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Abstract: F-actin dynamics (polymerization and depolymerization) are associated with nucleotide
exchange, providing the driving forces for dynamic cellular activities. As an important residue in
the nucleotide state-sensing region in actin, His73 is often found to be methylated in natural actin
and directly participates in F-actin dynamics by regulating nucleotide exchange. The interaction
between His73 and its neighboring residue, Gly158, has significance for F-actin dynamics. However,
this weak chemical interaction is difficult to characterize using classic molecular modeling methods.
In this study, ab initio modeling was employed to explore the binding energy between His73 and
Gly158. The results confirm that the methyl group on the His73 side chain contributes to the
structural stability of atomistic networks in the nucleotide state-sensing region of actin monomers
and confines the material exchange (Pi release) pathway within F-actin dynamics. Further binding
energy analyses of actin structures under different nucleotide states showed that the potential model
of His73/Gly158 hydrogen bond breaking in the material exchange mechanism is not obligatory
within F-actin dynamics.
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1. Introduction

F-actin is polymerized from G-actin in living cells and acts as the structural basis
for the mechanical performance and dynamic behaviors of microfilament networks [1].
F-actin polymerization and depolymerization are usually accompanied by nucleotide
exchanges [2], providing free energy for various cellular activities. Due to the significance
of the structure of actin on the spontaneous regulation of nucleotide exchanges in living
cells, different actin nucleotide state-sensing models have been proposed based on in-vitro
actin structural characterizations. However, determinant actin conformational changes
during nucleotide exchange are still debatable [3,4]. R. Dominguez and co-workers reported
that the ATP hydrolysis of F-actin would ultimately induce a loop-to-helix transition of
a D-loop (residues 38–52, on subdomain 2) by a sequence of conformational changes,
starting with the rotation of the Ser14 and His73 residues [5,6]. K. Trybus and co-workers
later obtained ATP- and ADP-actin structures that have no significant conformational
difference except for the bending of Glu72 and His73 on the sensor loop (H-loop, residues
70–78) [7]. Conformational changes to His73 between ATP- and ADP-actin structures were
also reported by T. Wakabayashi recently [8]. These crystallographic pieces of evidence
all indicate that the His73 conformational change plays a critical role in F-actin dynamics.
Figure 1 provides the typical structural change of the H-loop in F-actin dynamics from the
source of drosophila [7], where a significant bending deformation of Glu72 and His73 can
be located.
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Figure 1. The atomistic structures of a H-loop on actin in both ATP and ADP states. The correspond-
ing IDs of the PDB sources are 2HF4(ATP) and 2HF3(ADP) [7]. 

In addition to conformational changes, the His73 residue on the H-loop also directly 
participates in nucleotide exchanges during F-actin polymerization. On natural actin 
monomers, His73 is the only residue that is often modified with an extra methyl, for which 
the biological function is still cryptic. According to in vivo experiments, mutations of 
His73 would significantly change the ATP hydrolysis rate [9]. The methylated His73 acts 
as a switch for Pi release in nucleotide exchange, which is an important material measure-
ment for F-actin dynamics [9]. A cleft between subdomains 2 and 4 (refer to Figure 1) on 
actin was observed after ATP hydrolysis [10], creating the pathway for the material ex-
change. The molecular mechanism for the material-release pathway formation can be 
found in Figure 2. The chemical interactions between His73 and its neighboring residues, 
most importantly Gly158 [9,11], in the nucleotide state-sensing region are important for 
stabilizing the interaction between subdomains 2 and 4 and confining the Pi release path-
way before F-actin depolymerization. It is, therefore, of fundamental significance to eval-
uate the binding energy between His73 and Gly158 for a better understanding of the role 
that His73 plays in regulating nucleotide exchanges in F-actin dynamics. Since this bind-
ing energy between His73 and Gly158 occurs due to weak chemical interactions that are 
difficult to characterize using classical molecular dynamics methodology, a higher-level 
physics calculation method is needed to accurately evaluate the binding energy, e.g., the 
ab initio method based on quantum mechanics theory. 

