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Ascorbate is a specific co-factor for a large family of enzymes known as the Fe- and 2-
oxoglutarate-dependent dioxygenases. These enzymes are found throughout biology and
catalyze the addition of a hydroxyl group to various substrates.The proline hydroxylase that
is involved in collagen maturation is well known, but in recent times many new enzymes
and functions have been uncovered, including those involved in epigenetic control and
hypoxia-inducible factor (HIF) regulation. These discoveries have provided crucial mecha-
nistic insights into how ascorbate may affect tumor biology. In particular, there is growing
evidence that HIF-1-dependent tumor progression may be inhibited by increasing tumor
ascorbate levels. However, rigorous clinical intervention studies are lacking. This review
will explore the physiological role of ascorbate as an enzyme co-factor and how this mech-
anism relates to cancer biology and treatment. The use of ascorbate in cancer should be
informed by clinical studies based on such mechanistic hypotheses.

Keywords: ascorbate, cancer, hydroxylation, hypoxia-inducible factor-1, TET enzymes, tumor microenvironment,
vitamin C

In 1747, James Lind, a surgeon with the British Royal Navy, per-
formed what is considered the first human clinical trial in an
attempt to treat scurvy, administering various potential remedies,
such as cider, vinegar, or sea water to a group of 12 scurvy-stricken
sailors. The only patients to recover were those who received
lemons and oranges, but almost 200 years would pass before the
curative compound was identified as hexuronic acid, later named
ascorbic acid (ascorbate) for its anti-scorbutic (i.e., anti-scurvy)
properties (1). This is commonly known today as vitamin C.

Many of the symptoms of scurvy – gum disease, bleeding, and
poor wound healing – are considered to be the result of defective
collagen production. It was found that the enzyme responsible for
the formation of hydroxy-proline, collagen prolyl-4-hydroxylase
(C-P4H), specifically required ascorbate as a co-factor for its
activity (2). Hence, under conditions of ascorbate-deficiency, C-
P4H loses activity, collagen cannot cross-link sufficiently, and
connective tissues can deteriorate.

Collagen prolyl-4-hydroxylase belongs to the family of enzymes
known as the Fe- and 2-oxoglutarate dependent dioxygenases
(2-OGDDs) that have a wide range of biological functions (3)
(Table 1). In mammalian cells, members of this family modify
hypoxia-inducible factor (HIF) (4), convert dopamine to nora-
drenaline, are involved in the α-amidation of numerous pro-
hormones (5) and carnitine biosynthesis (6, 7). It has more
recently been discovered that 2-OGDDs are epigenetic erasers;
these enzymes hydroxylate methyl-lysine residues on histones
[Jumonji-C domain-containing histone demethylases (JHDMs)]

(8), and ten-eleven translocases (TETs) hydroxylate 5-methyl-
cytosine (9). In addition, RNA and ribosomal hydroxylases have
very recently been characterized (10, 11).

Clearly, the hydroxylation of diverse proteins, DNA and RNA
is proving to be a widespread phenomenon. By the addition
of a hydroxyl group to their respective substrates, 2-OGDDs
are responsible for altering key protein–protein interactions and
nucleic acid structure and function that can result in dramatic
effects on cell signaling, gene expression, and tissue function. As
ascorbate is a specific co-factor for these enzymes, it will be of
great interest to determine how ascorbate availability affects their
function and the consequences for tumor biology. The following
sections will detail the biochemistry of the 2-OGDDs and the activ-
ity of ascorbate as a co-factor, and consider whether this activity
has any relevance to tumor progression.

FE- AND 2-OXOGLUTARATE-DEPENDENT DIOXYGENASES
Despite such large substrate diversity, the catalytic cycle of 2-
OGDDs is thought to be highly conserved (3). The enzymes
are characterized by a core structural motif consisting of eight
β-strands arranged in a “jelly roll” or double-stranded β-helix,
surrounded by α-helices (20). The active site within the double-
stranded β-helix contains a non-haem iron that is coordinated by
a “facial triad” of two histidines and one aspartate/glutamate, with
the remaining three coordination sites occupied by labile water
molecules (20). This is thought to give the catalytic iron a relatively
exposed and flexible arrangement compared to haem oxygenases,
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Table 1 | Various members of the 2-oxoglutarate dioxygenase family in mammalian cells, their known substrates, and biological functions.

Enzyme family/function Enzyme(s) Known substrate(s) Reference

HIF-hydroxylases PHDs 1–3 HIF-α (4)

FIH HIF-α, ARD proteins (12)

Cytosine demethylases TET1–3 5mC (9, 13)

JMJC histone demethylases Numerous – JHDMs, KDMs Methylated histones (14, 15)

DNA and RNA demethylases Numerous – AlkB family, FTO DNA, RNAs, histones (16, 17)

Ribosomal hydroxylases MINA53, NO66, OGFOD1 60S ribosomal proteins (11, 18)

Collagen hydroxylase C-P4H Collagen proline residues (2)

Noradrenalin synthesis D-βH Dopamine (19)

Carnitine synthesis GBBH Trimethyl-lysine (6, 7)

Pro-hormone maturation PHM Peptidyl-lysine (5)

HIF, hypoxia-inducible factor; PHD, prolyl-hydroxylase domain-containing protein; FIH, factor inhibiting HIF; ARD, ankyrin repeat domain-containing proteins; TET,

ten-eleven translocation enzyme; 5mC, 5-methyl-cytosine; JHDM, jumonji histone demethylases; KDM, lysine demethylases; MINA53, Myc-induced nuclear antigen;

OGFOD1, 2-oxoglutarate and iron-dependent oxygenase domain-containing 1; FTO, fat-mass and obesity associated protein; C-P4H, collagen prolyl-4-hydroxylase;

D-βH, dopamine beta-hydroxylase; GBBH, γ-butyrobetaine dioxygenase; PHM, peptidylglycine α-hydroxylating monooxygenase.

allowing for a wide range of catalytic oxidations. However, it may
also make the active site more prone to auto-oxidation (21).

The catalytic cycle (Figure 1A) starts with 2-OG binding, allow-
ing entry of the prime substrate and displacing a water molecule
from Fe2+. Subsequent binding of molecular O2 to Fe2+ catalyzes
the oxidative decarboxylation of 2-OG to succinate and generates a
highly reactive ferryl-oxo species (22) that hydroxylates the prime
substrate, regenerating Fe3+, which is reverted back to Fe2+ fol-
lowed by release of the substrates and CO2. One atom of the O2

is incorporated into the hydroxylated substrate and the other into
succinate. The CO2 is derived from the oxidative decarboxylation
of 2-OG to succinate (3, 20). Ascorbate is a necessary co-factor for
this reaction, and although its role remains to be determined, it is
thought to be required to maintain Fe2+ in its reduced state.

Well-characterized members of the 2-OGDD family now
include the HIF-hydroxylases (20). These enzymes are thought
to have particular relevance to tumor biology due to their direct
effects on HIF activation. HIF-1 is a transcription factor known
to up-regulate hundreds of genes involved in maintaining oxy-
gen and energy homeostasis under conditions of cell stress, such
as hypoxia – a common feature of solid tumors (23). The acti-
vation state of HIF-1 is under dual control, with HIF-1α protein
stability and transcriptional activity being regulated by hydroxy-
lation reactions. HIF-1α protein is constantly synthesized in most
cells in the body, and under normal, physiological conditions is
rapidly degraded (24) following hydroxylation of proline residues
402 and 564 by prolyl-hydroxylases (PHD) 1–3 (25, 26) (Table 1).
This modification initiates ubiquitination and proteasomal degra-
dation via binding of the tumor-suppressor von Hippel–Lindau
protein (pVHL) and an E3 ubiquitin ligase complex (27, 28).

A further hydroxylation event on asparagine 803 of HIF-1α

by factor inhibiting HIF (FIH; Table 1) prevents co-activation
with p300 and transcriptional activation (29). These events com-
bine to enable a rapid response to cell stressors, where a decrease
in hydroxylation activity immediately halts HIF-1α degradation,
both allowing the protein to accumulate and also to activate a tran-
scriptional response (20). The activation of HIF-1 is, therefore,

dependent upon the activity of the hydroxylases responsible for
modification of the HIF-1α subunit.

2-OGDD REGULATION AND CO-FACTOR DEPENDENCE
The requirements for the 2-OGDD catalytic cycle (O2, Fe2+, 2-
oxoglutarate, and ascorbate) provide clues as to the physiological
conditions that might affect 2-OGDD activity (Figure 1B).

Although the HIF-hydroxylases clearly respond to changes in
cellular O2 levels and are considered direct cellular oxygen sen-
sors, it is currently unknown whether other 2-OG dioxygenases are
similarly sensitive. An example of this has recently been described:
in tumorigenic neuroblastoma cells, TET1 was shown to be up-
regulated under hypoxia via HIF-1, and to cause increased 5hmC
levels specifically at HIF-binding sites, suggesting a synergistic
relationship (30). This is somewhat counter-intuitive, as hypoxia
would also be expected to inhibit TET activity and 5hmC for-
mation. However, whether the TET catalytic cycle is sensitive to
O2 changes is yet to be shown. This highlights the complexity of
2-OGDD biology, with each enzyme and isoform having distinct
activity dynamics despite sharing a highly conserved active site.

