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A high OXPHOS CD8 T cell subset is predictive of
immunotherapy resistance in melanoma patients
Chuan Li1, Yee Peng Phoon2, Keaton Karlinsey1, Ye F. Tian2, Samjhana Thapaliya2, Angkana Thongkum2, Lili Qu1, Alyssa Joyce Matz1,
Mark Cameron3, Cheryl Cameron4, Antoine Menoret1, Pauline Funchain5, Jung-Min Song5, C. Marcela Diaz-Montero2,
Banumathi Tamilselvan4, Jackelyn B. Golden3, Michael Cartwright3, Annabelle Rodriguez6, Christopher Bonin7, Anthony Vella1,8,
Beiyan Zhou1,8, and Brian R. Gastman2,9

Immune checkpoint inhibitor (ICI) therapy continues to revolutionize melanoma treatment, but only a subset of patients
respond. Major efforts are underway to develop minimally invasive predictive assays of ICI response. Using single-cell
transcriptomics, we discovered a unique CD8 T cell blood/tumor-shared subpopulation in melanoma patients with high levels
of oxidative phosphorylation (OXPHOS), the ectonucleotidases CD38 and CD39, and both exhaustion and cytotoxicity
markers. We called this population with high levels of OXPHOS “CD8+ TOXPHOS cells.” We validated that higher levels of
OXPHOS in tumor- and peripheral blood–derived CD8+ TOXPHOS cells correlated with ICI resistance in melanoma patients. We
then developed an ICI therapy response predictive model using a transcriptomic profile of CD8+ TOXPHOS cells. This model is
capable of discerning responders from nonresponders using either tumor or peripheral blood CD8 T cells with high accuracy in
multiple validation cohorts. In sum, CD8+ TOXPHOS cells represent a critical immune population to assess ICI response with the
potential to be a new target to improve outcomes in melanoma patients.

Introduction
The development of immune checkpoint inhibitor (ICI) therapies,
including anti-programmed cell death 1 (PD-1)/programmed
death-ligand 1 (PD-L1) and anti-cytotoxic T lymphocyte antigen 4
(CTLA4), represents a major advance in treating patients with
melanoma. However, not all patients respond to these therapies
(Garon et al., 2019; Garon et al., 2015; Larkin et al., 2019; Ribas and
Wolchok, 2018), indicating that additional strategies are needed to
improve responses. Among the immune repertoire, CD8 T cells
play critical roles in ICI therapies and thus are an important cell
type to focus on to improve immunotherapy (Wei et al., 2017).

We and others showed that tumor-infiltrating lymphocytes
(TILs), including CD8 T cells, express high levels of immune
checkpoint receptors that include PD-1, which can suppress cy-
totoxic T cell effector function (Maybruck et al., 2017; Pfannenstiel
et al., 2019; Wherry, 2011; Wherry and Kurachi, 2015; Zhang et al.,
2011). These TILs often display so-called exhausted behaviors
characterized by antigen unresponsiveness and reduced cytotoxic
effector function (Sharma et al., 2017; Wherry, 2011; Wherry and
Kurachi, 2015). While therapeutic blockade of PD-1/PD-L1 and/or

CTLA4 can revive effector T cell function, this is not always
complete and may explain the lack of anti-tumor therapeutic ef-
ficacy (Larkin et al., 2019; Wei et al., 2018; Zimmer et al., 2017).

Importantly, CD8 T cell tumor infiltration remains one of the
most correlated factors for anti-PD-1/PD-L1 immunotherapy
response across cancer types, as well as tumor mutational bur-
den and high PD-1/PD-L1 expression levels (Gros et al., 2014; Lee
and Ruppin, 2019; Samstein et al., 2019). Today, no predictive
model of ICI response exists that is robust enough to implement
in the treatment algorithm for melanoma patients (Agur et al.,
2016; Kogan et al., 2012; Liu et al., 2019). Other studies have
focused on gene expression and transcriptomic data of T cells to
predict patient response to anti-PD-1 therapy (Auslander et al.,
2018; Gide et al., 2019; Hugo et al., 2016; Sade-Feldman et al.,
2018a); these strategies required invasive biopsies and resulted
in moderate prognostic value (Auslander et al., 2018; Hugo et al.,
2016; Topalian et al., 2016).