In this study, we evaluate the stability of the nucleotide state-sensing region by ana-
lyzing the binding energy between His73 and Gly158 via ab initio modeling. Actin struc-
tures with different methylation and nucleotide states are studied to understand the struc-
tural significance of His73 conformational changes in nucleotide exchanges. The analysis 
provides insights into an improved understanding of the critical role of His73 in regulat-
ing nucleotide exchanges in F-actin dynamics. 

Figure 1. The atomistic structures of a H-loop on actin in both ATP and ADP states. The corresponding
IDs of the PDB sources are 2HF4(ATP) and 2HF3(ADP) [7].

In addition to conformational changes, the His73 residue on the H-loop also directly
participates in nucleotide exchanges during F-actin polymerization. On natural actin
monomers, His73 is the only residue that is often modified with an extra methyl, for which
the biological function is still cryptic. According to in vivo experiments, mutations of His73
would significantly change the ATP hydrolysis rate [9]. The methylated His73 acts as a
switch for Pi release in nucleotide exchange, which is an important material measurement
for F-actin dynamics [9]. A cleft between subdomains 2 and 4 (refer to Figure 1) on actin
was observed after ATP hydrolysis [10], creating the pathway for the material exchange.
The molecular mechanism for the material-release pathway formation can be found in
Figure 2. The chemical interactions between His73 and its neighboring residues, most
importantly Gly158 [9,11], in the nucleotide state-sensing region are important for stabi-
lizing the interaction between subdomains 2 and 4 and confining the Pi release pathway
before F-actin depolymerization. It is, therefore, of fundamental significance to evaluate the
binding energy between His73 and Gly158 for a better understanding of the role that His73
plays in regulating nucleotide exchanges in F-actin dynamics. Since this binding energy
between His73 and Gly158 occurs due to weak chemical interactions that are difficult
to characterize using classical molecular dynamics methodology, a higher-level physics
calculation method is needed to accurately evaluate the binding energy, e.g., the ab initio
method based on quantum mechanics theory.

In this study, we evaluate the stability of the nucleotide state-sensing region by analyz-
ing the binding energy between His73 and Gly158 via ab initio modeling. Actin structures
with different methylation and nucleotide states are studied to understand the structural
significance of His73 conformational changes in nucleotide exchanges. The analysis pro-
vides insights into an improved understanding of the critical role of His73 in regulating
nucleotide exchanges in F-actin dynamics.
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Figure 2. The structural basis for material exchange in F-actin dynamics. The interactions between 
His73 and Gly158 [8,11] were reported to be important in stabilizing the atomistic networks on actin. 
The connections between these residues are disrupted during the nucleotide exchange, which helps 
to create the pathway for material exchange. Once the Pi releases, its mother globular actin would 
gradually reach the minus end of the actin filament and depolymerize from F-actin. 

2. Results and Discussion 
2.1. The Structural Significance of His73 Methylation in F-Actin Dynamics 

To theoretically validate the structural significance of His73 methylation in F-actin 
dynamics, six actin structures with different methylation states were considered in the 
present ab initio study, which were all in the ATP binding state. Using the method elabo-
rated in Section 3, the binding energy between His73 and Gly158 was calculated for all 
cases and tabulated in Table 1. It is interesting to find that the binding energies in the three 
methylated actin structures are all lower than that in the corresponding unmethylated 
structures. During F-actin depolymerization, if the binding energy between His73 and 
Gly158 is relatively lower, actin monomers need to absorb more energy to separate sub-
domains 2 and 4 to create the pathway for material exchange (Pi release), which means a 
lower His73/Gly158 binding energy should result in the higher structural stability of the 
nucleotide state-sensing region. The positive binding energies between unmethylated 
His73 and Gly158 on the last three actin structures indicate that the unmethylated His73 
results have relative structural instability. Figure 3 shows the His73/Gly158 configurations 
of these selected actin structures. It should be noted that the basis set superposition error 
(Ebsse) is comparable to the binding energy (Eb) characterization, confirming that the basis 
set superposition error is obligatory for the calculation of weak chemical interactions in 
biological structures. 