Iron is also a necessary co-factor for 2-OGDD activity, and its
substitution/depletion can disrupt HIF-hydroxylase activity and
activate the HIF-1 response. Iron chelators such as desferrioxam-
ine (DFO), and Co2+ and Ni2+ ions robustly induce HIF-1, and
this is thought to be through poisoning of the hydroxylases via
removal of enzyme-bound iron (4, 26, 31). The apparent Km val-
ues for Fe2+ are low, with 0.03 µM for PHD1 and 2, 0.1 µM for
PHD3 (32) and 0.5 µM for FIH (33). This suggests tight binding
of Fe2+ to the HIF-hydroxylase active site, despite the coordi-
nation chemistry predicting a labile arrangement (21). However,
whether Fe3+ produced during enzymatic cycling has the same
tight binding as Fe2+ is unknown.

2-OG (also known as α-ketoglutarate) is an intermediary
metabolite of the TCA cycle. Other 2-oxoacids from the TCA cycle,
such as succinate and fumarate, can compete with 2-OG to inhibit
HIF-hydroxylase activity and induce HIF-1 in vitro (34). Pyruvate,
oxaloacetate, and malate have also been shown to have similar
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FIGURE 1 | 2-Oxoglutarate-dependent dioxygenase reaction cycle and
factors affecting their activity in mammalian cells. (A) Representation
of 2-OGDD catalytic cycle. One atom of molecular oxygen is incorporated
into the hydroxylated substrate and the other into succinate. 2-OG is

converted to succinate, releasing CO2. Ferrous iron and ascorbate are
specific co-factors for this reaction. (B) Cellular stressors deprive
2-OGDDs of their required co-factors resulting in inhibition of multiple
potential pathways.

HIF-1-inducing effects, and may cause significant basal HIF-1
activation under normoxic conditions (35, 36). HIF-1 activity
can be increased by mutations in the TCA cycle enzymes succi-
nate dehydrogenase and fumarate dehydrogenase, which cause a
build-up of succinate and fumarate, respectively (37). Further-
more, mutated forms of isocitrate dehydrogenase-1 generate 2-
hydroxyglutarate (2-HG) that acts as a competitive inhibitor of
the HIF-hydroxylases and activates HIF-1 (38, 39). These muta-
tions have the potential to drive non-hypoxic HIF-1 activity
and tumorigenesis (40), and have been clinically associated with

the susceptibility to renal cancer and paragangliomas (38). The
availability of glycolytic and energy intermediates may confer a
complex metabolic-sensing role to the HIF-hydroxylases. How-
ever, exactly which 2-oxoacids are relevant under physiological
conditions, and to what degree, is unknown.

It has been suggested that the HIF-hydroxylases can be inac-
tivated by production of reactive oxygen species produced by
mitochondria in response to hypoxia (41). There is evidence that
HIF-hydroxylase activity can be inhibited by H2O2, inducing HIF-
1 in a process requiring functional mitochondria, although the
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precise mechanisms behind this are unclear (35, 42–44). Con-
versely, mitochondrial H2O2 production has been shown to be
decreased in response to hypoxia (45) and another study found no
association between levels of reactive oxygen species (DCF fluo-
rescence) and HIF-1 target gene expression (46). FIH was shown
to be sensitive to H2O2-mediated inactivation, whereas PHD2
was not, providing an explanation for some of these effects (47),
where H2O2 could influence transcriptional inactivation of HIF-1
without affecting its protein stability.

ASCORBATE AS REGULATOR OF 2-OGDD ACTIVITY
The Km values for ascorbate for the HIF-hydroxylases and C-
P4H are relatively high [140–300 µM (33, 48, 49)], indicating
high intracellular requirements and susceptibility to ascorbate loss.
However, the exact role of ascorbate in the hydroxylase reaction
is unclear. Most data on ascorbate and hydroxylase activity had
come from studies in the 1970–1980s on purified C-P4H in the
context of collagen proline-hydroxylation that may also be relevant
to other 2-OGDDs (22, 50).

Ascorbate was found to be important, if not essential, for
C-P4H activity, with an optimal concentration of 1–2 mM (49,
51–55). In its absence, C-P4H could catalyze only ~15–30 reac-
tion cycles over 8 s before the reaction ceased, and addition of
1 mM ascorbate to the reaction mixture rescued 100% of enzyme
activity (2). Another study found C-P4H had a 54% lower ini-
tial reaction rate in the absence of ascorbate, which decreased
to ~8% of total activity within 30 s with subsequent ascorbate
addition able to rescue partial activity (51). Others have found
no C-P4H activity without ascorbate, demonstrating an absolute
requirement for this co-factor (54, 55). Furthermore, ascorbate
was needed for activity prior to 2-OG addition, suggesting that
under constant turnover conditions, a permanent ascorbate pres-
ence is required (51, 54). Although these results may be influenced
by variation in co-substrate concentrations or order of addition, it
is clear that ascorbate has a significant effect on hydroxylase activ-
ity, with recombinant PHD2 activity having also been shown to
increase dose-dependently with ascorbate (56).

Several recent independent studies have demonstrated the spe-
cific requirement of ascorbate for TET activity, with a consequent
widespread effect on DNA demethylation (57–60). TET enzymes
catalyze the conversion of 5mC to 5hmC,which can then be further
oxidized and converted to an unmodified (demethylated) cyto-
sine. There was a dose-dependent increase in 5hmC levels of up
to fourfold above baseline in ascorbate-treated cells (0–1000 µM)
(59, 60), which was mediated by the catalytic domain of TET1 and
2 (60). In addition, the reaction rate of TET2 increased eightfold in
the presence of ascorbate (60). Ascorbate-treated mouse embry-
onic stem cells showed dramatic erasure of 5mC marks (32–40%
decrease) over 3 days of treatment (60). These studies indicate
that intracellular ascorbate availability is likely to have significant
implications for cell reprograming and cancer cell biology.

MECHANISM OF ASCORBATE ACTIVITY
The mechanism by which ascorbate enhances hydroxylase activ-
ity has been thought to be due to the specific reduction of
enzyme-bound Fe3+ to Fe2+. Uncoupled reaction cycles may
be the primary cause of iron oxidation and although these

represented only 0.7 or 1.25% of total C-P4H activity, this was
found to be sufficient to oxidize enzyme-bound iron (49, 55). This
oxidation could be reversed by ascorbate (51, 53, 55). Ascorbate
is not stoichiometrically consumed during hydroxylase activity
(54, 55), but one study found that it was stoichiometrically con-
sumed specifically during uncoupled reaction cycles, supporting
its involvement in protecting against this mode of enzyme inacti-
vation (53). However, in another study, using recombinant PHD2,
there was a significant increase in ascorbate-reversible Fe3+ only
when the prime substrate was added, suggesting coupled turnover
may also oxidize the iron (61).

We have shown that ascorbate was able to prevent induction of
HIF-1α by Co2+, Ni2+, or iron chelation by DFO (62). DFO specif-
ically chelates Fe3+ (63), which is formed during the hydroxylase
reaction cycle, and the prevention of which suggests that ascorbate
may prevent free loss of enzyme-bound Fe3+ or its substitution
with Co2+ or Ni2+ (64). Ascorbate is known to interact with iron
by reducing insoluble ferric iron complexes to stable, soluble, fer-
rous chelates (65, 66) and can chelate iron intracellularly (67).
Together, these studies would support a specific role for ascor-
bate in both chelating and reducing enzyme-bound Fe3+ during
hydroxylase reactions to maintain continued enzyme cycling.

This specificity of ascorbate for optimizing hydroxylase activity
has been demonstrated; other reducing agents including glu-
tathione, vitamin E, NADPH, dithiothreitol (DTT), L-cysteine,
and tetrahydrofolic acid, were unable to substitute for ascorbate for
C-P4H or TET activity (2, 54, 55, 59, 60). In addition, ascorbate was
specifically necessary for full substrate hydroxylation with the HIF-
hydroxylases (purified recombinant PHD2 and FIH), substantially
increasing both the initial rate and extent of HIF-1α domain
hydroxylation (68). Glutathione and DTT were not able to sub-
stitute for ascorbate, although DTT (68) and supra-physiological
concentrations of glutathione in combination with ascorbate (69)
can partially enhance PHD2 hydroxylase activity. These studies
demonstrate that ascorbate is the most effective reducing agent
for hydroxylase activity, with a high degree of specificity.

Ascorbate may also be structurally specific to the hydroxylase
active site. There is some support for its direct binding to the active
site iron in C-P4H, where it may act as an inner-sphere reductant
for the iron (49, 52) and a plausible ascorbate binding site within
the enzyme–substrate complex has been reported for a plant mem-
ber of the 2-OGDD family, anthocyanidin synthase (70). This
provides a further possible mechanism for ascorbate, where it may
stabilize the enzyme–substrate interaction to facilitate hydroxylase
activity. Further to this, a recent study on the AlkB protein indi-
cates it has highly dynamic protein folding depending on whether
2-OG and Fe2+ are bound (71), and it has been suggested that the
TET enzymes require ascorbate to assist functional protein folding
to enhance catalytic activity (60). The effect of ascorbate structural
analogs on PHD2 and FIH activity revealed that the enediol reduc-
ing moiety of ascorbate is essential for hydroxylase activity (68),
supporting its role in maintaining reduced Fe2+. However, the
precise binding position of ascorbate in the hydroxylase reaction
cycle is still unclear.

In summary, there is a growing number of 2-OGDD family
members with various cellular functions, and in those that have
been studied (C-P4H, HIF-hydroxylases, and TETs), it is clear that
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ascorbate is required to maintain their activity. Whether other
2-OGDDs are similarly dependent on ascorbate for activity, and
how that affects the relevant cellular pathways, will be of interest
to investigate.