Data from the National Cancer Institute (NCI) surgery branch
indicate that there are overlapping CD8 subpopulations both in
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the TIL and in the periphery, which was recently corroborated at
the transcriptomic level (Fairfax et al., 2020; Gros et al., 2016;
Wu et al., 2020). Comparing our studies of tumor-associated
dysfunctional CD8 T cells with suppressor cell function and
those from the NCI surgery branch (both studies identified PD-1
expression as critical) led us to hypothesize that this population
exists in both the tumor and peripheral blood (Gros et al., 2016;
Gros et al., 2019; Pfannenstiel et al., 2019; Zhang et al., 2011). We
further hypothesized that identification of such a subpopulation
would elucidate new genetic mechanisms that could be used to
not only monitor treatment outcome but also identify future
therapeutic targets. Indeed, our single-cell transcriptome com-
parisons between purified CD8 T cells from TILs and peripheral
blood lymphocytes (PBLs) from melanoma patients identified
several CD8 subpopulations and underlying genetic programs.
Specifically, we identified three overlapping populations in TILs
and PBLs. One of the populations displayed unexpectedly high
levels of cytotoxic and exhausted markers (e.g., PD-1), as well as
increased levels of metabolic activities, specifically oxidative
phosphorylation (OXPHOS). These high-OXPHOS CD8 T cells
also have elevated levels of CD38/CD39 ectonucleotidases (we
coin these CD8+ TOXPHOS cells). To further validate our findings,
we isolated PBL and TIL CD8+ TOXPHOS cells from melanoma
patients and confirmed that they are more pronounced in ICI-
resistant patients with elevated bioenergetics, including in-
creased glucose metabolism, ATP production, and mitochondria
activity. We then generated a predictive ICI therapy response
model using these CD8+ TOXPHOS cells that can be assessed by
either TILs or PBLs. Ultimately, we generated a gene expression
profile (GEP), which was validated using both published clini-
cally annotated transcriptomic data of CD8 TILs and a new co-
hort of our patients, including interrogating their CD8 PBLs.
Thus, through comprehensive and careful gene expression
analysis of individual CD8 T cells, we establish an ICI response
GEP that can be employed via a blood-based approach. Our work
establishes an ICI-predictive platform, and the CD8 subpopula-
tion that forms the basis of this assay illustrates new targetable
pathways to potentially enhance immunotherapy and improve
outcomes of melanoma patients.

Results
High heterogeneity of CD8 T cells with shared clusters in CD8
PBLs and TILs in melanoma
To develop a noninvasive method to predict effective immuno-
therapeutic responses, we carefully characterized individual
CD8 T cells from tumors and peripheral blood of melanoma
patients. We performed single-cell RNA sequencing (scRNaseq)
on isolated CD8 T cells from both melanoma PBLs (CD8-mPBLs)
and TILs (CD8-mTILs) from eight advanced melanoma patients
(Fig. 1 and Table S1). Compared with recent scRNaseq studies of
melanoma (Sade-Feldman et al., 2018b), our dataset is uniquely
tailored to capture data from CD8 T cells with paired PBLs and
TILs from the same patient. Through barcoding and combined
analyses, we ensured matched processing and efficient down-
stream deconvolution of both samples. CD8-mPBLs and CD8-
mTILs from the same patient were set as pairs and analyzed

with flow cytometry for their proportion correlation analyses,
and consistent with previous reports, the proportions of total
CD8 T cells in PBLs were moderately correlated with those in
TILs (R = 0.29) among the examined patients (Fig. 2 A and Fig.
S1; Shao et al., 2014).

Next, we combined scRNaseq results of 173,061 CD8-
mPBL/mTILs and performed transcriptomic analysis. Using
t-distributed stochastic neighbor embedding (t-SNE) visualiza-
tion, we uncovered a high level of heterogeneity of CD8 T cells in
CD8-mPBL/mTIL, with a total of 20 clusters (clusters with <1%
of cells in all samples were removed for further analysis; Fig. 2,
B–D; Fig. S1; Fig. S2; and Table S2). Interestingly, both CD8-
mTILs and CD8-mPBLs appeared activated in TCR signaling,
components of the phosphatidylinositol 3-kinase pathway, CD28
and OX40 signaling, MHC II and NF-κB signaling, and the NRF2-
mediated oxidative stress response (Fig. 2 E, Table S3, and Table
S4), based on the significant differential expression of genes
(false discovery rate [FDR]–adjusted t test, P < 0.05) between
CD8-mTILs and CD8-mTILs. In addition to enhanced pathways
for T cell activation, CD8-mTILs exhibited traits of T cell ex-
haustion, stress responses, apoptosis, and suppressed immune
checkpoint and PPAR signaling pathways (Fig. 2 E and Table S3).
These observations are a testament to scRNaseq, showing that
tumor-bearing conditions impart a systemic impact on circu-
lating immune cells in addition to tumor-infiltrating cells (Bai
et al., 2015; Lee et al., 1999; Manjarrez-Orduño et al., 2018).

CD8-mPBLs and CD8-mTILs were quite distinct, with only
three clusters shared between them (Fig. 2 D and Fig. 3 A). These
three CD8-mPBL/mTIL shared clusters (clusters 2, 6, and 15)
may permit tracking of CD8 T cells and help decipher their in-
tracellular programming when exposed to the tumor environ-
ment, thus facilitating identification of important factors that
dictate patient responsiveness to immunotherapy. To test this,
we first analyzed the transcriptomic correlation of clusters 2, 6,
and 15 with all other clusters and found that cluster 2 showed
similarity with most other clusters, with the exception of clus-
ters 6 and 15 (Fig. 3 B). Cluster 6 showed similarity with clusters
5, 12, 14, 18, and 20, whereas cluster 15 was similar to clusters 4,
9, 16, and 19. This nonoverlapping correlation of these three
clusters supports their unique cellular programs and potential
functions. Indeed, the 3D plot of all cells clearly depicts their
distinct transcriptional profiles (Fig. S2, A–C). Next, we ex-
tracted signature genes (FDR-adjusted t test, P < 0.05) of the
clusters (Fig. 3, C and D; and Table S5) that were found in all
eight patients (Fig. S2, E and F) and performed a pathway
analysis (Fig. 3 E, Table S6, and Table S7).

