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Abstract
Membrane progestin receptors (mPRs) are responsible for mediating the rapid, nonge-

nomic activity of progestins and belong to the G protein-coupled receptor (GPCR) family.

mPRs are also considered as attractive proteins to draw a new medicinal approach. In this

study, we optimized a procedure for the expression and purification of recombinant human

mPRα protein (hmPRα) by a methylotropic yeast, Pichia pastoris, expression system. The

protein expressed in crude membrane fractions exhibited a binding affinity of Kd = 3.8 nM

and Bmax = 288.8 fmol/mg for progesterone. These results indicated that the hmPRα

expressed in yeast was active. Solubilized hmPRα was purified through three column chro-

matography steps. A nickel-nitrilotriacetic acid (Ni-NTA) column was first used, and the

mPRα proteins were then bound to cellulose resin with free amino groups (Cellufine Amino)

and finally passed through an SP-Sepharose column. The optimization of expression and

purification conditions resulted in a high yield of purified hmPRα (1.3–1.5 mg from 1 L cul-

ture). The purified hmPRα protein demonstrated progesterone binding (Kd = 5.2 nM and

Bmax = 111.6 fmol/mg). The results indicated that we succeeded in solubilizing and purify-

ing hmPRα in an active form. Sufficient amount of active hmPRα protein will support the

establishment of applications for the screening of ligands for mPRα.

Introduction
Progestins act as a key regulating factor in controlling the reproductive tissues. Progesterone
was identified as a natural progestin in the human body [1]. Synthetic progestins have been
produced and are frequently used for medical purposes. Progesterone is a well-known steroid
that is produced by the ovary depending on the physiological conditions of the ovary and
gonadotropin levels [2]. Progesterone generates a number of physiological effects in different
tissues through various mediating mechanisms in each tissue. Although the physiological
effects of progesterone have been known to be mediated by the regulation of gene expression
associated with nuclear progesterone receptors [3], new insight on the activity of progesterone
was provided by the identification of membrane progestin receptors (mPRs) [4]. Certain non-
genomic effects of progestins, such as oocyte maturation, are mediated by mPRs on the plasma
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membrane and induce rapid intracellular changes. Oocyte maturation-inducing steroids
(MISs) are produced in response to luteinizing hormone (LH) in the follicular envelope in fish
[5]. This progestin-induced nongenomic activity in oocytes mediated by mPR causes the cells
to proceed through meiotic cell cycles [6–10]. Based on phylogenetic analysis, mPRs can be cat-
egorized into a new protein family of G protein-coupled receptors (GPCRs), the PAQR (pro-
gestin and adipoQ receptors) family [11]. This family contains three subordinate types termed
mPRα, β and γ (corresponding to PAQR7, 8 and 5, respectively) [12]. Based on the analysis of
proteins expressed in human breast cancer cells, PAQR6 and 9 were also categorized as new
subtypes of mPR (mPRδ and ε, respectively) [13]. The expression of mPR mRNAs has been
observed in reproductive tissues (ovary, testis, uterus and placenta) and in nonreproductive tis-
sues (kidney, brain and intestinal tissues) in the human body [9]. The broad distribution of
mPRs in different tissues suggests that mPRs perform various functions in a large range of tar-
get tissues. Additionally, mPRs could serve as a target for endocrine-disrupting chemicals
(EDCs). Although the distinct role of mPRs remains under investigation, mPRs could be a tar-
get for a novel class of pharmaceuticals and EDCs. Thus, we aimed to produce a recombinant
mPR protein.

The methylotrophic yeast Pichia pastoris is an efficient host for the expression of membrane
proteins [14,15] and secretory proteins [16–19]. Recently, research has been conducted on
human histamine H1 receptor and GPCR expression by P. pastoris [15]. Previously we
reported the expression of mPR protein in human cancer cell lines and in Escherichia coli [20].
The large-scale culturing of E. coli is possible but did not produce an active form of recombi-
nant mPR [20]. In addition, the mPR expression levels in mammalian cells were extremely low
and did not generate a sufficient amount of protein for purification, structural and biochemical
analysis. More than one hundred reports have emphasized the expression of GPCRs and their
large-scale purification using P. pastoris. Natural ligand binding has been assessed by the
expression of mammalian GPCRs in P. pastoris [21,22]. P. pastoris has been widely used for the
expression of GPCRs. The structures of two human GPCRs (the histamine H1 and the adeno-
sine A2a receptor) were determined using recombinant protein expressed in P. pastoris [15,23].
Thus we selected P. pastoris for the expression of large amounts of mPR.