ASCORBATE BIOCHEMISTRY AND PHARMACOKINETICS
2-oxoglutarate dependent dioxygenases appear to require above
1 mM intracellular ascorbate for optimal activity, and interestingly,
most cells in the body will accumulate these levels under normal,
healthy physiological conditions. In most organisms, ascorbate is
synthesized from glucose. Animals produce ascorbate in the liver
or kidneys, from which it is transported to the plasma for distri-
bution to the rest of the body (72). However, primates, including
humans, as well as guinea pigs and some species of bat are unable
to synthesize it due to evolutionary loss of the terminal synthetic
enzyme, gulonolactone oxidase (72). Therefore, ascorbate is an
essential nutrient (vitamin C) that we must obtain from our diet.

Many of the known functions of ascorbate are attributable
to its action as an electron donor. Ascorbate has two ionizable
hydroxyl groups with pKa values of 4.2 and 11.6, meaning at phys-
iological pH, it is present as the ascorbate monoanion (Figure 2)
(73). It readily undergoes two consecutive, reversible, one-electron
oxidations, resulting in the ascorbate radical and dehydroascor-
bate (DHA; Figure 2) (73). Ascorbate is an excellent antioxidant,
both thermodynamically and kinetically, is able to neutralize many
highly reactive oxidizing species, and is therefore known as a
terminal small molecule antioxidant (74).

Tissue ascorbate levels vary significantly and this is generally
thought to reflect a functional requirement. The highest levels
are found in the adrenal medulla where noradrenaline is syn-
thesized and in the pituitary gland where many hormones are
produced (75). The brain also has high levels and is the last organ
to be depleted during deficiency (76), and many other tissues,
including white blood cells, contain high concentrations. Tissue
ascorbate levels are maintained by specific active transporters iden-
tified as sodium-dependent vitamin C transporters (SVCTs), with
two known isoforms – SVCT1 that is specifically involved in gas-
trointestinal absorption and renal reabsorption, and SVCT2 that
expressed in most tissues and is thought to be responsible for
whole body cellular uptake (77, 78).

Plasma ascorbate saturation from gastrointestinal absorption
is ~100 µM and the SVCTs transport it against a concentra-
tion gradient resulting in millimolar intracellular concentrations
(79–81). Final intracellular ascorbate levels depend on the circu-
lating plasma concentration available to the cells for uptake. The

apparent Km values for the SVCTs have been determined in various
cultured human cell lines, and range between 65 and 237 µM for
SVCT1 and 8–62 µM for SVCT2, the primary mediator of intra-
cellular uptake (82). An optimal plasma level to achieve tissue
saturation is ~70–80 µM, which corresponds to a dietary intake of
~200 mg per day and tissue accumulation becomes significantly
impaired if plasma levels fall below ~20 µM (83). This suggests
that access to concentrations in the range of those found in plasma
will substantially affect intracellular levels. Interestingly, several
studies have shown that cancer patients have significantly lower
plasma ascorbate levels compared to healthy controls (84–89) and
this may limit tumor cell uptake.

ASCORBATE IN TUMOR TISSUE
The ascorbate content of tumor tissue has been measured in some
studies as early as the 1970s, with variable results. Brain and col-
orectal tumors contained significantly less ascorbate than normal
tissue (90–92) whereas breast (93), oral (87), skin (94), and lung
(84) cancers had significantly more ascorbate than corresponding
normal tissues.

More recent studies from our lab have shown that both
endometrial and colorectal tumors of high histological grade had
less ascorbate than matched, adjacent normal tissue (95, 96). This
may be due to a disorganized vessel network common in high
grade tumors, or may reflect a reduction in expression or activity
of SVCT2, which is known to vary among cancer cell lines (97),
but to our knowledge, has not been examined in human cancer
tissue.

Given the difficulty of accessing the plasma supply, it is possi-
ble that delivery of ascorbate to tumor cells may be compromised.
Plasma levels are tightly controlled by the SVCTs, limiting absorp-
tion and reabsorption at both the intestine and kidney and do not
normally exceed ~100 µM with dietary intake (83). Intravenous
administration of ascorbate bypasses this tight control and can
yield plasma levels up to 100-fold higher with maximum levels of
up to 15 mM (98). Whether these supra-physiological concentra-
tions would significantly increase delivery to tumor cells or cellular
uptake is unknown, but investigation of this possibility may be of
particular relevance to cancer.

POTENTIAL 2-OGDD-MEDIATED EFFECTS OF ASCORBATE ON
TUMOR BIOLOGY
ASCORBATE AND HIF-1 REGULATION
Several in vitro studies have shown that ascorbate (25–1000 µM
in culture medium) can suppress HIF-1α protein stabilization

FIGURE 2 | Chemical structures of ascorbate and its oxidation products. At physiological pH, ascorbate exists as the ascorbate monoanion and can
undergo two consecutive, reversible, one-electron oxidations to produce the ascorbate radical and dehydroascorbate, respectively. Adapted from Kall (73).
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and transcriptional activity due to CoCl2 (62, 99, 100), DFO
(62, 100), and insulin-like growth factor or insulin (100). The
response to hypoxia is less clear, with some of these studies report-
ing that ascorbate could inhibit HIF-1 at 1–3% O2 (62, 99–101),
while other results showed no effect of ascorbate at ≤1% O2

(36, 100). Ascorbate was also able to completely block basal HIF-
1α present in oncogenically activated cells that had mutant p53
and PTEN, indicating that it is able to enhance HIF-hydroxylase
catalytic capacity in order to cope with the increase in HIF-1α

synthesis (100).
One in vivo study has measured xenograft growth in mice of

P493 cells that constitutively expressed a mutant, stabilized form
of HIF-1α (102). Oral ascorbate supplementation of the animals
resulted in significant inhibition of wild-type tumor growth, with
no effect on mutant HIF-1α tumors (102). Interestingly, the mice
in this study were able to synthesize their own ascorbate, and the
control group also had reduced tumor growth compared to the
mutant HIF-1α group (102). This indicates that ascorbate can
inhibit HIF-1-mediated tumor growth in mice, and that higher
concentrations have a greater effect. However, the plasma and tis-
sue concentrations were not reported. To our knowledge, this is
the only animal study to determine the HIF-1-dependent effects of
ascorbate on tumor growth, and more data measuring HIF-1 and
tumor ascorbate levels in a similar model would be particularly
valuable.

We have correlated tumor ascorbate content with HIF-1 acti-
vation in human tumor tissue and, to our knowledge, these are
the only studies to date to have done so. Strikingly similar patterns
were seen in endometrial and colorectal cancer, with a significant
inverse relationship between tumor ascorbate levels and HIF-1
activation (95, 96). We also measured disease-free survival in the
colorectal cancer cohort and found that patients who had low
tumor ascorbate content had shorter disease-free survival (95).
This relationship was seen in a relatively small group of 50 patients,
and was independent of tumor grade and stage, indicating that
ascorbate may play a significant role in curbing tumor progression.
Interestingly, the ascorbate content of adjacent normal tissue was
not related to disease-free survival, suggesting that it is the ascor-
bate content of the tumor itself that is important (95). The precise
mechanism behind this observation requires further clinical inves-
tigation including measurement of various 2-OGDD-regulated
pathways in relation to changes in tumor ascorbate content.

ASCORBATE AND EPIGENETIC REPROGRAMING
The regulation of HIF-1 is likely to contribute to the anti-tumor
activity of ascorbate (102). However, the recent discovery of the
dependence of the TET enzymes on ascorbate for activity indicates
that it may also act to epigenetically reprogram cancer cells. Ascor-
bate was observed to enhance generation of mouse and human
pluripotent stem cells (103). Subsequently, the histone demethy-
lase Jmjd1 was found to be involved in the ascorbate-dependent
demethylation of pluripotency genes (104), and furthermore,
modulation of TET activity by ascorbate has been implicated in
somatic cell reprograming (57, 58). This has become a highly com-
plex field, with dynamic interplay between TET expression levels
and ascorbate availability (58), and also TET expression and HIF-1
activity (30). This raises interesting questions about how ascorbate

levels in cancer cells could affect the epigenetic phenotype. In addi-
tion, as hypoxia may be coincident with ascorbate-deficiency, this
could alter the response significantly.

The JHDM and AlkB sub-families of 2-OGDDs are also poten-
tial regulators of these processes, and it is unknown how many of
them are affected by changes in availability of co-factors. Ascorbate
would seem to have broad range of potential targets in a cancer
cell, many of which may be currently uncharacterized, where the
overall effect could “tip the balance” of signals and push cancer
cells toward cell death.

ASCORBATE AND CANCER
Ascorbate has a controversial history in relation to cancer treat-
ment. In the 1970s, Ewan Cameron and Linus Pauling used both
intravenous and oral ascorbate to treat 100 advanced cancer
patients and found significant improvements in survival time and
quality of life (105, 106). Subsequently, the Mayo Clinic sought
to further investigate their findings by performing randomized,
double-blind, placebo-controlled studies, using only oral ascor-
bate, initially with 60 advanced cancer patients who had received
prior chemotherapy (107), or later in 100 colorectal cancer patients
who had not received prior treatment (108). These clinical tri-
als found no difference between ascorbate and the placebo, and
ascorbate as a cancer therapy was effectively dismissed.

The recent discovery that intravenous ascorbate administration
can provide 100-fold higher plasma levels compared to oral intake
has renewed interest in its potential in treating cancer (98). Four
credible case studies (including prostate cancer, renal cell carci-
noma, bladder cancer, and B-cell lymphoma) have been reported
showing intravenous ascorbate had substantial anti-cancer activ-
ity in these advanced cancer patients (109, 110), three of which
were evaluated in accordance with the National Cancer Institute
Best Case Series guidelines (110). However two recent studies,
both with 24 patients and no control population, have shown no
objective response, with the exception of three patients who had
stable disease (111, 112). None of these studies have monitored
tissue ascorbate levels or any biological markers other than toxic-
ity parameters, and have been performed in an unselected patient
population. Nevertheless, studies have found that high-dose ascor-
bate is remarkably non-toxic and well-tolerated in patients with
normal renal function (111–113), a rare and valuable trait in a
potential cancer therapy. This, together with evidence that some
cancer patients may benefit from ascorbate treatment, should
be grounds for further rigorous clinical investigations, based on
sound hypotheses.