Cluster 2 expressed genes consistent with naive or resting
T cell behavior, such as similar activation levels of DNA
damage checkpoint regulation. Housekeeping RhoGDI (Rho GDP–
dissociation inhibitor) pathways that are necessary to inhibit
T cell activation were also highly active in cluster 2 cells
(Allenspach et al., 2001; Burkhardt et al., 2008; Lin et al., 2003;
Fig. 3 E). Interestingly, HIPPO signaling was activated in cluster
2 (Fig. 3 E), which includes the key inhibitor MOB1A, subunits of
protein phosphatase, and 14–3-3, confirming the housekeeping
function of these genes is consistent with that of naive or resting
CD8 T cells. In addition, cluster 2 also contained suppressed
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Cdc42 signaling and T cell exhaustion signaling pathways that
would ensure normal cell cycle and prevention of apoptosis (Fig.
S2 F and Table S4).

Cluster 15 displayed pathway signatures mostly opposite to
clusters 2 and 6, with prominent activation of OXPHOS, as well
as activated glycolysis and NER (nucleotide excision repair)
pathway (Fig. 3 E). Contrary to clusters 2 and 6, inhibition of
HIPPO and RhoGDI pathways were also observed in cluster 15
(Fig. 3 E). Not surprisingly, T cell exhaustion markers were
highly up-regulated in cluster 15, including the immune check-
point molecules PD-1, TIM-3, LAG3 (Fig. 3, D and F), LAYN, and
CXCL13 (Fig. 3 F). Remarkably, ectonucleotidases CD38 and
CD39, which are involved inNAD+ and ATP regulation, were also
significantly up-regulated in cluster 15 (Fig. 3 F). These char-
acteristics of having not only expression of exhaustion markers
but also clear metabolic activities add to our previous work of
functionally suppressive CD8 T cells with high levels of check-
points (Pfannenstiel et al., 2019).

Compared with clusters 2 and 15, cells in cluster 6 were
transcriptionally suppressed, with fewer than 100 genes (out of
11,000 total detected gene IDs in the whole dataset) up-regulated
compared with all other clusters. Furthermore, most signaling
pathways were inhibited or had low activation, and only a few
pathways remained relatively active, such as the enhanced
Sirtuin, RhoGDI, and sumoylation pathways. These analyses
suggested that some CD8 T cells in mPBLs resemble CD8 T cells
in mTILs, with three similar populations that are transcrip-
tionally distinct from each other. To examine the potential bias
effect of different numbers of T cells from different patients, we

also analyzed our dataset with a t-SNE process using an equal
number of cells from each patient. Consistently, we not only
observed comparable cluster distributions but also were able to
identify the three PBL/TIL shared clusters with similar pheno-
types and properties (Fig. S3). Thus, we show that that these
three overlapping clusters are not due to an artifact of sample
selection, a multidimensional reduction process, or a unique
effect of a limited number of patients but are a phenomenon of
the whole melanoma cohort in this study.

Identification of three transciptomically distinct shared PBL/
TIL clusters
To further evaluate the cell state transition, we randomly se-
lected equal number of cells (1,000 cells from each sample) to
perform the trajectory analysis using the Monocle package (Qiu
et al., 2017) to reveal cell fate differentiation along the branch
point trajectories. The overall distribution of CD8-mPBLs and
CD8-mTILs formed a three-branched plot, with cluster 2, 6, or 15
at the tip of each branch (Fig. 4, A and B). Interestingly, CD8-
mPBL continuously span from cluster 2 to cluster 15, with few
isolated cells extending toward cluster 6, suggesting that cluster
2→15 is a tumor-specific pattern (Fig. 4, B and C). Further, CD8-
mTILs are located along all three branches (cluster 2→15, cluster
2→6, and cluster 15→6), suggesting that CD8-mPBLs in cluster 6
are likely thosemigrating to and from tumors and the periphery.
Since cell trajectory is calculated based on overall transcriptome
profiles of each cell and assigned their relative position based on
relative simulation, the location of clusters 2, 6, and 15 on the
plot further confirms that these clusters represent the three

Figure 1. Schematic overview of the study. Single-cell transcriptomic analyses of CD8 T cells in PBLs (CD8-mPBL) and TILs (CD8-mTIL) from eight
melanoma patients revealed three distinct shared cell subsets and unique genetic programming in both CD8 PBLs and TILs that possessed high-OXPHOS
dysfunctional and inactive dormant polarization. The figure shows the development of a novel immunotherapy response predictive model (NiCir) using a PD-1
coexpression gene profile, cancer-induced molecular programming, and transcriptome results.
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most distinct transcriptomic patterns, suggesting three distinct
function types. This adds to the importance of clusters 2, 6, and
15 as the only clusters that have overlapping populations be-
tween TILs and PBLs. Setting the branch of cluster 2 as root in
Monocle, we tracked whole-transcriptome gene expression
changes along the trajectory branches and identified gene clus-
ters that were altered along the pseudotime progression from

cluster 2→6 or cluster 2→15 (Fig. 4 D). Interestingly, immune
checkpoint genes, including CTLA4, PD-1, and LAG3, were
highly expressed at the cluster 15 branch, whereas the PIK3IP1
gene, which is important for suppressing T cell activation, dis-
played an increased expression pattern in the cluster 2→6 di-
rection (Uche et al., 2018). In contrast, genes contributing to
apoptosis and T cell exhaustion pathways (CALM1, HLA-DQA1,