Previously, we established a procedure for producing and purifying recombinant goldfish
mPRα, but this method generates very low amounts of protein [24]. In this study, we estab-
lished a yeast strain for the expression of human mPRα (hmPRα) according to the method for
goldfish mPRα and optimized the conditions to obtain large amounts of product. Through the
optimization of culture conditions, homogenization protocol and conditions for column chro-
matography, we established a procedure to obtain relatively a large amount of hmPRα. This
evolving new procedure could be used to produce sufficient amounts of hmPRα protein to
develop a screening system for mPRα-affecting agents or to determine the structure of mPRα.

Results

1. Recombinant human mPRα protein expression
Wild yeast P. pastoris was used for the expression and production of recombinant hmPRα pro-
tein. For expression, the cDNA of hmPRα was fused to the secretion signal sequence of the α-
factor from S. cerevisiae in the expression cassette (Fig 1A). The construct was inserted into the
host yeast genome by homologous recombination. The successful insertion of the cassette,
along with its promoter and terminator that control the transcription of the heterologous
mPRα gene fusion, into the yeast cells was confirmed by PCR using AOX1 primer sets (Fig 1B).

The expressed fusion hmPRα protein carried a c-Myc epitope and a histidine tag (His-tag)
on its C-terminal end. Expression was induced by the presence of 0.5% methanol in the
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BMMYmedium. The expression of hmPRα protein was confirmed by western blot analysis
(Fig 1C). The protein band of approximately 50 kDa was detected. The theoretical molecular
mass of hmPRα containing a α-factor signal peptide is approximately 52 kDa, which was con-
sistent with the molecular mass of the detected band.

To determine the optimal conditions for the expression of hmPRα, 1 mL aliquots of the cul-
ture were collected after 0, 1, 2, 4, 6 and 24 hours, and the amount of expressed hmPRα was
analyzed. The highest level of hmPRα expression was detected at 6 hours (Fig 1C). The optimal
cell density before the initiation of induction was also examined. When the cell density

Fig 1. Expression of humanmPRα in Pichia pastoris. (A) Schematic representation of the hmPRα expression cassette that was inserted into the yeast
cells to produce mPRα protein. The fusion peptide consisted of hmPRα, a α-factor signal sequence, a C-terminal histidine (6x His), and a c-Myc epitope
controlled by the methanol-inducible AOX1 promoter (pAOX1) and the AOX1 transcription termination region (AOX1 TT). The black bars above and below
the cassette indicate the 50AOX1 (F. primer) and 30AOX1 (R. primer) primer binding sites, respectively. The AOX1 gene of the yeast cells remained within the
expression cassette (2.1 kbp). (B)Gene insertion was verified by PCR. DNA fragments were amplified using genome DNA from untransformed yeast cells
(X-33), genome DNA from hmPRα-transformed cells (mPRα-X-33) or transformed vector DNA (mPRα-pPICZαA) as templates. (C) After protein expression
induction in culture with methanol, samples were taken at 0, 1, 2, 4, 6 and 24 hours. Expression of hmPRα was determined by western blot analysis. A protein
band of 50 kDa was reacted with anti-His-tag antibody in the extract prepared from hmPRα-transformed cells (mPRα-X-33).

doi:10.1371/journal.pone.0138739.g001
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increased, the yield of hmPRα protein also increased. After several trials, we found that a cell
density of OD600 21–23 during methanol induction was optimal, in contrast to previous condi-
tions established for goldfish mPRα protein production at an OD600 of 1.0–3.0 [24]. Therefore,
we succeeded in producing the hmPRα protein at higher cell densities.