The renewed interest for a role for ascorbate in cancer has gen-
erated a growing body of in vitro and animal studies to determine
its effectiveness against cancer cell survival and tumor growth,
particularly using high millimolar doses (79). One hypothesis
to support the use of high-dose ascorbate is the finding that at
these pharmacological concentrations, it may act as a prodrug
to deliver extracellular H2O2 that is selectively toxic to cancer
cells (114, 115).

Recent animal studies have investigated the effect of ascor-
bate and tumor growth, all using different dosing regimens and
tumor models (116–120). However, they have consistently shown
an anti-tumor effect of ascorbate supplementation in mice. Mouse
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studies that used pharmacological ascorbate dosing (intravenous
or intraperitoneal) showed a reduction in tumor growth rate and
volume (116, 119–121). Other studies have used the Gulo−/−
mouse model, in which the animals cannot synthesize ascor-
bate, to investigate the effect of physiological ascorbate levels
(117, 118), and have also shown inhibition of tumor growth
in orally ascorbate-supplemented mice. A very recent Gulo−/−
study showed that physiological ascorbate supplementation dra-
matically reduced tumor metastases and necrosis, features that
were associated with MMP-9 (a HIF-1 target gene) expression and
tumor invasiveness (122). Serum VEGF levels were also markedly
reduced (122). These mouse studies support a role for ascorbate
in inhibiting tumor progression, and although the mechanisms
behind some of these effects may need further clarification, the
inhibition of HIF-1 is likely to contribute (102) (Figure 3).

The promise of ascorbate in treating cancer may lie in its
combined use with other chemo-therapeutics. HIF-1 is known
to be a driver of both chemo- and radio-resistance (123) and
boosting intracellular ascorbate levels in the tumor may inhibit
this effect and enhance the effectiveness of current treatments.
There has been some concern that ascorbate, which is a versatile
antioxidant, may in fact counteract the oxidative damage against
cancer cells caused by some current cancer therapies, thereby
limiting their effectiveness (124). However, recent in vitro and
in vivo studies have shown that ascorbate can, in fact, enhance
the effectiveness of chemotherapy (120, 125, 126). Pre-treatment

of prostate cancer cells with physiological ascorbate concentra-
tions significantly reduced the IC50 values of docetaxel and 5-
fluorouracil (126) and pharmacological dosing of ascorbate in
mice synergized with gemcitabine resulting in significantly inhib-
ited tumor growth (125). In addition, a recent phase I clinical trial
of high-dose intravenous ascorbate with gemcitabine and erlotinib
in advanced pancreatic cancer has shown no adverse effects of
including ascorbate (127). To our knowledge, no studies have
examined the effect of intracellular ascorbate on HIF-1-induced
treatment resistance. It would be of interest to study the response
of tumor cells with an active HIF-1 response to a range of chemo-
therapeutics, and monitor drug effectiveness in ascorbate-deficient
or pre-loaded cells.

CONCLUSION
The control of the 2-OGDDs by ascorbate has the potential to
impact tumor growth at all stages of tumor progression. Having a
high tissue ascorbate level could help prevent formation of solid
tumors, slow tumor growth rates, inhibit aggressive tumor behav-
ior, and even aid in the treatment of established cancers. Despite
growing interest in ascorbate as a cancer treatment, there remains
a great deal of controversy over its clinical use. However, an objec-
tive evaluation of data obtained from systematic inquiry, with an
understanding of the underlying mechanisms would provide valu-
able insights to inform the debate. The studies summarized here
clearly indicate that further investigation of the use of ascorbate in

FIGURE 3 |The effect of plasma ascorbate availability on delivery to
remote tumor tissue and activity of the HIF-hydroxylases. Higher
plasma ascorbate results in increased penetration of remote and hypoxic
regions and the ability to down-regulate HIF-1 by promotion of the
regulatory hydroxylases. HIF-1 mediated changes that regulate the tumor

glycolytic phenotype, cell survival pathways, and angiogenesis could be
affected, decreasing tumor viability and improving treatment outcomes.
The epigenetic demethylases that also belong to the 2-OGDD family are
also likely to be affected but little is known about these processes in
cancer cells.
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enhancing 2-OGDD activity and combating tumor progression is
warranted.

REFERENCES
1. Svirbely JL, Szent-Györgyi A. The chemical nature of vitamin C. Biochem

J (1933) 27:279–85.
2. Myllylä R, Kuutti-Savolainen E-R, Kivirikko KI. The role of ascorbate in the

prolyl hydroxylase reaction. Biochem Biophys Res Commun (1978) 83:441–8.
doi:10.1016/0006-291X(78)91010-0

3. Loenarz C, Schofield CJ. Physiological and biochemical aspects of hydroxy-
lations and demethylations catalyzed by human 2-oxoglutarate oxygenases.
Trends Biochem Sci (2011) 36:7–18. doi:10.1016/j.tibs.2010.07.002

4. Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol
Cell Biol (2004) 5:343–54. doi:10.1038/nrm1366

5. Ball GFM. Ascorbic acid: physiology. In: Caballero B, editor. Encyclopedia of
Food Sciences and Nutrition. Oxford: Academic Press (2003). p. 324–32.

6. Hulse JD, Ellis SR, Henderson LM. Carnitine biosynthesis. beta-hydroxylation
of trimethyllysine by an alpha-ketoglutarate-dependent mitochondrial dioxy-
genase. J Biol Chem (1978) 253:1654–9.

7. Lindstedt G, Lindstedt S. Cofactor requirements of γ-butyrobetaine hydroxy-
lase from rat liver. J Biol Chem (1970) 245:4178–86.

8. Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P,
et al. Histone demethylation by a family of JmjC domain-containing proteins.
Nature (2006) 439:811–6. doi:10.1038/nature04433

9. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al.
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian
DNA by MLL partner TET1. Science (2009) 324:930–5. doi:10.1126/science.
1170116

10. Zhao X, Yang Y, Sun B-F, Zhao Y-L, Yang Y-G. FTO and obesity: mecha-
nisms of association. Curr Diab Rep (2014) 14:1–9. doi:10.1007/s11892-014-
0486-0

11. Singleton RS, Liu-Yi P, Formenti F, Ge W, Sekirnik R, Fischer R, et al. OGFOD1
catalyzes prolyl hydroxylation of RPS23 and is involved in translation control
and stress granule formation. Proc Natl Acad Sci U S A (2014) 111:4031–6.
doi:10.1073/pnas.1314482111

12. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML. Asparagine hydrox-
ylation of the HIF transactivation domain: a hypoxic switch. Science (2002)
295:858–61. doi:10.1126/science.1068592

13. Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet
proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass
specification. Nature (2010) 466:1129–33. doi:10.1038/nature09303

14. Monfort A, Wutz A. Breathing-in epigenetic change with vitamin C. EMBO
Rep (2013) 14:337–46. doi:10.1038/embor.2013.29

15. Webby CJ, Wolf A, Gromak N, Dreger M, Kramer H, Kessler B, et al. Jmjd6
catalyses lysyl-hydroxylation of U2AF65, a protein associated with RNA splic-
ing. Science (2009) 325:90–3. doi:10.1126/science.1175865

16. Zheng G, Dahl JA, Niu Y, Fu Y, Klungland A, Yang YG, et al. Sprouts of RNA
epigenetics: the discovery of mammalian RNA demethylases. RNA Biol (2013)
10:915–8. doi:10.4161/rna.24711

17. Ma M, Harding HP, O’Rahilly S, Ron D, Yeo GS. Kinetic analysis of FTO (fat
mass and obesity-associated) reveals that it is unlikely to function as a sensor
for 2-oxoglutarate. Biochem J (2012) 444:183–7. doi:10.1042/BJ20120065

18. Ge W, Wolf A, Feng T, Ho CH, Sekirnik R, Zayer A, et al. Oxygenase-catalyzed
ribosome hydroxylation occurs in prokaryotes and humans. Nat Chem Biol
(2012) 8:960–2. doi:10.1038/nchembio.1093

19. Diliberto EJJ, Daniels AJ, Viveros OH. Multicompartmental secretion of ascor-
bate and its dual role in dopamine beta-hydroxylation. Am J Clin Nutr (1991)
54:1163S–72S.