  

Figure 2. The structural basis for material exchange in F-actin dynamics. The interactions between
His73 and Gly158 [8,11] were reported to be important in stabilizing the atomistic networks on actin.
The connections between these residues are disrupted during the nucleotide exchange, which helps
to create the pathway for material exchange. Once the Pi releases, its mother globular actin would
gradually reach the minus end of the actin filament and depolymerize from F-actin.

2. Results and Discussion
2.1. The Structural Significance of His73 Methylation in F-Actin Dynamics

To theoretically validate the structural significance of His73 methylation in F-actin
dynamics, six actin structures with different methylation states were considered in the
present ab initio study, which were all in the ATP binding state. Using the method elab-
orated in Section 3, the binding energy between His73 and Gly158 was calculated for all
cases and tabulated in Table 1. It is interesting to find that the binding energies in the
three methylated actin structures are all lower than that in the corresponding unmethy-
lated structures. During F-actin depolymerization, if the binding energy between His73
and Gly158 is relatively lower, actin monomers need to absorb more energy to separate
subdomains 2 and 4 to create the pathway for material exchange (Pi release), which means
a lower His73/Gly158 binding energy should result in the higher structural stability of
the nucleotide state-sensing region. The positive binding energies between unmethylated
His73 and Gly158 on the last three actin structures indicate that the unmethylated His73
results have relative structural instability. Figure 3 shows the His73/Gly158 configurations
of these selected actin structures. It should be noted that the basis set superposition error
(Ebsse) is comparable to the binding energy (Eb) characterization, confirming that the basis
set superposition error is obligatory for the calculation of weak chemical interactions in
biological structures.
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Table 1. His73/Gly158 binding energy calculation results in different methylation states.

PDB ID States 1 Ecomb 2 EHis73 EGly158 Ebsse Eb

1ATN ATP/Y −2,111,763.69 −1,357,798.71 −753,724.23 17.43 −221.08
1Y64 ATP/Y −2,111,713.21 −1,357,771.33 −753,839.34 12.91 −88.73
2A3Z ATP/Y −2,111,797.72 −1,357,715.98 −753,774.68 18.84 −285.34
2FF6 ATP/N −2,007,737.54 −1,253,918.49 −753,814.92 7.35 3.19
2V52 ATP/N −2,007,744.46 −1,253,947.10 −753,829.20 7.41 38.86
3BUZ ATP/N −2,007,754.82 −1,253,882.65 −753,872.34 8.95 9.03

1 The states of actin include the nucleotide states (ADP or ATP) and side-chain methylation (Yes or No). 2 All the
energy values are in the unit of kJ/mol.
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The ab initio calculation results suggest that actin structures with side chain methyl 
groups all present higher structural stability. Nyman, et al. proposed that the side chain 
methylation of His73 would affect the interaction between His73 and its neighboring res-
idues [11]. A typical mechanism for H-bond formation induced by His73 methylation is 
provided in Figure 4. When His73 is methylated, the side chain is fully substituted and 
carries one positive charge, which is shared between the two nitrogen atoms (δ1 and ε2, 
refer to Figure 3). This positive charge will contribute to enhancing the H-bond interaction 
between His73 and Gly158. 
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bond when His73 experiences side chain methylation. 

Figure 3. Conformations of the six His73/Gly158 interactions. The structures of the first three (upper
row) are of methyl groups on the side chain. H-bonds (N-H···O) can be found on 1ATN and 2A3Z
but not on 1Y64. The binding energies on the unmethylated structures (lower row) are all above zero,
which would result in the structural instability of the nucleotide sites on actin. Color key: O, red; C,
gray; N, blue; H, silver.