2. Specific binding of [3H]1,2,6,7-progesterone on plasma membranes
prepared from hmPRα-expressed P. pastoris
To demonstrate specific binding of [3H]1,2,6,7-progesterone to the expressed hmPRα protein,
digitonin was used for the preparation of the cell membrane fraction because this glycoside
facilitates steroid receptor access [25,26]. Previously, a final concentration of 0.1% digitonin
was reported to be optimal for facilitating steroid binding [24], which was measured using a fil-
ter-binding assay [25,26]. After the treatment of the crude cell membrane fractions with 0.1%
digitonin, the specific [3H]1,2,6,7-progesterone-binding activity was significantly increased in
membrane fractions from hmPRα-expressing cells. Under the same conditions, fractions from
untransformed host cells exhibited lower binding activity (Fig 2A). Saturation analysis demon-
strated that the progesterone binding to the cell membranes of hmPRα-expressing cells is satu-
rable and of limited capacity (Bmax = 288.8 fmol/mg). Scatchard analysis indicated the
presence of a single site of high-affinity binding sites (Kd = 3.8 nM) in the cell membrane frac-
tion of hmPRα (Fig 2B). Consequently, these results indicated that the heterologously pro-
duced recombinant hmPRα was active.

3. Solubilization and purification of hmPRα protein
To lyse large amount of yeast cells, a new technology was applied. We applied Ball Mill equip-
ment (Ball Mill PM 100) that can disrupt the samples by rotating stainless steel balls in the

Fig 2. Characterization of binding activity in membrane fractions. (A) Specific binding activity of [3H]1,2,6,7-progesterone to membrane preparations
from untransformed yeast cells (X-33) and hmPRα-producing cells (mPRα-X33). (B) Saturation curves and Scatchard plots of specific [3H]
1,2,6,7-progesterone binding to membrane preparations from hmPRα-producing cells (mPRα-X33).

doi:10.1371/journal.pone.0138739.g002
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chamber under freezing conditions [27,28]. By using this machine, we could homogenize cell
precipitates from a 500 ml culture all at once. After the disruption of the yeast cells by the Ball
Mill PM 100 instrument, the membrane proteins were solubilized using 0.1% n-dodecyl-β-D-
maltoside (DDM), as described previously [24]. To optimize the conditions for Ni-NTA affin-
ity chromatography, 16 lysis buffers (50 mM NaH2PO4, 300 mMNaCl, 1 mM PMSF, 10%
glycerol, 0.1% DDM) with 4 different concentrations of imidazole (10, 20, 40 or 80 mM) and of
pH 5.0, 6.0, 7.0 or 8.0 were tested (S1 Fig). Membrane preparations were incubated with one of
the 16 different lysis buffers for 30 min on ice, and then the solubilized supernatant was sepa-
rated from insoluble materials by centrifugation (20,000 × g, 4°C, 20 min). The solubilized
hmPRα fraction was applied to the Ni-NTA resin. Unbound materials in the Ni-NTA resin
were subsequently separated by centrifugation, and bound proteins were eluted by elution
buffer. The remaining materials were solubilized by denaturing buffer for SDS-PAGE. The
hmPRα content in each fraction was analyzed by western blotting using anti-His-tag antibod-
ies. Out of the 16 buffers tested, the 40 mM imidazole, pH 6.0, lysis buffer demonstrated the
best separation of hmPRα from other proteins (S1 Fig). Thus, this buffer was selected as the
lysis buffer and as the Ni-NTA chromatography running buffer.

In the first step of purification, the sample was separated on a Ni-NTA column. The protein
content of the eluted fractions were analyzed by CBBR and immunoblotting with anti-His-tag
antibodies. HmPRα protein was detected in fractions 11 to 16 (Fig 3A), which corresponded to
160 mM imidazole in the buffer. These fractions were pooled and applied to a Cellufine Amino
column, which we selected as an effective resin for purification of the mPRα protein [24]. The
proteins were eluted by linear gradient of sodium chloride (Fig 3B). In the third purification
step, the hmPRα fractions were passed through a SP-Sepharose column. The purified hmPRα
proteins were concentrated using Cellufine Amino resin. The SDS-PAGE and immunoblotting
assay indicated that hmPRα was successfully purified with higher purity (Fig 4A).

4. Characterization of purified recombinant hmPRα
The identity of the purified proteins was confirmed by MALDI-TOF/MS analysis. Peptide
mass fingerprint analysis of the purified 50-kDa protein confirmed the presence of hmPRα
(Fig 4B and 4C). From the results, the hmPRα protein was concluded to have been successfully
expressed and purified. To examine the binding activity of the purified hmPRα, we modified
the steroid binding assay for solubilized mPR proteins. When Ni-NTA was added into the reac-
tion mixture, the steroid-binding activity of hmPRα could be detected (S2 Fig). Using this
method, specific progesterone-binding activity was detected in the purified hmPRα fraction.
Scatchard analysis indicated the presence of a single class of high-affinity binding site (Kd = 5.2
nM) with limited capacity (Bmax = 111.6 fmol/mg) (Fig 5).