20. Ozer A, Bruick RK. Non-heme dioxygenases: cellular sensors and regula-
tors jelly rolled into one? Nat Chem Biol (2007) 3:144–53. doi:10.1038/
nchembio863

21. Mantri M, Zhang Z, McDonough MA, Schofield CJ. Autocatalysed oxida-
tive modifications to 2-oxoglutarate dependent oxygenases. FEBS J (2012)
279:1563–75. doi:10.1111/j.1742-4658.2012.08496.x

22. Hoffart LM, Barr EW, Guyer RB, Bollinger JM, Krebs C. Direct spectro-
scopic detection of a C-H-cleaving high-spin Fe(IV) complex in a prolyl-4-
hydroxylase. Proc Natl Acad Sci U S A (2006) 103:14738–43. doi:10.1073/pnas.
0604005103

23. Schödel J, Oikonomopoulos S, Ragoussis J, Pugh CW, Ratcliffe PJ, Mole DR.
High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq.
Blood (2011) 117:e207–17. doi:10.1182/blood-2010-10-314427

24. Berra E, Benizri E, Ginouvès A, Volmat V, Roux D, Pouysségur J. HIF prolyl-
hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1α

in normoxia. EMBO J (2003) 22:4082–90. doi:10.1093/emboj/cdg392
25. Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that

modify HIF. Science (2001) 294:1337–40. doi:10.1126/science.1066373
26. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR,

et al. C. elegans EGL-9 and mammalian homologs define a family of dioxy-
genases that regulate HIF by prolyl hydroxylation. Cell (2001) 107:43–54.
doi:10.1016/S0092-8674(01)00507-4

27. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al.
Targeting of HIF-1α to the von Hippel-Lindau ubiquitylation complex by
O2-regulated prolyl hydroxylation. Science (2001) 292:468–72. doi:10.1126/
science.1059796

28. Yu F, White SB, Zhao Q, Lee FS. HIF-1α binding to VHL is regulated by
stimulus-sensitive prolyl hydroxylation. Proc Natl Acad Sci U S A (2001)
98:9630–5. doi:10.1073/pnas.181341498

29. Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK. FIH-1 is
an asparaginyl hydroxylase enzyme that regulates the transcriptional activity
of hypoxia-inducible factor. Genes Dev (2002) 16:1466–71. doi:10.1101/gad.
991402

30. Mariani CJ, Vasanthakumar A, Madzo J, Yesilkanal A, Bhagat T, Yu Y, et al.
TET1-mediated hydroxymethylation facilitates hypoxic gene induction in neu-
roblastoma. Cell Rep (2014) 7:1343–52. doi:10.1016/j.celrep.2014.04.040

31. Salnikow K, An WG, Melillo G, Blagosklonny MV, Costa M. Nickel-induced
transformation shifts the balance between HIF-1 and p53 transcription factors.
Carcinogenesis (1999) 20:1819–23. doi:10.1093/carcin/20.9.1819

32. Hirsilä M, Koivunen P, Xu L, Seeley T, Kivirikko KI, Myllyharju J. Effect of des-
ferrioxamine and metals on the hydroxylases in the oxygen sensing pathway.
FASEB J (2005) 19:1308–10. doi:10.1096/fj.04-3399fje

33. Koivunen P, Hirsilä M, Günzler V, Kivirikko KI, Myllyharju J. Catalytic proper-
ties of the asparagine hydroxylase (FIH) in the oxygen sensing pathway are dis-
tinct from those of its prolyl 4-hydroxylases. J Biol Chem (2004) 279:9899–904.
doi:10.1074/jbc.M312254200

34. Koivunen P, Hirsilä M, Remes AM, Hassinen IE, Kivirikko KI, Myllyharju J.
Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle
intermediates: possible links between cell metabolism and stabilization of HIF.
J Biol Chem (2007) 282:4524–32. doi:10.1074/jbc.M610415200

35. Pan Y, Mansfield KD, Bertozzi CC, Rudenko V, Chan DA, Giaccia AJ, et al. Mul-
tiple factors affecting cellular redox status and energy metabolism modulate
hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Mol
Cell Biol (2007) 27:912–25. doi:10.1128/MCB.01223-06

36. Lu H, Dalgard CL, Mohyeldin A, McFate T, Tait AS, Verma A. Reversible inac-
tivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal
HIF-1. J Biol Chem (2005) 280:41928–39. doi:10.1074/jbc.M508718200

37. Pollard PJ, Brière JJ,Alam NA, Barwell J, Barclay E,Wortham NC, et al. Accumu-
lation of Krebs cycle intermediates and over-expression of HIF1α in tumours
which result from germline FH and SDH mutations. Hum Mol Genet (2005)
14:2231–9. doi:10.1093/hmg/ddi227

38. Pollard PJ, Ratcliffe PJ. Puzzling patterns of predisposition. Science (2009)
324:192–4. doi:10.1126/science.1173362

39. Losman J-A, Kaelin WG. What a difference a hydroxyl makes: mutant IDH, (R)-
2-hydroxyglutarate, and cancer. Genes Dev (2013) 27:836–52. doi:10.1101/gad.
217406.113

40. Semenza GL. HIF-1: upstream and downstream of cancer metabolism. Curr
Opin Genet Dev (2010) 20:51–6. doi:10.1016/j.gde.2009.10.009

41. Mansfield KD, Guzy RD, Pan Y, Young RM, Cash TP, Schumacker PT, et al.
Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellu-
lar oxygen sensing and hypoxic HIF-α activation. Cell Metab (2005) 1:393–9.
doi:10.1016/j.cmet.2005.05.003

42. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez
AM, et al. Reactive oxygen species generated at mitochondrial complex III
stabilize hypoxia-inducible factor-1α during hypoxia. J Biol Chem (2000)
275:25130–8. doi:10.1074/jbc.M001914200

43. Kaelin WG Jr. ROS: really involved in oxygen sensing. Cell Metab (2005)
1:357–8. doi:10.1016/j.cmet.2005.05.006

Frontiers in Oncology | Cancer Molecular Targets and Therapeutics December 2014 | Volume 4 | Article 359 | 8

http://dx.doi.org/10.1016/0006-291X(78)91010-0
http://dx.doi.org/10.1016/j.tibs.2010.07.002
http://dx.doi.org/10.1038/nrm1366
http://dx.doi.org/10.1038/nature04433
http://dx.doi.org/10.1126/science.1170116
http://dx.doi.org/10.1126/science.1170116
http://dx.doi.org/10.1007/s11892-014-0486-0
http://dx.doi.org/10.1007/s11892-014-0486-0
http://dx.doi.org/10.1073/pnas.1314482111
http://dx.doi.org/10.1126/science.1068592
http://dx.doi.org/10.1038/nature09303
http://dx.doi.org/10.1038/embor.2013.29
http://dx.doi.org/10.1126/science.1175865
http://dx.doi.org/10.4161/rna.24711
http://dx.doi.org/10.1042/BJ20120065
http://dx.doi.org/10.1038/nchembio.1093
http://dx.doi.org/10.1038/nchembio863
http://dx.doi.org/10.1038/nchembio863
http://dx.doi.org/10.1111/j.1742-4658.2012.08496.x
http://dx.doi.org/10.1073/pnas.0604005103
http://dx.doi.org/10.1073/pnas.0604005103
http://dx.doi.org/10.1182/blood-2010-10-314427
http://dx.doi.org/10.1093/emboj/cdg392
http://dx.doi.org/10.1126/science.1066373
http://dx.doi.org/10.1016/S0092-8674(01)00507-4
http://dx.doi.org/10.1126/science.1059796
http://dx.doi.org/10.1126/science.1059796
http://dx.doi.org/10.1073/pnas.181341498
http://dx.doi.org/10.1101/gad.991402
http://dx.doi.org/10.1101/gad.991402
http://dx.doi.org/10.1016/j.celrep.2014.04.040
http://dx.doi.org/10.1093/carcin/20.9.1819
http://dx.doi.org/10.1096/fj.04-3399fje
http://dx.doi.org/10.1074/jbc.M312254200
http://dx.doi.org/10.1074/jbc.M610415200
http://dx.doi.org/10.1128/MCB.01223-06
http://dx.doi.org/10.1074/jbc.M508718200
http://dx.doi.org/10.1093/hmg/ddi227
http://dx.doi.org/10.1126/science.1173362
http://dx.doi.org/10.1101/gad.217406.113
http://dx.doi.org/10.1101/gad.217406.113
http://dx.doi.org/10.1016/j.gde.2009.10.009
http://dx.doi.org/10.1016/j.cmet.2005.05.003
http://dx.doi.org/10.1074/jbc.M001914200
http://dx.doi.org/10.1016/j.cmet.2005.05.006
http://www.frontiersin.org/Cancer_Molecular_Targets_and_Therapeutics
http://www.frontiersin.org/Cancer_Molecular_Targets_and_Therapeutics/archive


Kuiper and Vissers Ascorbate as an enzyme co-factor

44. Qutub AA, Popel AS. Reactive oxygen species regulate hypoxia-inducible fac-
tor 1α differentially in cancer and ischemia. Mol Cell Biol (2008) 28:5106–19.
doi:10.1128/MCB.00060-08

45. Hoffman DL, Salter JD, Brookes PS. Response of mitochondrial reactive
oxygen species generation to steady-state oxygen tension: implications for
hypoxic cell signaling. Am J Physiol Heart Circ Physiol (2007) 292:H101–8.
doi:10.1152/ajpheart.00699.2006

46. Salnikow K, Su W, Blagosklonny MV, Costa M. Carcinogenic metals induce
hypoxia-inducible factor-stimulated transcription by reactive oxygen species-
independent mechanism. Cancer Res (2000) 60:3375–8.

47. Masson N, Singleton RS, Sekirnik R, Trudgian DC, Ambrose LJ, Miranda MX,
et al. The FIH hydroxylase is a cellular peroxide sensor that modulates HIF tran-
scriptional activity. EMBO Rep (2012) 13:251–7. doi:10.1038/embor.2012.9

48. Hirsilä M, Koivunen P, Günzler V, Kivirikko KI, Myllyharju J. Characterization
of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor.
J Biol Chem (2003) 278:30772–80. doi:10.1074/jbc.M304982200

49. Myllyharju J, Kivirikko KI. Characterization of the iron- and 2-oxoglutarate-
binding sites of human prolyl 4-hydroxylase. EMBO J (1997) 16:1173–80.
doi:10.1093/emboj/16.6.1173

50. Clifton IJ, McDonough MA, Ehrismann D, Kershaw NJ, Granatino N, Schofield
CJ. Structural studies on 2-oxoglutarate oxygenases and related double-
stranded β-helix fold proteins. J Inorg Biochem (2006) 100:644–69. doi:10.
1016/j.jinorgbio.2006.01.024

51. De Jong L, Albracht SPJ, Kemp A. Prolyl 4-hydroxylase activity in rela-
tion to the oxidation state of enzyme-bound iron: the role of ascorbate
in peptidyl proline hydroxylation. Biochim Biophys Acta (1982) 704:326–32.
doi:10.1016/0167-4838(82)90162-5

52. Majamaa K, Gunzler V, Hanauske-Abel HM, Myllylä R, Kivirikko KI. Par-
tial identity of the 2-oxoglutarate and ascorbate binding sites of prolyl 4-
hydroxylase. J Biol Chem (1986) 261:7819–23.