Figure 2. scRNaseq profiles of 173,061 CD8 T cells from eight melanoma patients’ PBLs (CD8-mPBL) and TILs (CD8-mTIL). (A) Correlation of CD8 T cell
proportions in PBLs and TILs from eight melanoma patients (ID #1–8). (B) t-SNE clustering of scRNaseq data of CD8-mPBL and CD8-mTIL from melanoma
patients. (C) Distribution of clusters in CD8-mPBL or CD8-mTIL. (D) Proportion of CD8-mPBL and CD8-mTIL in each cluster. (E) Pathways enriched in CD8-
mPBL or CD8-mTIL; analyses were conducted with whole-transcriptome using QIAGEN IPA. The log P value, z score, and dot size represent significance and
activity of pathway enrichment and the number of genes found in that pathway, respectively.
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Figure 3. Characteristics of the three clusters in 173,061 peripheral and tumor-infiltrating CD8 T cells from eight melanoma patients. (A) Among a
total of 20 major clusters, three (clusters 2, 6, and 15) contained comparable proportions of cells from CD8-mPBLs and CD8-mTILs. (B) Similarities of the three
shared clusters to each of the other clusters (the top 50% nearest mathematical distances between clusters are shown as ribbons). (C) Heatmap of signature
genes for each cluster of the overall datasets showing 472 genes that were significantly enriched in at least one cluster. (D) Violin plots showing expression
levels of representative signature genes in shared clusters (c2, c6, and c15). (E) Pathways enriched in clusters 2, 6, and 15; analyses were conducted with
whole-transcriptome using QIAGEN IPA. The log P value, z score, and dot size represent significant activity of pathway enrichment and the number of genes
found in that pathway, respectively. (F) Enrichment of exhausted/dysfunctional markers in the CD8 PBL/TIL shared cluster 15. c, cluster; NER, nucleotide
excision repair.
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HLA-DRA, CTLA4, PD-1, LAG3, TIGIT, and TIM-3) were highly
enriched in cluster 15, but not in cluster 2 or 6 (Fig. 4, D and E;
and Fig. S4).

By pseudotemporal trajectory analysis, we discovered three
distinct programs that influence the gradual transition between
the PBL/TIL shared clusters 2, 6, and 15 (Fig. 5 A). In CD8-mTILs,
program 1 progressively transforms naive T cells (cluster 2) into

a more “exhausted” CD8 T cell state (clusters 13, 20, and 19)
along the trajectory and eventually transition to cluster 15 at the
most distal of the trajectory branch (Fig. 5 A). While program
2 drives the transition of naive CD8 T cells to cluster 6, program
3 transforms cluster 15 to cluster 6 (Fig. 5 A). However, in CD8-
mPBLs, only one program induces CD8 T cell transition, where
program 1 is shown to trigger the transition of naive CD8 T cells

Figure 4. Trajectory analyses reveal distinct cell fate of shared blood/tumor-infiltrating CD8 T cells. Trajectories were constructed using equal number
(1,000) of peripheral and tumor-infiltrating CD8 T cells from each patient. (A) Trajectory position of CD8-mPBLs and CD8-mTILs along pseudotime branches.
(B and C) Three common clusters in CD8-mPBLs and CD8-mTILs are located at the extreme end of each branch of the tripod-shaped trajectory plot of all
combined samples (B) or CD8-mPBLs or CD8-mTILs (C) on the whole-transcriptome trajectory consisting of 16,000 cells. (D) Heatmap showing genes that had
significant variations along the two branches of the trajectory, which were identified by the tool Monocle; each row represents one gene. (E) Pathway ac-
tivation distribution along the three trajectory branches.
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(cluster 2) to cluster 15 (Fig. 5 A). Of note, only program 1 sig-
nificantly fosters the transition of naive CD8 T cells (cluster 2)
into an exhausted CD8 T cell state (cluster 15) in both PBLs and
TILs, with other clusters distributed along the program transi-
tional states, indicating that CD8-mPBLs display certain molec-
ular and gene profiles resembling CD8-mTILs (Fig. 5 A).

Subsequently, we further analyzed the expression patterns of
cell surface proteins and cytokines, which are vital in dictating
CD8 T cell characteristics and functions in all the three programs
(1, 2, and 3). Cytokines or secreted polypeptides that are known
to maintain a resting T cell state, such as NOG and LTB, are

enriched in cluster 2, whereas secreted molecules associated
with T cell activation, such as CD40LG, CCL28, FLT3LG, TNFSF8,
and NRG2, displayed an extended pattern along program
1 (cluster 2→15). Cytokines important for a strong inflammatory
response in tumors are enriched at the cluster 15 end of program
1 (Fig. 5 B). Further, dynamic changes of cell surface receptors
also displayed similar patterns (Fig. 5 B). Overall, cluster 15 CD8
T cells expressed high levels of genes for MHC II (HLA-DRB1,
HLA-DKA, HLA-DPA1, and CD74), receptors for cell-to-cell in-
teraction (CD2, CD47, CD27, IL2RG, and CXCR3), and dysfunc-
tional markers and immune checkpoints such as PD-1, CTLA4,

