplemented groups. There were
also trends towards suppression of serum RANKL seen in the testosterone group and quassinoid-rich
EL-supplemented groups. A previous study reported that OPG-gene expression was up regulated with
the supplementation of EL extract in the tibial bones of the orchidectomised rats but the changes in
bone RANKL gene expression were not significant. It was postulated that, this might be an additional
mechanism of EL in protecting against bone resorption induced by androgen deficiency.

To the best of our knowledge, this was the first study on the effects of standardized quassinoid-rich
EL extract in male osteoporotic rat models, using both surgical and chemical castration. In this
study, supplementation of quassinoid-rich EL extract did not show a dose-dependent effect on
bone. In general, the skeletal improvement on histomorphometric indices for orchidectomised and
degarelix-induced rats that received 25 and 50 mg/kg of quassinoid-rich EL extract was almost
similar. Therefore, these two doses may be the best doses to offer bone protection against androgen
deficiency. In fertility and reproductive studies, the effects of standardized quassinoid-rich EL extract
on spermatogenesis were found to be optimum at 25 and 50 mg/kg [32]. However, quassinoid-rich EL
extracts at higher dose of 100 mg/kg did not seem to worsen the bone parameters. In fact, some of the
parameters were improved with this high dose. Moreover, standardized quassinoid-rich EL extract
was reported to be non-teratogenic to fetal morphology, viscera and skeleton at 100 mg/kg. The doses
of 100 mg/kg and below were considered safe for further clinical studies [47].

The marginal increase of testosterone level might contribute to one of the possible mechanisms
by which EL extract supplementation reduced skeletal deterioration in this study. Since the
deterioration in bone parameters was observed as an adverse effect of testosterone deficiency,
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a tiny increase of testosterone level by EL extract supplementation might be at least beneficial
in reducing further changes to the bones in gonadal hormone-deficient male rats. Studies have
demonstrated that circulating androgens and estrogens are protective of bone. In culture media,
testosterone and 5α-dihydrotestosterone (5α-DHT) have been shown to promote proliferative and
differentiative activities of osteoblast-like cells [48]. An in vitro study by Thu et al. (2017) showed
that the standardized quassinoid rich EL extract has the potential to promote the proliferation and
differentiation of osteoblast [49]. The proliferative and osteogenic effects of EL extract were compared
with the positive control group that was treated with 5α-DHT. An earlier study reported that the
ability of EL to promote proliferation in bone forming cells was slightly less than 5α-DHT while better
efficacy was seen in promoting cell differentiation [50]. This may explain the beneficial effect of this
extract on bone in vivo.

In conclusion, based on the histomorphometric indices, standardized quassinoid-rich EL extract
can be considered to be as effective as testosterone in reducing bone degenerative changes in
androgen-deficient osteoporosis models. This was partially achieved with a marginal increase in serum
testosterone level compared to the estimated three-fold increase following testosterone treatment.
Further investigation is warranted to clarify the exact mechanism by which quassinoid-rich EL extract
exerted its anti-osteoporotic effects.
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