Discussion
Previously we reported the expression and purification of goldfish mPRα in a P. pastoris yeast
host system [24]. Based on the procedure established for goldfish mPRα, we succeeded in pro-
ducing and purifying a relatively large amount of recombinant human mPRα protein in this
study. To obtain a large amount of product, we optimized the yeast culture and buffer condi-
tions for Ni-NTA column chromatography. Furthermore, a new method of disrupting yeast
cells using a ball mill was applied [27,28]. Using the ball mill, a membrane fraction with higher
mPRα protein content could be obtained. The amount of expressed hmPRα was determined to
be approximately 150 mg/L of culture by Western blot analysis. Of this amount of expressed
protein, we could purify 1.2–1.5 mg of hmPRα with a yield of 0.8–1.0%. The yield of activity
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was increased by more than 100 times compared to that of goldfish mPRα expression and puri-
fication (Table 1).

The progesterone-binding assay demonstrated that the hmPRα was expressed in an active
form. The steroid-binding activity of membranes prepared from mPRα-expressing P. pastoris
cells was detected in the presence of digitonin. The effect of digitonin was described in bovine
membrane fractions [25]. In presence of digitonin, the binding of the membrane fraction of
human sperm to progestin has also been detected [26]. A similar effect was confirmed in our
previous study of goldfish mPRα [24]. The progesterone-binding assay using purified hmPRα
demonstrated that the protein remained active after solubilization and purification (Fig 5). To
measure the steroid-binding activity of solubilized hmPRα, we supplemented Ni-NTA resin
into the reaction mixture, which trapped the protein on the filter (S2 Fig). Via this modifica-
tion, we succeeded in measuring the steroid binding activity of purified hmPRα. The Kd value
of purified hmPRα did not change significantly, compared with the value for the membrane
fraction. Thus, we can conclude that we established a procedure to purify hmPRα protein in an
active form.

mPRs have been identified in a wide variety of organisms ranging from fish to humans
[29,30], and progestin-binding activity in these species have been reported in many species,
including fish (goldfish, seatrout and zebrafish), frogs and mammals (cattle, rats, mice and
humans) [8,31–33]. mPRα was found to be expressed in the reproductive tissues (ovary, uterus
and testes), kidneys, brain and spinal cord in vertebrates [34–36]. The broad distribution of
mPRs suggests that these proteins play a role in a wide variety of steroid-related functions in
tissues.

Some studies regarding mPRs in the brain have been reported. Whole brain expression anal-
ysis of progestin receptors revealed that mPRα and β were expressed in thalamic nuclei [37].
The results suggested that mPRs are involved in the regulation of sensory and cognitive func-
tions. The expression of 5 subtypes of mPRs, including two new subtypes of mPRs, δ and ε,
was analyzed by q-PCR in human brain [13]. Among the mPR subtypes, mPRε was the most
abundant subtype in the brain and is a potential intermediary of the antiapoptotic effects of
neurosteroids in the central nervous system. The roles of brain mPRs in the regulation of mam-
malian behavior have also been investigated [38,39].

Progesterone signaling through mPRs in human breast cancer cells has been investigated
[40]. Zuo, L. et al. suggested that progesterone promotes epithelial-to-mesenchymal transition
of breast cancer cells through mPRs [41]. The gene expression level of mPRα has been as a bio-
marker for breast cancer survival [42]. Recently, progesterone has been demonstrated to gener-
ate cancer stem cells through mPRs in mammary cells [43].

Progesterone may interact with mPRα, mPRβ and mPRγ, which implies negative conse-
quences on the proliferation of human T-cells that may attack fetuses during pregnancy, as
indicated by changes in pH and Ca2+ levels inside T-cells [44]. Moreover, progesterone may be
involved with bovine T-lymphocyte activation and proliferation through binding to mPRs in
the corpus luteum [45]. Progesterone signaling in murine macrophages is associated with par-
turition that may be regulated by mPRα. This relationship may contribute to the functional
withdrawal of progesterone associated with labor [46].

These studies have drawn attention to the discovery of novel drugs or treatment of diseases
such as reproductive problems, cancers and encephalitis.