53. Myllylä R, Majamaa K, Günzler V, Hanauske-Abel HM, Kivirikko KI. Ascorbate
is consumed stoichiometrically in the uncoupled reactions catalyzed by prolyl
4-hydroxylase and lysyl hydroxylase. J Biol Chem (1984) 259:5403–5.

54. Nietfeld JJ, Kemp A. The function of ascorbate with respect to prolyl 4-
hydroxylase activity. Biochim Biophys Acta (1981) 657:159–67. doi:10.1016/
0005-2744(81)90139-X

55. Tuderman L, Myllylä R, Kivirikko KI. Mechanism of the prolyl hydroxy-
lase reaction. Eur J Biochem (1977) 80:341–8. doi:10.1111/j.1432-1033.1977.
tb11888.x

56. Dao JH, Kurzeja RJ, Morachis JM, Veith H, Lewis J, Yu V, et al. Kinetic
characterization and identification of a novel inhibitor of hypoxia-inducible
factor prolyl hydroxylase 2 using a time-resolved fluorescence resonance
energy transfer-based assay technology. Anal Biochem (2009) 384:213–23.
doi:10.1016/j.ab.2008.09.052

57. Blaschke K, Ebata KT, Karimi MM, Zepeda-Martínez JA, Goyal P, Mahapatra S,
et al. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-
like state in ES cells. Nature (2013) 500:222–6. doi:10.1038/nature12362

58. Chen J, Guo L, Zhang L, Wu H, Yang J, Liu H, et al. Vitamin C modulates TET1
function during somatic cell reprogramming. Nat Genet (2013) 45:1504–9.
doi:10.1038/ng.2807

59. Minor EA, Court BL, Young JI, Wang G. Ascorbate induces ten-eleven
translocation (Tet) methylcytosine dioxygenase-mediated generation of 5-
hydroxymethylcytosine. J Biol Chem (2013) 288:13669–74. doi:10.1074/jbc.
C113.464800

60. Yin R, Mao SQ, Zhao B, Chong Z, Yang Y, Zhao C, et al. Ascorbic
acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA
demethylation in mammals. J Am Chem Soc (2013) 135:10396–403. doi:10.
1021/ja4028346

61. McNeill LA, Flashman E, Buck MR, Hewitson KS, Clifton IJ, Jeschke G,
et al. Hypoxia-inducible factor prolyl hydroxylase 2 has a high affinity for
ferrous iron and 2-oxoglutarate. Mol Biosyst (2005) 1:321–4. doi:10.1039/
b511249b

62. Kuiper C, Dachs GU, Currie MJ, Vissers MCM. Intracellular ascorbate
enhances hypoxia-inducible factor (HIF)-hydroxylase activity and preferen-
tially suppresses the HIF-1 transcriptional response. Free Rad Biol Med (2014)
69:308–17. doi:10.1016/j.freeradbiomed.2014.01.033

63. Goodwin JF, Whitten CF. Chelation of ferrous sulphate solutions by desfer-
rioxamine B. Nature (1965) 205:281–3. doi:10.1038/205281b0

64. Kaczmarek M, Cachau RE, Topol IA, Kasprzak KS, Ghio A, Salnikow K. Metal
ions-stimulated iron oxidation in hydroxylases facilitates stabilization of HIF-
1α protein. Toxicol Sci (2009) 107:394–403. doi:10.1093/toxsci/kfn251

65. Hallberg L, Brune M, Rossander L. The role of vitamin C in iron absorption.
Int J Vitam Nutr Res Suppl (1989) 30:103–8.

66. Lynch SR, Cook JD. Interaction of vitamin C and iron. Ann N Y Acad Sci (1980)
355:32–44. doi:10.1111/j.1749-6632.1980.tb21325.x

67. May JM, Qu Z-C. Chelation of intracellular iron enhances endothelial bar-
rier function: a role for vitamin C? Arch Biochem Biophys (2010) 500:162–8.
doi:10.1016/j.abb.2010.05.022

68. Flashman E, Davies SL, Yeoh KK, Schofield CJ. Investigating the dependence
of the hypoxia-inducible factor hydroxylases (factor inhibiting HIF and pro-
lyl hydroxylase domain 2) on ascorbate and other reducing agents. Biochem
J (2010) 427:135–42. doi:10.1042/BJ20091609

69. Nytko KJ, Maeda N, Schläfli P, Spielmann P, Wenger RH, Stiehl DP. Vita-
min C is dispensable for oxygen sensing in vivo. Blood (2011) 117:5485–93.
doi:10.1182/blood-2010-09-307637

70. Wilmouth RC, Turnbull JJ, Welford RWD, Clifton IJ, Prescott AG, Schofield
CJ. Structure and mechanism of anthocyanidin synthase from Arabidopsis
thaliana. Structure (2002) 10:93–103. doi:10.1016/S0969-2126(01)00695-5

71. Bleijlevens B, Shivarattan T, van den Boom KS, de Haan A, van der Zwan
G, Simpson PJ, et al. Changes in protein dynamics of the DNA repair dioxy-
genase AlkB upon binding of Fe2+ and 2-oxoglutarate. Biochemistry (2012)
51:3334–41. doi:10.1021/bi201699e

72. Linster CL, Van Schaftingen E. Vitamin C: biosynthesis, recycling and degra-
dation in mammals. FEBS J (2007) 274:1–22. doi:10.1111/j.1742-4658.2006.
05607.x

73. Kall MA. Ascorbic acid: properties and determination. In: Caballero B, editor.
Encyclopedia of Food Sciences and Nutrition. Oxford: Academic Press (2003). p.
316–24.

74. Buettner GR, Jurkiewicz BA. Catalytic metals, ascorbate and free radicals: com-
binations to avoid. Radiat Res (1996) 145:532–41. doi:10.2307/3579271

75. Hornig D. Distribution of ascorbic acid, metabolites and analogues in man
and animals. Annal N Y Acad Sci (1975) 258:103–18. doi:10.1111/j.1749-6632.
1975.tb29271.x

76. May JM. Vitamin C transport and its role in the central nervous system. In:
Stanger O, editor. Water Soluble Vitamins. (Vol. 56), Netherlands: Springer
(2012). p. 85–103.

77. Tsukaguchi H, Tokui T, Mackenzie B, Berger UV, Chen XZ, Wang Y, et al. A fam-
ily of mammalian Na+-dependent L-ascorbic acid transporters. Nature (1999)
399:70–5. doi:10.1038/19986

78. Corti A, Casini AF, Pompella A. Cellular pathways for transport and efflux
of ascorbate and dehydroascorbate. Arch Biochem Biophys (2010) 500:107–15.
doi:10.1016/j.abb.2010.05.014

79. Du J, Cullen JJ, Buettner GR. Ascorbic acid: chemistry, biology and the treat-
ment of cancer. Biochim Biophys Acta (2012) 1826:443–57. doi:10.1016/j.
bbcan.2012.06.003

80. May JM. The SLC23 family of ascorbate transporters: ensuring that you get
and keep your daily dose of vitamin C. Br J Pharmacol (2011) 164:1793–801.
doi:10.1111/j.1476-5381.2011.01350.x

81. Evans RM, Currie L, Campbell A. The distribution of ascorbic acid between
various cellular components of blood, in normal individuals, and its rela-
tion to the plasma concentration. Br J Nutr (1982) 47:473–82. doi:10.1079/
BJN19820059

82. Savini I, Rossi A, Pierro C, Avigliano L, Catani MV. SVCT1 and SVCT2: key
proteins for vitamin C uptake. Amino Acids (2008) 34:347–55. doi:10.1007/
s00726-007-0555-7

83. Levine M, Conry-Cantilena C, Wang Y, Welch RW, Washko PW, Dhariwal KR,
et al. Vitamin C pharmacokinetics in healthy volunteers: evidence for a rec-
ommended dietary allowance. Proc Natl Acad Sci U S A (1996) 93:3704–9.
doi:10.1073/pnas.93.8.3704

84. Anthony HM, Schorah CJ. Severe hypovitaminosis C in lung-cancer patients:
the utilization of vitamin C in surgical repair and lymphocyte-related host
resistance. Br J Cancer (1982) 46:354–67. doi:10.1038/bjc.1982.211