Figure 5. Cancer-induced programs in peripheral and tumor-infiltrating CD8 T cells from eight melanoma patients. (A) Schematic summary of cluster
distributions along the trajectory branches and the three proposed cell programs. (B) Unique GEP of transcription regulators, membrane receptors, and
cytokines along programs 1 (cluster 2→cluster 15), 2 (cluster 2→cluster 6), and 3 (cluster 15→cluster 6) in CD8 T cells in melanoma patients. (C) GEP of multiple
checkpoint and TOX along the three proposed cell programs. c, cluster.
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LAG3, and CXCL13. A recent review reported that CXCL13 was
overexpressed in terminal dysfunctional CD8 T cells, suggesting
a positive correlation between CXCL13 and dysfunctional anti-
tumor efficacy (van der Leun et al., 2020). Interestingly, IL6R,
IL7R, and CCR7 were down-regulated from resting/naive cells
(cluster 2) to cluster 15 CD8 T cells (Fig. 5 B). More importantly,
we identified key immune checkpoint genes and transcription
factors along the three program directions in CD8-mPBLs and
CD8-mTILs (Fig. 5 C). For example, in these programs, we
identified TOX, which is a critical transcriptional factor that
reprograms and drives CD8 T cells into an exhausted state
during cancer progression and chronic infection (Mann and
Kaech, 2019). We found that TOX increases along program 1,
along with multiple checkpoints, and is highest in cluster 15 CD8
T cells (Fig. 5 C).

Trajectory analysis of PBL/TIL CD8 T cells illustrates how
metabolic pathways like OXPHOS differentiate cluster 15
compared with classic exhausted T cells
By transcriptomic analysis, we next investigated the metabolic
signaling in all clusters. Strikingly, we observed a clear pattern
of cell metabolic shifting during cell transition from naive or
effector state to a dysfunctional exhaustion state (Fig. 6). Among
all clusters, cluster 15 displayed elevated OXPHOS, glycolysis,
glucose, and lipid transportation activity (Fig. 6 A). Genes in-
volved in metabolic pathways, including OXPHOS, glycolysis,
glucose, and lipid metabolism, were up-regulated in multiple
clusters leading to cluster 15, such as PGK1, ATP5F1A, SLC2A1,
and LDLR (Fig. 6 A). In fact, cluster 15 had the highest cell
metabolic rate, with the most pronounced activation of glycol-
ysis and OXPHOS pathways (previously shown in Fig. 3 E; see
also Fig. 6, B–D). Remarkably, the OXPHOS pathway underwent
a more significant change relative to glycolysis that enabled cells
to transition from the state represented by cluster 2 to the state
represented by cluster 15 (Fig. 6 E). There is visible segregation
of a high OXPHOS and glycolysis activation state in clusters 4
(TILs), 15 (shared PBLs/TILs), and 16 (PBLs) from the other
clusters, with cluster 15 having the maximal activation of both
OXPHOS and glycolysis (Fig. S4 A).

Cluster 15, enriched with exhaustion markers (shown in
Fig. 4 D), has prominent levels of both OXPHOS and exhausted
markers (Fig. 6 F). Similar to cluster 15, we also observed high
OXPHOS and exhaustion levels in both clusters 4 and 16
(Fig. 6 F). On the other hand, clusters 14 and 9 in TILs have high
exhaustion levels but low OXPHOS activity (Fig. 6 F), thus in-
dicating that they are classical exhausted TILs (van der Leun
et al., 2020; Wherry and Kurachi, 2015). Commonly, exhausted
T cells have low or mild expression of cytotoxic genes, which is
very similar to clusters 4 and 9 (Fig. S4 B). However, we un-
expectedly observed that clusters 4, 15, and 16 are enriched with
cytotoxic genes (e.g., PRF1 and GZMB); in particular, IFN-γ is
elevated in cluster 15 (Fig. 3 D), suggesting that these three
clusters are distinctly different from classic exhausted T cells.
Overall, our data demonstrate that clusters 4, 15, and 16 con-
glomerate into a unique T cell subset characterized by high
exhaustion and OXPHOS states as well as increased cytotoxic
gene expression (Fig. 6 F; and Fig. S4, A–C).

We next examined the biological progression of the various
clusters based on their metabolic and transcriptional programs
using pseudotime trajectory analysis. Consistent with the data
shown in Fig. 3, we noticed a trifurcation of CD8 T cells into
three distinct branches: resting/naive (cluster 2 branch, in-
cluding clusters 1, 2, 12, 17, and 18), high OXPHOS with ex-
haustion markers (cluster 15 branch, including distal and related
clusters 4, 15, and 16 [circled in Fig. 6 G]), or inactive dormant
(cluster 6) cells. Other clusters are distributed along the program
transitional states (Fig. 6 H). These results suggest that tran-
scriptional programs in CD8-mPBLs have features similar to
those found in CD8-mTILs, specifically in the formation of
cluster 15, with clusters 4 and 16 having the closest proximity to
cluster 15 (Fig. 6 H).