Fig 3. Purification of hmPRα protein by Ni-NTA and amino cellulose column chromatography. (A) Chromatogram and the SDS-PAGE and the western
blot analysis results of the Ni-NTA column chromatography fractions obtained from the first purification step. (B) Chromatogram and the SDS-PAGE and
western blot analysis results from the Cellufine Amino column chromatography conducted as the second purification step. The elution profile was monitored
by absorbance at 280 nm. The horizontal bars in the chromatogram represent the fractions collected for further steps.

doi:10.1371/journal.pone.0138739.g003
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In this study, we established an hmPRα-expressing yeast strain and a method to purify a
large amount of active mPRα protein. The purified active hmPRα could be applicable for the
screening of ligands for hmPRα. Additionally, endocrine-disrupting chemicals that interact
with hmPRα could be identified by this screening. Very recently, the three-dimensional struc-
ture of PAQR1 was reported [47]. hmPRα belongs to a GPCR family, progestin and adipoQ
receptor family (PAQR family), which is composed of 11 genes. The three-dimensional struc-
ture of crystallized adipoQ receptor 1 (PAQR1) has been resolved. A novel class of proteins
with a seven-transmembrane domain structure and a zinc-binding cavity was discovered. The
strategy of structure resolution could be applied to mPRs. The recombinant protein expressed
in this study will be useful for such an approach.

Recently, a new member of the membrane steroid receptor family was identified [48,49].
Through screening using monoclonal antibody for membrane proteins, a cDNA for a mem-
brane androgen receptor (mAR) was identified as the previously reported zinc transporter
ZIP9 subfamily (SLC39A9). Similar to mPRs, a seven-transmembrane domain structure was
predicted from the amino acid sequence of ZIP9. ZIP9 is widely expressed in human tissues
and upregulated in malignant breast and prostate tissues, suggesting that it is a potential thera-
peutic target for treating breast and prostate cancers. mAR has been found to be a seven-trans-
membrane domain receptor for three types of steroids (progestin, estrogen and androgen). All
of these receptors are conserved among vertebrates and are widely distributed in various tis-
sues. Thus, these findings suggest that tissues are regulated by the nongenomic activity of

Fig 4. Identification of purified recombinant protein as mPRα. (A) SDS-PAGE analysis of representative
fractions after solubilization of the membrane preparation (DDM solubilized), column chromatography over
Ni-NTA, amino cellulose (Cellufine Amino). Protein bands were detected by CBBR staining. (B) SDS-PAGE
analysis of purified hmPRα. Protein bands were detected by CBBR staining (CBBR) or were immunostained
by anti-His-tag antibody (α-His). An arrow indicates hmPRα. (C) MALDI-TOF mass spectrum of purified
hmPRα. (D) Amino acid sequence of recombinant hmPRα from produced in this study. The matching
peptides from the peptide mass fingerprint analysis are underlined. The sequences of α-factor signal, c-Myc-
tag and His-tag are boxed.

doi:10.1371/journal.pone.0138739.g004

Fig 5. Scatchard plot analysis of purified hmPRα. Saturation curves and Scatchard plots of specific [3H]
1,2,6,7-progesterone binding to purified recombinant hmPRα.

doi:10.1371/journal.pone.0138739.g005
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various types of steroids. The distinct roles of steroidal nongenomic effects in various tissues
should be addressed.

Methods

Ethics Statement
The present study using human gene was approved by the Research Ethics Review Committee
regarding Human Subjects of the Shizuoka University.

Materials
[3H]1,2,6,7-progesterone was purchased from PerkinElmer Inc. The modified trypsin
(sequencing grade) was from Promega (Tokyo, Japan). The CHCA was obtained from Bruker
Daltonics (Billerica, MA). Digitonin was purchased from Sigma-Aldrich Chemicals (St. Louis,
MO). The DNA polymerase and DNA Ligation Kit were from Takara Bio (Siga, Japan). The
DNA fragment extraction kit from agarose gel was purchased from QIAGEN (Tokyo, Japan).
The molecular weight marker for SDS-PAGE was from Bio-Rad (Hercules, CA). The anti-rab-
bit antibody conjugated with peroxidase and yeast nitrogen base without amino acids were
obtained from Invitrogen (Carlsbad, CA). The anti-His-tag antibody was fromMedical & Bio-
logical Laboratories (Nagoya, Japan). Other chemicals were purchased fromWako Pure Chem-
ical Industries, Ltd. (Osaka, Japan).