85. Caliskan-Can E, Firat H, Ardiç S, Simsek B, Torun M, Yardim-Akaydin S.
Increased levels of 8-hydroxydeoxyguanosine and its relationship with lipid
peroxidation and antioxidant vitamins in lung cancer. Clin Chem Lab Med
(2008) 46:107–12. doi:10.1515/CCLM.2008.010

www.frontiersin.org December 2014 | Volume 4 | Article 359 | 9

http://dx.doi.org/10.1128/MCB.00060-08
http://dx.doi.org/10.1152/ajpheart.00699.2006
http://dx.doi.org/10.1038/embor.2012.9
http://dx.doi.org/10.1074/jbc.M304982200
http://dx.doi.org/10.1093/emboj/16.6.1173
http://dx.doi.org/10.1016/j.jinorgbio.2006.01.024
http://dx.doi.org/10.1016/j.jinorgbio.2006.01.024
http://dx.doi.org/10.1016/0167-4838(82)90162-5
http://dx.doi.org/10.1016/0005-2744(81)90139-X
http://dx.doi.org/10.1016/0005-2744(81)90139-X
http://dx.doi.org/10.1111/j.1432-1033.1977.tb11888.x
http://dx.doi.org/10.1111/j.1432-1033.1977.tb11888.x
http://dx.doi.org/10.1016/j.ab.2008.09.052
http://dx.doi.org/10.1038/nature12362
http://dx.doi.org/10.1038/ng.2807
http://dx.doi.org/10.1074/jbc.C113.464800
http://dx.doi.org/10.1074/jbc.C113.464800
http://dx.doi.org/10.1021/ja4028346
http://dx.doi.org/10.1021/ja4028346
http://dx.doi.org/10.1039/b511249b
http://dx.doi.org/10.1039/b511249b
http://dx.doi.org/10.1016/j.freeradbiomed.2014.01.033
http://dx.doi.org/10.1038/205281b0
http://dx.doi.org/10.1093/toxsci/kfn251
http://dx.doi.org/10.1111/j.1749-6632.1980.tb21325.x
http://dx.doi.org/10.1016/j.abb.2010.05.022
http://dx.doi.org/10.1042/BJ20091609
http://dx.doi.org/10.1182/blood-2010-09-307637
http://dx.doi.org/10.1016/S0969-2126(01)00695-5
http://dx.doi.org/10.1021/bi201699e
http://dx.doi.org/10.1111/j.1742-4658.2006.05607.x
http://dx.doi.org/10.1111/j.1742-4658.2006.05607.x
http://dx.doi.org/10.2307/3579271
http://dx.doi.org/10.1111/j.1749-6632.1975.tb29271.x
http://dx.doi.org/10.1111/j.1749-6632.1975.tb29271.x
http://dx.doi.org/10.1038/19986
http://dx.doi.org/10.1016/j.abb.2010.05.014
http://dx.doi.org/10.1016/j.bbcan.2012.06.003
http://dx.doi.org/10.1016/j.bbcan.2012.06.003
http://dx.doi.org/10.1111/j.1476-5381.2011.01350.x
http://dx.doi.org/10.1079/BJN19820059
http://dx.doi.org/10.1079/BJN19820059
http://dx.doi.org/10.1007/s00726-007-0555-7
http://dx.doi.org/10.1007/s00726-007-0555-7
http://dx.doi.org/10.1073/pnas.93.8.3704
http://dx.doi.org/10.1038/bjc.1982.211
http://dx.doi.org/10.1515/CCLM.2008.010
http://www.frontiersin.org
http://www.frontiersin.org/Cancer_Molecular_Targets_and_Therapeutics/archive


Kuiper and Vissers Ascorbate as an enzyme co-factor

86. Choi M-A, Kim B-S, Yu R. Serum antioxidative vitamin levels and lipid
peroxidation in gastric carcinoma patients. Cancer Lett (1999) 136:89–93.
doi:10.1016/S0304-3835(98)00312-7

87. Fiaschi AI, Cozzolino A, Ruggiero G, Giorgi G. Glutathione, ascorbic acid and
antioxidant enzymes in the tumour tissue and blood of patients with oral
squamous cell carcinoma. Eur Rev Med Pharamcol Sci (2005) 9:361–7.

88. Lima de Araújo L, Maciel Barbosa J, Gomes Ribeiro AP, Oliveira dos Santos AC,
Pedrosa F. Nutritional status, dietary intake and serum levels of vitamin C upon
diagnosis of cancer in children and adolescents. Nutr Hosp (2012) 27:496–503.
doi:10.1590/S0212-16112012000200022

89. Mayland CR, Bennett MI, Allan K. Vitamin C deficiency in cancer patients.
Palliat Med (2005) 19:17–20. doi:10.1191/0269216305pm970oa

90. Dudek H, Farbiszewski R, Rydzewska M, Michno T, Kozłowksi A. Evaluation of
antioxidant enzymes activity and concentration of non-enzymatic antioxidants
in human brain tumours. Wiad Lek (2004) 57:16–9.

91. Landolt H, Langemann H, Probst A, Gratzl O. Levels of water-soluble antiox-
idants in astrocytoma and in adjacent tumor-free tissue. J Neurooncol (1994)
21:127–33. doi:10.1007/BF01052896

92. Skrzydlewska E, Stankiewicz A. Antioxidant status and lipid peroxidation
in colorectal cancer. J Toxicol Env Heal A (2001) 64:213–22. doi:10.1080/
15287390152543690

93. Langemann H, Torhorst J, Kabiersch A, Krenger W, Honegger CG. Quanti-
tative determination of water- and lipid-soluble antioxidants in neoplastic
and non-neoplastic human breast tissue. Int J Cancer (1989) 43:1169–73.
doi:10.1002/ijc.2910430634

94. Moriarty M, Mulgrew S, Malone J, O’Connor M. Results and analysis of tumour
levels of ascorbic acid. Ir J Med Sci (1977) 146:74–8. doi:10.1007/BF03030933

95. Kuiper C, Dachs GU, Munn D, Currie MJ, Robinson BA, Pearson JF, et al.
Increased tumour ascorbate is associated with extended disease-free survival
and decreased hypoxia-inducible factor-1 activation in human colorectal can-
cer. Front Oncol (2014) 4:10. doi:10.3389/fonc.2014.00010

96. Kuiper C, Molenaar IG, Dachs GU, Currie MJ, Sykes PH,Vissers MC. Low ascor-
bate levels are associated with increased hypoxia-inducible factor-1 activity
and an aggressive tumor phenotype in endometrial cancer. Cancer Res (2010)
70:5749–58. doi:10.1158/0008-5472.CAN-10-0263

97. Hong SW, Lee SH, Moon JH, Hwang JJ, Kim DE, Ko E, et al. SVCT-2 in
breast cancer acts as an indicator for L-ascorbate treatment. Oncogene (2012)
32(12):1508–17. doi:10.1038/onc.2012.176

98. Padayatty SJ, Sun H, Wang Y, Riordan HD, Hewitt SM, Katz A, et al. Vitamin C
pharmacokinetics: implications for oral and intravenous use. Ann Intern Med
(2004) 140:533–7. doi:10.7326/0003-4819-140-7-200404060-00010

99. Vissers MCM, Gunningham SP, Morrison MJ, Dachs GU, Currie MJ. Mod-
ulation of hypoxia-inducible factor-1 alpha in cultured primary cells by
intracellular ascorbate. Free Rad Biol Med (2007) 42:765–72. doi:10.1016/j.
freeradbiomed.2006.11.023

100. Knowles HJ, Raval RR, Harris AL, Ratcliffe PJ. Effect of ascorbate on the activity
of hypoxia-inducible factor in cancer cells. Cancer Res (2003) 63:1764–8.

101. Qiao H, Li L, Qu Z-C, May JM. Cobalt-induced oxidant stress in cultured
endothelial cells: prevention by ascorbate in relation to HIF-1a. Biofactors
(2009) 35:306–13. doi:10.1002/biof.43

102. Gao P, Zhang H, Dinavahi R, Li F, Xiang Y, Raman V, et al. HIF-dependent
antitumorigenic effects of antioxidants in vivo. Cancer Cell (2007) 12:230–8.
doi:10.1016/j.ccr.2007.08.004

103. Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, et al. Vitamin C enhances the
generation of mouse and human induced pluripotent stem cells. Cell Stem Cell
(2010) 6:71–9. doi:10.1016/j.stem.2009.12.001

104. Wang T, Chen K, Zeng X, Yang J, Wu Y, Shi X, et al. The histone demethylases
Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent
manner. Cell Stem Cell (2011) 9:575–87. doi:10.1016/j.stem.2011.10.005

105. Cameron E, Pauling L. Supplemental ascorbate in the supportive treatment of
cancer: prolongation of survival times in terminal human cancer. Proc Natl
Acad Sci U S A (1976) 73:3685–9. doi:10.1073/pnas.73.10.3685

106. Cameron E, Pauling L. Supplemental ascorbate in the supportive treatment of
cancer: reevaluation of prolongation of survival times in terminal human can-
cer. Proc Natl Acad Sci U S A (1978) 75:4538–42. doi:10.1073/pnas.75.9.4538

107. Creagan ET, Moertel CG, O’Fallon JR, Schutt AJ, O’Connell MJ, Rubin
J, et al. Failure of high-dose vitamin C (ascorbic acid) therapy to benefit
patients with advanced cancer. N Engl J Med (1979) 301:687–90. doi:10.1056/
NEJM197909273011303

108. Moertel CG, Fleming TR, Creagan ET, Rubin J, O’Connell MJ, Ames MM.
High-dose vitamin C versus placebo in the treatment of patients with
advanced cancer who have had no prior chemotherapy. A randomized
double-blind comparison. N Engl J Med (1985) 312:137–41. doi:10.1056/
NEJM198501173120301

109. Dusing RW, Drisko JA, Grado GG, Levine M, Holzbeierlein JM, Van Veld-
huizen P. Prostate imaging modalities that can be used for complementary and
alternative medicine clinical studies. Urol Clin North Am (2011) 38:343–57.
doi:10.1016/j.ucl.2011.04.003

110. Padayatty SJ, Riordan HD, Hewitt SM, Katz A, Hoffer LJ, Levine M. Intra-
venously administered vitamin C as cancer therapy: three cases. CMAJ (2006)
174:937–42. doi:10.1503/cmaj.050346

111. Hoffer LJ, Levine M, Assouline S, Melnychuk D, Padayatty SJ, Rosadiuk K, et al.
Phase I clinical trial of i.v. ascorbic acid in advanced malignancy. Ann Oncol
(2008) 19:1969–74. doi:10.1093/annonc/mdn377

112. Riordan HD, Casciari JJ, González MJ, Riordan NH, Miranda-Massari JR, Tay-
lor P,et al. A pilot clinical study of continuous intravenous ascorbate in terminal
cancer patients. P R Health Sci J (2005) 24:269–76.