To functionally identify these unique subset of T cells, we
looked for potential cell surface markers that could differentiate
the transcriptionally related clusters 4, 15, and 16 from other
clusters. By trajectory plot, we observed a gradual enrichment of
PD-1, CD38, and CD39 expression leading toward cluster 15, in-
ferring that these markers could be used for stratification (Fig.
S4 D). We indeed found that both CD38 and CD39 are able to
distinguish clusters 4 and 15 from other clusters, but not in
cluster 16, which is found in PBLs (Fig. 6 H). Consistently,
clusters 4 (TILs) and 15 (shared PBLs and TILs) also have high
levels of combined expression of PD-1 and CD38/CD39, but not
cluster 16, which may have to do with not being under the direct
influence of the tumor microenvironment (Fig. S4, E and F).
Together, clusters 4, 15 and 16 form a unique spectrum of CD8
T cells defined transcriptionally by their distinct features of high
OXPHOS, exhaustion (e.g., PD-1), and cytotoxic gene expression,
which we coin CD8+ TOXPHOS. However, for cellular-level eval-
uation, to validate these transcriptional findings, the ability to
identify PD-1, CD38, and CD39 expression will at least allow for
studies of CD8+ TOXPHOS clusters 4 and 15.

High-bioenergy CD8 T cells in refractory melanoma patients
We reported that many melanoma patients have a significant
number of CD8 TILs expressing high levels of immune check-
points and that these same cells have active immune suppres-
sion of autologous healthy lymphocytes (Pfannenstiel et al.,
2019). In our single-cell transcriptomic analysis, we found that
CD8+ TOXPHOS cells have the strongest metabolic signal within
CD8 TILs. These findings led us to explore whether purified CD8
TILs from patients enriched with CD8 T cell subsets expressing
high levels of immune checkpoints have a metabolic rate. Due to
the limitations of the Seahorse glucose oxidation assay, which
requires a large number of cells, we did a simple comparison as a
starting point with healthy T cells.

We first performed the Seahorse assay to validate the in-
volvement of glucose oxidation during glycolysis by determining
the oxygen consumption rate (OCR) of healthy CD8 PBLs and
CD8+PD-1+ TILs (Fig. 6 A shows that CD8+ TOXPHOS cells account
for the largest signal of glucose transportation in melanoma
patients’ CD8 T cells). Melanoma CD8 TILs were indeed fueled
by glucose oxidation as validated by higher OCR compared with
healthy PBLs (Fig. 7 A). Of note, these CD8 TILs not only de-
pended on glucose oxidation but also had high initial OCRs (Fig. 7
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A). Interestingly, CD8 TILs had strong dependency on oxidation
of glucose, as demonstrated by increased glucose dependency
rate (Fig. 7 B). Glycolysis, in concert with OXPHOS, generates
energy through ATP production. Thus, we measured ATP

production in TILs and PBLs of melanoma patients. Using an
ATP assay, we validated that peripheral CD8 T cells of ICI-
nonresponder melanoma patients produced significantly
higher ATP as compared with responders (Fig. 7 C), although we

Figure 6. Cell metabolism landscape of CD8 T cells in melanoma. (A) Distribution of representative signature genes in glycolysis, OXPHOS, glucose, and
lipid transportation by trajectory analyses. (B–D) t-SNE plots showed activation of glycolysis and OXPHOS pathways in peripheral or tumor CD8 T cells (B) or
along trajectories of PBLs and TILs (C and D). (E) Transition of cell metabolism along the pseudotime development, with arrows indicating increasing activity.
(F) z score of T cell exhaustion signaling versus OXPHOS signaling of the T cell clusters. (G) CD8+PD-1+CD38+CD39+ T cell cluster with high OXPHOS level
(CD8+ TOXPHOS) on the trajectories in CD8-mPBL and CD8-mTIL. (H) z score of CD38 and CD39 expression versus OXPHOS signaling of the T cell clusters.
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do note that the changes are not as striking in PBLs (P < 0.01)
compared with TILs (P < 0.0001). Our biobank of surgical
specimens contains TILs mainly from two sources: (1) ICI non-
responders and (2) patients who have not yet undergone sys-
temic therapy (naive). CD8 TILs from nonresponders produced
significantly higher ATP compared with naive patients (Fig. 7 C).
The reduction of differential membrane potential is equivalent
to a reduced capacity for ATP production and other related
mitochondria functions (Little et al., 2018). Hence, to answer

whether these high-bioenergy-state CD8 T cells were generated
by the CD8+ TOXPHOS cell subpopulation within them, we per-
formed flow cytometry combined with metabolic analyses using
tetramethylrhodamine methyl ester (TMRM), a fluorescent dye
that accumulates in the functional mitochondria caused by dif-
ferential membrane potential, as a marker of OXPHOS (Davis
et al., 2020; Scaduto and Grotyohann, 1999). PBL and TIL CD8
T cells were costained with enriched-surface markers iden-
tified in our scRNaseq analysis, including PD-1, CD38, and CD39

Figure 7. High bioenergy of CD8 T cells in PBLs of refractorymelanoma. (A) Glucose OCR of CD8+PD-1+ TILs was higher in melanoma compared with CD8
T cells of healthy PBLs by seahorse assay (in triplicate). (B) Glucose dependency rate of melanoma TILs was significantly elevated (in triplicate). (C) High ATP
level of CD8 T cells in nonresponders for TILs and PBLs (PBLs: naive n = 5, responder n = 5, nonresponder n = 5; TILs: naive n = 4, nonresponder n = 4).
(D) Schematic representation of flow cytometry of TMRM showing low TMRM (TMRMlo) and high TMRM (TMRMhi) for naive (left) and nonresponder patients
(right) in TILs. (E)Mitochondria activity measured by normalized TMRMhi MFI of PD-1+, PD-1+CD39+, and PD-1+CD38+CD39+ T cell subpopulations in PBL CD8
T cells from naive (n = 4), responder (n = 5), or nonresponder (n = 7) patients. Nonresponders showed significant higher normalized MFI in peripheral blood.
(F) Significant elevation of mitochondria activity by normalized TMRMhi MFI in PD-1+CD39+ and PD-1+CD38+CD39+ T cells of nonresponder (n = 6) patients in
TIL CD8 T cells as compared with naive cells (n = 5). TMRMhi MFIs in E and F were normalized to intensity of MitoTracker as an indicator of mitochondrial mass.
*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001 unpaired t test (two tailed). Error bars represent SEM.
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(Fig. S5 D), and MitoTracker to determine the mitochondrial
membrane potential relative to mitochondrial total mass.