The ab initio calculation results suggest that actin structures with side chain methyl
groups all present higher structural stability. Nyman, et al. proposed that the side chain
methylation of His73 would affect the interaction between His73 and its neighboring
residues [11]. A typical mechanism for H-bond formation induced by His73 methylation is
provided in Figure 4. When His73 is methylated, the side chain is fully substituted and
carries one positive charge, which is shared between the two nitrogen atoms (δ1 and ε2,
refer to Figure 3). This positive charge will contribute to enhancing the H-bond interaction
between His73 and Gly158.

According to the ab initio characterization of the selected actin structures, the aforemen-
tioned H-bond (N-H···O) between His73 and Gly158 can be located on the actin structures
1ATN and 2A3Z (refer to Figure 3). However, as there is no H-bond between His73 and
Gly158 on 1Y64 actin, the negative binding energy indicates that H-bond (N-H···O) is not
the only source of the relatively lower binding energy between His73 and Gly158 on actin
monomers with methylated His73.
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2.2. His73/Gly158 H-Bond Breaking Is Not Obligatory for Material Exchange in F-Actin
Dynamics

The sequential conformational changes in actin monomers can trigger ATP hydrolysis
and create a pathway for material exchanges in F-actin polymerization and depolymer-
ization. In these conformational changes, the rearrangement of the H-loop after ATP
hydrolysis putatively creates a pathway for Pi to release from the actin monomer after
ATP hydrolysis [5,8]. To validate the molecular mechanism of the critical actin structure
conformational changes during the nucleotide exchanges, we have designed ab initio mod-
eling for another group of actin structures with different nucleotide-binding states, and the
characterization results are provided in Table 2.

Table 2. His73/Gly158 binding energy calculation results in different nucleotide-binding states.

PDB ID States 1 Ecomb 2 EHis73 EGly158 Ebsse Eb

1NWK ATP/Y −2,111,727.89 −1,357,765.61 −753,810.78 12.18 −137.92
1J6Z ADP/Y −2,111,661.74 −1,357,758.88 −753,828.18 6.61 −67.39

3A5M ATP/Y −2,111,746.51 −1,357,783.93 −753,814.66 13.26 −133.30
3A5L ADP/Y −2,111,751.50 −1,357,775.95 −753,597.98 24.34 −349.71
2HF4 ATP/N −2,007,709.88 −1,253,871.19 −753,841.34 6.85 9.40
2HF3 ADP/N −2007699.82 −1253870.48 −753830.77 8.32 9.65

1 The states of actin include the nucleotide states (ADP or ATP) and side-chain methylation state (Yes or No). 2 All
the energy values are in the unit of kJ/mol.

The binding energies between His73 and Gly158 on ATP-actin can be either higher
or lower than ADP-actin based on the calculation of different actin structures. The con-
formations of His73/Gly158 are shown in Figure 5, with the molecular configurations for
H-bond formation. According to the ab initio modeling of Oryctolagus actin structures,
the His73/Gly158 binding energy is higher within the ATP state (1J6Z) than within the
ADP state (1NWK). Instead of the relatively stronger nitrogen oxide H-bond hypothesis
(N-H···O, refer to Figure 4), a weak carbon oxide H-bond (C-H···O) can be found on both
ATP and ADP actin structures from Oryctolagus. Based on the ab initio modeling of Dic-
tyostelium actin structures, the His73/Gly158 binding interaction is much higher in ADP
actin (3A5L) than in ATP actin (3A5M). The His73/Gly158 binding interactions from within
the ATP state to the ADP state for drosophila actin structures are close to each other, and
both present a positive binding interaction (9.4~9.65 kJ/mol), which is due to the lack of
side-chain methylation, as discussed in the last section.
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denote the binding energy of the corresponding actin structure. Color key: O, red; C, gray; N, blue;
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It can be found that the ATP-actin structures do not necessarily experience an H-bond
interaction between His73 and Gly158. ADP-actin can also present a highly stabilized
His73/Gly158 interaction, which confines the material exchange pathway during F-actin
polymerization and depolymerization. The molecular mechanisms for actin structure
conformational changes in material exchange are still cryptic in biophysics analyses. More
ab initio modeling of the interactions between other keynote residues concerning nucleotide-
binding states should be developed to obtain more convincing evidence on the prominent
conformation changing mechanisms which directly regulate nucleotide exchange processes
and affect F-actin dynamics in cellular processes.