113. Padayatty SJ, Sun AY, Chen Q, Espey MG, Drisko J, Levine M. Vitamin C:
intravenous use by complementary and alternative medicine practitioners and
adverse effects. PLoS One (2010) 5:e11414. doi:10.1371/journal.pone.0011414

114. Chen Q, Espey MG, Krishna MC, Mitchell JB, Corpe CP, Buettner GR, et al.
Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action
as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci U S A
(2005) 102:13604–9. doi:10.1073/pnas.0506390102

115. Chen Q, Espey MG, Sun AY, Lee JH, Krishna MC, Shacter E, et al. Ascorbate
in pharmacologic concentrations selectively generates ascorbate radical and
hydrogen peroxide in extracellular fluid in vivo. Proc Natl Acad Sci U S A (2007)
104:8749–54. doi:10.1073/pnas.0702854104

116. Belin S, Kaya F, Duisit G, Giacometti S, Ciccolini J, Fontés M. Antiprolifera-
tive effect of ascorbic acid is associated with the inhibition of genes necessary
to cell cycle progression. PLoS One (2009) 4:e4409. doi:10.1371/journal.pone.
0004409

117. Cha J, Roomi MW, Ivanov V, Kalinovsky T, Niedzwiecki A, Rath M. Ascor-
bate depletion increases growth and metastasis of melanoma cells in vitamin
C deficient mice. Exp Oncol (2011) 33:226–30.

118. Kasprzak KS, Diwan BA, Kaczmarek MZ, Logsdon DL, Fivash MJ, Salnikow
K. Effects of ascorbic acid on carcinogenicity and acute toxicity of nickel sub-
sulfide, and on tumor transplants growth in gulonolactone oxidase knock-out
mice and wild-type C57BL mice. Toxicol Appl Pharmacol (2011) 257:32–7.
doi:10.1016/j.taap.2011.08.015

119. Kim J, Lee SD, Chang B, Jin DH, Jung SI, Park MY, et al. Enhanced antitu-
mor activity of vitamin C via p53 in cancer cells. Free Rad Biol Med (2012)
53:1607–15. doi:10.1016/j.freeradbiomed.2012.07.079

120. Verrax J, Calderon PB. Pharmacologic concentrations of ascorbate are achieved
by parenteral administration and exhibit antitumoral effects. Free Rad Biol Med
(2009) 47:32–40. doi:10.1016/j.freeradbiomed.2009.02.016

121. Chen Q, Espey MG, Sun AY, Pooput C, Kirk KL, Krishna MC, et al. Pharma-
cologic doses of ascorbate act as a prooxidant and decrease growth of aggres-
sive tumor xenografts in mice. Proc Natl Acad Sci U S A (2008) 105:11105–9.
doi:10.1073/pnas.0804226105

122. Cha J, Roomi MW, Ivanov V, Kalinovsky T, Niedzwiecki A, Rath M. Ascorbate
supplementation inhibits growth and metastasis of B16FO melanoma and 4T1
breast cancer cells in vitamin C-deficient mice. Int J Oncol (2013) 42:55–64.
doi:10.3892/ijo.2012.1712

123. Rohwer N, Cramer T. Hypoxia-mediated drug resistance: novel insights on the
functional interaction of HIFs and cell death pathways. Drug Resist Update
(2011) 14:191–201. doi:10.1016/j.drup.2011.03.001

124. Wenzel U, Nickel A, Kuntz S, Daniel H. Ascorbic acid suppresses drug-induced
apoptosis in human colon cancer cells by scavenging mitochondrial superoxide
anions. Carcinogenesis (2004) 25:703–12. doi:10.1093/carcin/bgh079

125. Espey MG, Chen P, Chalmers B, Drisko J, Sun AY, Levine M, et al. Pharmaco-
logic ascorbate synergizes with gemcitabine in preclinical models of pancre-
atic cancer. Free Rad Biol Med (2011) 50:1610–9. doi:10.1016/j.freeradbiomed.
2011.03.007

126. Frömberg A, Gutsch D, Schulze D, Vollbracht C, Weiss G, Czubayko F, et al.
Ascorbate exerts anti-proliferative effects through cell cycle inhibition and sen-
sitizes tumor cells towards cytostatic drugs. Cancer Chemoth Pharm (2011)
67:1157–66. doi:10.1007/s00280-010-1418-6

Frontiers in Oncology | Cancer Molecular Targets and Therapeutics December 2014 | Volume 4 | Article 359 | 10

http://dx.doi.org/10.1016/S0304-3835(98)00312-7
http://dx.doi.org/10.1590/S0212-16112012000200022
http://dx.doi.org/10.1191/0269216305pm970oa
http://dx.doi.org/10.1007/BF01052896
http://dx.doi.org/10.1080/15287390152543690
http://dx.doi.org/10.1080/15287390152543690
http://dx.doi.org/10.1002/ijc.2910430634
http://dx.doi.org/10.1007/BF03030933
http://dx.doi.org/10.3389/fonc.2014.00010
http://dx.doi.org/10.1158/0008-5472.CAN-10-0263
http://dx.doi.org/10.1038/onc.2012.176
http://dx.doi.org/10.7326/0003-4819-140-7-200404060-00010
http://dx.doi.org/10.1016/j.freeradbiomed.2006.11.023
http://dx.doi.org/10.1016/j.freeradbiomed.2006.11.023
http://dx.doi.org/10.1002/biof.43
http://dx.doi.org/10.1016/j.ccr.2007.08.004
http://dx.doi.org/10.1016/j.stem.2009.12.001
http://dx.doi.org/10.1016/j.stem.2011.10.005
http://dx.doi.org/10.1073/pnas.73.10.3685
http://dx.doi.org/10.1073/pnas.75.9.4538
http://dx.doi.org/10.1056/NEJM197909273011303
http://dx.doi.org/10.1056/NEJM197909273011303
http://dx.doi.org/10.1056/NEJM198501173120301
http://dx.doi.org/10.1056/NEJM198501173120301
http://dx.doi.org/10.1016/j.ucl.2011.04.003
http://dx.doi.org/10.1503/cmaj.050346
http://dx.doi.org/10.1093/annonc/mdn377
http://dx.doi.org/10.1371/journal.pone.0011414
http://dx.doi.org/10.1073/pnas.0506390102
http://dx.doi.org/10.1073/pnas.0702854104
http://dx.doi.org/10.1371/journal.pone.0004409
http://dx.doi.org/10.1371/journal.pone.0004409
http://dx.doi.org/10.1016/j.taap.2011.08.015
http://dx.doi.org/10.1016/j.freeradbiomed.2012.07.079
http://dx.doi.org/10.1016/j.freeradbiomed.2009.02.016
http://dx.doi.org/10.1073/pnas.0804226105
http://dx.doi.org/10.3892/ijo.2012.1712
http://dx.doi.org/10.1016/j.drup.2011.03.001
http://dx.doi.org/10.1093/carcin/bgh079
http://dx.doi.org/10.1016/j.freeradbiomed.2011.03.007
http://dx.doi.org/10.1016/j.freeradbiomed.2011.03.007
http://dx.doi.org/10.1007/s00280-010-1418-6
http://www.frontiersin.org/Cancer_Molecular_Targets_and_Therapeutics
http://www.frontiersin.org/Cancer_Molecular_Targets_and_Therapeutics/archive


Kuiper and Vissers Ascorbate as an enzyme co-factor

127. Monti DA, Mitchell E, Bazzan AJ, Littman S, Zabrecky G, Yeo CJ, et al. Phase
I evaluation of intravenous ascorbic acid in combination with gemcitabine
and erlotinib in patients with metastatic pancreatic cancer. PLoS One (2012)
7:e29794. doi:10.1371/journal.pone.0029794

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 05 September 2014; paper pending published: 31 October 2014; accepted: 27
November 2014; published online: 10 December 2014.

Citation: Kuiper C and Vissers MCM (2014) Ascorbate as a co-factor for Fe- and
2-oxoglutarate dependent dioxygenases: physiological activity in tumor growth and
progression. Front. Oncol. 4:359. doi: 10.3389/fonc.2014.00359
This article was submitted to Cancer Molecular Targets and Therapeutics, a section of
the journal Frontiers in Oncology.
Copyright © 2014 Kuiper and Vissers. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

www.frontiersin.org December 2014 | Volume 4 | Article 359 | 11

http://dx.doi.org/10.1371/journal.pone.0029794
http://dx.doi.org/10.3389/fonc.2014.00359
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org
http://www.frontiersin.org/Cancer_Molecular_Targets_and_Therapeutics/archive

	Ascorbate as a co-factor for Fe- and 2-oxoglutarate dependent dioxygenases: physiological activity in tumor growth and progression
	Fe- and 2-oxoglutarate-dependent dioxygenases
	2-OGDD regulation and co-factor dependence

	Ascorbate as regulator of 2-OGDD activity
	Mechanism of ascorbate activity

	Ascorbate biochemistry and pharmacokinetics
	Ascorbate in tumor tissue
	Potential 2-OGDD-mediated effects of ascorbate on tumor biology
	Ascorbate and HIF-1 regulation
	Ascorbate and epigenetic reprograming

	Ascorbate and cancer
	Conclusion
	References