Although expression of CD38 and CD39 in CD8+PD-1+ T cells
does help characterize the CD8+ TOXPHOS cells, additional tran-
scriptional assays are required for exact determination of this
immune population. We compared CD8+ TOXPHOS cells to other
CD8 subpopulations; they expressed a unique transcriptomic
signature, even when compared with effector and central
memory cells as well as exhausted CD8 T cells (Fig. S5 A). Still,
within this PD-1+ subgroup (that have high CD38/39), we ob-
served increased levels of OXPHOS (Fig. 7 D), consistent with
our CD8+ TOXPHOS cells designation, which is distinct from the
classically defined PD-1+ exhausted T cells, which have been
shown to have impaired mitochondrial function (Schurich et al.,
2016; Vardhana et al., 2020). Within this population of CD8+PD-
1+CD38+CD39+ T cells, we illustrate two levels of TMRM: (1) high
TMRM (TMRMhi) and (2) low TMRM (TMRMlo; for a schematic
representation of flow cytometry in TILs, see Fig. 7 D). Nonre-
sponder patients mainly have TMRMhi and negligible TMRMlo

levels, while naive patients have higher TMRMlo but lower
TMRMhi in TILs (Fig. 7 D). Although nonresponders have higher
TMRMtotal in PBLs, no obvious difference was observed in
CD8+PD-1+CD39+ and CD8+PD-1+CD38+CD39+ TILs (Fig. S5 B).
TMRMlo in CD8+PD-1+CD39+ and CD8+PD-1+CD38+CD39+ T cells
in both PBLs and TILs do not stratify for nonresponders (Fig. S5
C). Most importantly, significantly higher mitochondrial mem-
brane potential was observed in PBL CD8+PD-1+CD39+ and
CD8+PD-1+CD38+CD39+ T cells of nonresponders of melanoma
patients (Fig. 7 E). However, CD38 as a marker did not correlate
with high mitochondrial membrane potential in PBLs (data not
shown). In TILs, nonresponders have elevated mitochondrial
membrane potential in both CD8+PD-1+CD39+ and CD8+PD-
1+CD38+CD39+ cells, but not in CD8+PD-1+CD38+ T cells, com-
pared with naive melanoma patients (Fig. 7 F).

Importantly, our data suggest the high possibility of strati-
fying responders and nonresponders using PBL-based metabolic
activity assays (ATP and TMRM). However, we did not observe
significant stratification between patients before therapy (na-
ive) and after failed ICI therapy (nonresponders). The likely
reason is that the naive group contains both responders and
nonresponders, masking the stratifying effect. With longer
follow-up, we will compare naive patients who did or did not
respond to ICI; this is part of an ongoing and distinct effort.
Further, these findings highlight the possibility that these met-
abolic pathways are not only phenotypic but also functional.
Therefore, targeting them to modulate CD8+ TOXPHOS cells could
be a novel way to improve ICI therapy.

High-accuracy predictive model for immunotherapy response
Based on the association between CD8+ TOXPHOS cells and ICI
resistance, we further developed a predictive model of immu-
notherapy responses using signature genes enriched in cluster
15–like cells, which include not only clusters 4 and 15 but also
PBL cluster 16. To screen for a predictive immunotherapy re-
sponse gene signature, we first performed whole-transcriptome
gene coexpression analyses in the three unique PBL/TIL shared
populations (clusters 2, 6, and 15). Genes that displayed

significant positive correlation with PD-1 expression were
highly expressed in clusters 4 and 16 but weremost pronounced
in cluster 15 (Fig. 8 A and Fig. S5 D). By gene ontology analyses,
genes coexpressed with PD-1 in CD8+ TOXPHOS cell clusters were
enhanced in the mitochondrial dysfunction pathway, Cdc42
signaling, and CTLA4 signaling (Fig. 8 B). Interestingly, OX-
PHOS was the most activated pathway in cluster 15–like cells,
further substantiating the importance of immune metabolism
in checkpoint-based immunotherapy.

To develop a GEP predictive of immunotherapy response, we
selected the most significantly elevated top 20 coexpressed with
PD-1 (Fig. 8 A). One of these is the immune checkpoint LAG3,
which binds to MHC II and is associated with exhausted CD8
T cells in human tumors (Chen and Mellman, 2017). Another,
GAPDH, a key enzyme of glucose metabolism, was overex-
pressed in CD8+ TOXPHOS cells. We also identified several genes
less known for their roles in cancer ICI therapy (including ser-
glycin, a small proteoglycan important for cytotoxic T cell se-
cretory function, and cystatin F [CST7], a cysteine peptidase
inhibitor) that may regulate immune cell function in tumors
(Grujic et al., 2005; Perišić Nanut et al., 2017). Besides CST7,
CD74 and HLA genes (HLA-A and HLA-C) known to be crucial
for CD8 T cell function were also found to be up-regulated in
both CD8 PBLs and TILs with high PD-1 coexpression.