3. Materials and Methods

The interaction between the residues in the abovementioned actin structures is difficult
to characterize using classic molecular dynamics simulation. Ab initio quantum chemistry
methods can provide more information about the variation of weak interaction change in
different states [12]. Freedman, et al., also used the ab initio modeling method to study the
dynamics of ATP hydrolysis in Actin [13].

All the ab initio calculations were performed using the Gaussian09 package [14]. A
Density Functional Theory (DFT)-level method B97D [15], with a basis set of 6-31G, was
employed to accurately describe long-range dispersion during geometry optimization.
Single point energy calculations are then performed at the Gaussian-2 (MP2/6-311++G**)
level [16]. The basis set superposition error [17] was also calculated to guarantee the
accuracy of the characterization of the weak chemical interactions. The binding energy (Eb)
between the His73 and Gly158 is defined as:

Eb = Ecomb − EHis73 − EGly158 + Ebsse (1)

where EHis73, EGly158, and Ecomb represent the energies of the isolated His73, Gly158, and
the combined super-molecule, respectively, and Ebsse denotes the basis set superposition
error. The calculated binding energies between His73 and Gly158 were used to evaluate
the stability of the atomistic networks of actin monomers with different nucleotide and
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His73 side chain methylation states. The molecular visualizations were carried out using
VMD [18] and Avogadro [19] software.

To understand the role of His73 side chain methylation in nucleotide exchange in
F-actin dynamics, six Oryctolagus skeletal muscle actin with different methylation states
were first selected. Three of these crystal structures were of the methylated His73, including
1ATN [20], 1Y64 [21], and 2A3Z [22]. The other three actin structures were of unmethylated
His73, including 2FF6 [23], 2V52 [24], and 3BUZ [25]. All of these six actin macromolecules
were in the state of ATP binding. It should be noted that the six-protein structures are
divided into two groups to reflect the influence of His 73 methylation in natural proteins.
Therefore, no analysis homology structures were designed in this study.

An H-bond between His73 and Gly158 was reported to be important in stabilizing the
molecular structures of actin monomers before ATP hydrolysis [8,11]. To validate the source
of the critical interaction between His73 and Gly158 in F-actin dynamics, another three
groups of representative actin structures with different nucleotide states were also selected
for ab initio modeling. The molecular structures in each actin group can be independently
determined from both ATP- and ADP-actin monomers under similar laboratory conditions
and are provided in Table 3. It should be noted that the His73 side chains on 2HF3 and
2HF4 are unmethylated.

Table 3. The structural information of the selected actin structures in Pi release mechanisms analysis.

PDB ID Nucleotide State Methylation Sources Reference

1NWK ATP Yes Oryctolagus Dominguez, et al.
2001, 2003 [5,6]1J6Z ADP Yes

3A5M ATP Yes Dictyostelium Murakami, et al.
2010 [8]3A5L ADP Yes

2HF4 ATP No Drosophila Rould, et al.
2006 [7]2HF3 ADP No

4. Conclusions

In the present study, we employed the ab initio method to investigate the structural
significance of His73 in F-actin dynamics. The ab initio characterization of the binding
energy between His73 and Gly158 in actin monomers suggests that the methyl group on
the His73 side chain contributes to the structural stability of atomistic networks in the
nucleotide state-sensing region of actin monomers and confines the pathway of material
exchange in F-actin dynamics. However, the potential His73/Gly158 H-bond breaking
mechanism for the formation of the Pi release pathway is not obligatory during F-actin
depolymerization. As a quantum mechanics-level method, ab initio modeling is the first
method ever employed to understand the structural significance of His73 in F-actin dynam-
ics and shows great potential to understand various structural basis findings associated
with dynamic cellular processes.
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