Construction of recombinant pPICZαA plasmid
Human mPRα protein was expressed in P. pastoris using the wild strain X33. The cDNA for
hmPRα was prepared from human blood and amplified by polymerase (KOD plus neo,
TOYOBO, Japan) using a primer set of Hs mPRα normal F, GTCACCTGGCTTTGCCTTTG,
and Hs mPRα normal R, ATGCCATCCCCCTTCACTTG. Then, the amplified DNAs were
inserted into a pBluescript II KS(+) plasmid and transformed into E.coli (XL1 Blue) for the
cloning of the hmPRα gene. After the completion of cloning, the hmPRα fragment of the
pBluescript II KS(+) plasmid was also amplified as a DNA template by polymerase (KOD plus
neo, TOYOBO, Japan) using the primer set of Hs mPRα EcoRI, CGGAATTCATGGCCATGG
CCCAGAAACTCAGCCACCTCCTGCCGAG, and Hs mPRα-NotI, ATAAGAATGCGG
CCGCCTTGGTCTTCTGATCAAGTTTGCGCTGTACCAGC. For the expression in P. pas-
toris, the DNA was inserted into the P. pastoris expression vector pPICZαA (Invitrogen). All of
the ORF region DNA sequences of the expression vectors were verified by DNA sequencing.

Table 1. Summary of the purification of recombinant humanmPRα from Pichia pastoris.

Protein (mg) Total activitya Bound [3H] 1,2,6,7 progesterone (nmol) Specific activity (pmol/mg) -fold Yieldb (%)

Crude extract 1264.5 0.534 0.42 1.0 100.0

DDM solubilization 197.2 0.232 1.18 2.8 43.4

Ni-NTA 68.4 0.104 1.52 3.6 19.5

Cellufine Amino 4.5 0.015 3.33 7.9 2.8

SP-Sepharose 1.2 0.012 10.00 23.8 2.2

a The activities of each fraction were measured with 4 nM of [3H] 1,2,6,7 progesterone as described in Materials and Methods.
b The yield of total progesterone binding activities of each fraction are presented as percentages of the crude extract, which was assumed to have a

binding activity of as 100%.

doi:10.1371/journal.pone.0138739.t001
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The P. pastoris strain X-33 (Invitrogen) was transformed with the hmPRα-expression con-
struct by electroporation, as previously described in detail [24]. The construct was linearized
with PmeI digestion, and the linearized plasmid (168 μg) was used to transform P. pastoris cells
through electroporation. Electroporation was performed using a Gene Pulser instrument (Bio-
Rad), following previously established protocols [24].

Yeast extract-peptone-dextrose medium (YPD) plates (1% yeast extract, 2% peptone, 2%
dextrose, 2% agar) containing 500 μg/mL Zeocin were selected for the culture of the recombi-
nant colonies. The genomic amalgamation of hmPRα construct was verified by PCR using Ex
Tag Polymerase (Takara Bio, Siga, Japan) and the primer set of 50AOX1, GACTGGTTCCAA
TTGACAAGC, and 30AOX1, GCAAATGGCATTCTGACATCC, to amplify the sequence
between the AOX1 promoter and terminator regions (Fig 1A). The production of recombinant
protein was confirmed by analyzing several Zeocin-resistant clones. The clones with the high-
est expression levels were maintained and stored on MD plates contained 1.34% yeast nitrogen
base, 4 x 10−5% biotin, 2% dextrose, 1.5% agar [24] at 4°C.

Expression of hmPRα in P. pastoris
A single colony expressing hmPRα from the MD plate was inoculated in 100 ml of BMGY
medium (1% yeast extract, 2% bactopeptone, 100 mM potassium phosphate, pH 6.0, 1.34% yeast
nitrogen base without amino acids, 4 x 10−5% biotin, 1% glycerol) and incubated for 21 hours at
30°C with shaking at 180 rpm. The volume was increased to 500 mL of BMGYmedium in a 2 L
baffled flask, and the yeast was incubated for 16.5 hours at 30°C with shaking at 180 rpm until
the OD600 nm reached 17–19. A 1 ml aliquot of the culture medium was used to determine the
cell density. The remaining culture was harvested by centrifugation at 3,000 x g for 5 min and
was washed once using 300 ml BMMYmedium. For the induction of mPRα protein expression,
the cells were resuspended in 400 ml BMMY (1% yeast extract, 2% bactopeptone, 100 mM potas-
sium phosphate, pH 6.0, 1.34% yeast nitrogen base without amino acids, 4 x 10−5% biotin, 0.5%
methanol) to an OD600 of 21–23. The medium was placed in a 2 L baffled flask and incubated at
20°C for 6 hours with shaking at 180 rpm. After 6 hours, the cells were harvested by centrifuga-
tion at 3,000 × g for 5 min, and the precipitate was frozen with liquid nitrogen and stored at
-80°C.

Membrane preparation and solubilization of membrane proteins
Frozen cell pellets (ffi20 g) that were harvested from 800 ml of culture were thawed and resus-
pended in 80 ml of ice-cold lysis buffer (50 mM sodium phosphate, 1 mM PMSF, 1 mM EDTA,
5% glycerol, pH 7.4). Then, re-frozen as shape of tubules in the stainless chamber for cell break-
ing with stainless ball. Consecutively, cells were broken by Retsch Ball Mill PM 100 (Verder Sci-
entific Co., Ltd., Haan, Germany) with six rounds of shaking at fixed 400 rpm for 3 min with an
interval of chilling with liquid nitrogen. Then, the disrupted cells were collected into centrifuge
tubes. Nonhomogenized cells and debris were separated from the fractions containing the mem-
branes by low-speed centrifugation (1,000 x g, 4°C, 7 min). After the supernatant collection, the
pellet was resuspended in 30 ml of ice-cold lysis buffer for a further round of supernatant collec-
tion. The supernatants were combined, and the membrane fractions were recovered by centrifu-
gation at 20,000 × g, 4°C, for 20 min. The precipitates were resuspended in buffers for the steroid
binding assay or purification based on their intended use.

Purification
To purify the hmPR, the solubilized proteins were thawed on ice and loaded onto a 80 mL
Ni-NTA Agarose (QIAGEN, Gaithersburg, MD, USA) column (φ 4.5 × 5.0 cm) that was
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equilibrated with lysis buffer containing 0.01% DDM and 1 mM PMSF. The proteins were
eluted with a 500 mL gradient of 10–400 mM imidazole in the same buffer and washed with
100 ml of the same buffer containing 400 mM imidazole. The fractions that contained recombi-
nant hmPRα were identified by western blot analysis and were collected and diluted for 4.5
times with DDW. Then samples were loaded onto a 5 mL of Cellufine Amino (JNC Corpora-
tion, Tokyo, Japan) column (φ1.6 × 10 cm) that was equilibrated with CA buffer (50 mM Tris-
HCl buffer, pH 8.0, containing 0.01% DDM and 1 mM PMSF). The column was washed with
15 ml of the same buffer and eluted with a 120 mL gradient of 0–0.5 M NaCl in CA buffer.
Fractions containing hmPRα were collected and were then passed through a SP-Sepharose col-
umn (1 ml) and applied to 1.5 ml of a Cellufine Amino column. The proteins were eluted with
CA-buffer containing 0.5 M NaCl. The fractions that contained the hmPRα protein were col-
lected and concentrated with Centriprep YM-3 filter units (Millipore, Billerica, MA).

SDS-PAGE and western blot analysis
Proteins were separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) on a 12%
polyacrylamide gel under denaturing conditions according to the method of Laemmli and were
transferred to Immobilon membranes (Millipore, Billerica, MA). The membranes were blocked
in 5% nonfat powdered milk in 20 mM Tris-buffered saline, pH 7.6 (TBS) containing 0.1%
Tween 20 (TTBS) for 1–2 hours at room temperature. Then, the membranes were incubated
with primary antibodies (1,000-fold dilution in TBS buffer) and with secondary antibodies
(2,000-fold dilution in TBS buffer). The visualization of the target protein was performed by
enhanced chemiluminescence using an ECL detection kit (PerkinElmer, Waltham, MA), a
method based upon a chemiluminescent reaction mediated by peroxidase conjugated to a sec-
ondary antibody. The signals were digitized using a CCD camera system (Luminescent Image
Analyzer LAS-4000 mini; Fujifilm, Tokyo, Japan).

Peptide mass fingerprint analysis by MALDI-TOF/MS
Purified recombinant mPRα proteins stained with CBBR in SDS-PAGE gel slices were trypsi-
nized. Subsequently, the peptides were recovered using a ZipTip (Millipore) and were eluted
through a solution (2 μl) containing 60% acetonitrile, 0.1% TFA and 5 mg/ml of CHCA (Bru-
ker Daltonics), as described previously for goldfish mPRα [24]. A 384-well plate was used for
the loading of the samples, which was contained a double layer with CHCA and dissolved in
acetone, after that air-dried. A MALDI-TOF/MS Autoflex (Bruker Daltonics, Billerica, USA)
was used to detect the peptide mass spectrum in a positive ion mode. The spectra that were
obtained fromMALDI-TOF/MS were calibrated by a mixture of molecular weight standards
(Bruker Daltonics). By using the MASCOT software (Matrix Science, London, UK), the peptide
fingerprint was analyzed and was compared with peptides from human taxonomy using the
NCBInr database. Subsequent parameters used included cysteine modification by carbamido-
methylation (C), a trypsin digest missed cleavage of zero and a peptide mass tolerance ± 0.4
Da. The mPRα protein was identified from the molecular weight of peptide fragments using
probability-based MOWSE scores.

Radiolabeled ligand binding assays
The plasma membrane pellet was obtained as described in the membrane preparation and sol-
ubilization section. Then, the pellet was resuspended in HEAD buffer (25 mMHEPES, 10 mM
NaCl, 1 mM dithiothreitol, 1 mM EDTA, pH 7.6) containing 0.1% digitonin. Progestin recep-
tor binding to the membrane fractions was measured following previously established
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procedures [20]. In the binding assay for the solubilized samples, Ni-NTA resin (100 μl of 50%
vol) was added. GF/B filters were presoaked in wash buffer without Tween 80.

Competition studies
One set of tubes contained 1.5 nM [3H]1,2,6,7-progesterone alone (total binding); another
set also contained cold progestin competitor at a 100-fold greater concentration to measure
nonspecific binding (NSB). After a 30 min incubation at 4°C with the membrane fractions, the
reaction was stopped by filtration (Whatman GF/B filters, presoaked in wash buffer containing
2.5% Tween 80). The filters were washed three times with 5 mL of wash buffer (25 mM
HEPES, 10 mM NaCl, 1 mM EDTA, pH 7.4) at 4°C, and the bound radioactivity were mea-
sured by scintillation counting.

Saturation analyses and Scatchard plots
Various concentrations (0.5–12.5 nM) of [3H]1,2,6,7-progesterone (specific activity, 96.6 Ci/
mmol) were added to the assay tubes with (nonspecific) or without (total) 100-fold molar
excess cold progesterone. Linear and nonlinear regression analyses for all receptor binding
assays and calculations of Kd and binding capacity (Bmax) were conducted using GraphPad
Prism for Macintosh (version 4.0c; GraphPad Software, San Diego, CA). The results are shown
as Scatchard plots.

Supporting Information
S1 Fig. Optimization of conditions for Ni-NTA column chromatography. Binding of solu-
bilized mPRα onto the Ni-NTA resin was examined with different concentrations of imidaz-
ole (10, 20, 40 or 80 mM) and pH values (pH 5.0, 6.0, 7.0, or 8.0) in Ni-NTA binding buffer
(50 mM NaH2PO4, 300 mM NaCl). Samples for each lane are following; M, marker; S, solu-
bilized mPRα protein fraction; T, flow-through protein after Ni-NTA binding; E, eluted pro-
teins with elution buffer (50 mM NaH2PO4, 300 mM NaCl, 250 mM imidazole pH 8.0); R,
remained on Ni-NTA resin after elution. The proteins were detected by CBBR staining
(upper panel in each set) or western blotting (lower panel in each set). The panels depict the
results obtained using (A) 10 (B) 20 (C) 40 and (D) 80 mM imidazole-containing buffer of
various pH levels.
(TIF)

S2 Fig. Optimization of the attachment of purified mPRα with Whatman UK GF/B filters
for [3H]1,2,6,7-progesterone-binding assay analysis. (A) The indicated amount of Ni-NTA
resin (10, 20, 50 or 100 μl) was supplemented into the reaction mixture of the steroid binding
assay. After filtration, the mPRα protein content remaining on the filter or present in the flow-
through was determined by Western blot analysis using α-His-tag antibody. (B) Specific bind-
ing activity of purified mPRα to [3H]1,2,6,7-progesterone with 10 and 100 μl Ni-NTA resin
supplemented in the reaction mixture.
(TIF)
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