Using the 21-gene GEP (including PD-1), we built a logistic
regression model using a training cohort from a published study
with scRNaseq dataset of TILs from melanoma patients under-
going immunotherapy (GSE120575; Sade-Feldman et al., 2018b).
Our model is designed to predict the status of each T cell in a
patient. Then, the proportion of nonresponding cells in each
patient was rescaled to 0∼10, depicting the nonresponse score
(NRS; see Materials and methods for details). A median NRS of 5
was selected as the threshold score, and patients with an NRS
>5.0 were considered nonresponders. Using the training dataset,
we predicted the ICI response in 11 of the 12 patients, yielding
an accuracy of 92%, with nonresponders having significantly
higher NRSs than responders (t test, P = 0.02; Fig. 8 C).

To further validate ourmodel, we applied it to four additional
datasets, including one published dataset and three independent
validation patient cohorts from our institution. Due to the lim-
ited availability of clinical immunotherapy response data from
public repositories, we validated our model using a published
scRNaseq dataset of TILs from nonmelanoma skin cancer pa-
tients receiving anti-PD-1 immunotherapy with only one pre-
diction error (GSE123813; dataset 1; Fig. 8 C; Yost et al., 2019).
Next, we went on to further examine the accuracy of our model
using patient cohorts from our institution. We first employed
scRNaseq of CD8+PD-1+ T cells from five nonresponder patients
with matched PBLs–TILs (dataset 2: five PBLs and five TILs; note
three of these patients [six samples, paired TILs–PBLs] were
from our original discovery set [GSE138720]), and then we
performed scRNaseq on two more refractory patients’ TIL and
PBL CD8 T cells (GSE153098). In addition, we tested the model
using a bulk RNA sequencing (RNaseq) platform. Based on our
power calculation, 14 blood samples are required to achieve a
power of 0.9 (see Materials and methods for details). To ensure
we achieved this, we collected and performed bulk RNaseq on a
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Figure 8. Immunotherapy response prediction model NiCir built on PD-1 coexpression genes. (A) Heatmap of PD-1 and the top 20 coexpressed genes of
CD8-mPBL– or CD8-mTIL–dominated clusters and shared clusters. (B) Gene ontology enrichment of the top 1,000 genes correlated mostly with PD-1 ex-
pression in the three shared clusters. (C) Performances of NiCir’s prediction in the training dataset (GSE120575) of melanoma patients from a previously
published study and three additional validation datasets: one scRNaseq dataset of nonmelanoma skin cancer from a previous study (dataset 1, GSE123813) and
melanoma PBL samples collected at the Cleveland Clinic core (dataset 2, GSE138720 and GSE153098; and dataset 3, GSE152590 and GSE171256). The P values
of NRSs between true responders and true nonresponders were calculated by t test (P < 0.05 as significant). (D) Performance of NiCir on the validation
datasets indicated by receiver-operating characteristic (ROC) curve and AUC value for 51 samples.
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total of 32 blood samples (15 responders and 17 nonresponders)
from melanoma patients (dataset 3; Fig. 8 C) and four lung
cancer patients (dataset 4; Fig. S5 E) treated with immuno-
therapy. Remarkably, combining analysis of validation sets 1–3,
our model achieves 88% accuracy (note, in the melanoma, it
achieved accuracy of 89% in set 2 and 88% in set 3, Fig. 8 C).
Surprisingly, it achieves 100% accuracy in a small cohort of lung
cancer patients (not included in the overall accuracy calculation
of melanoma; see Fig. S5 E). These results validate our GEP
model as an efficient predictor of immunotherapy responses;
this algorithm is effective whether the source material is from
the tumor or obtained less invasively using blood-based ap-
proaches. In all of the validation cohorts, our model assigned
significantly higher NRSs to nonresponders than responders (t
test, P = 1.56 × 10−8; Fig. 8 C) and effectively discriminated them
with an area under the receiver-operating characteristic curve
(ROC-AUC) of 0.90 (Fig. 8 D). Given that blood-based ap-
proaches have greater potential for utility in oncology, as they do
not require invasive acquisition of CD8 TILs, we termed our
prediction platform, for simplicity, the noninvasive circulating
T cells model (NiCir). Collectively, our validation data demon-
strate that NiCir has high predictive accuracy in TILs or PBLs
and can be applied to multiplatform datasets. Of note, given
NiCir’s ability to predict ICI responses from peripheral blood
CD8 T cells, it can now be used as a noninvasive tool to predict
immunotherapy responses in the clinical setting.

Discussion
For a number of years, our group has defined tumor-induced
dysfunctional changes in infiltrating T cells (Maybruck et al.,
2017; Montes et al., 2008; Pfannenstiel et al., 2019; Pfannenstiel
et al., 2018; Zhang et al., 2011). Our recent work showed that in
cancers like melanoma, a large percentage of tumor-associated
CD8 T cells express high levels of checkpoints like PD-1, and
these same cells can actively suppress other immune effectors
(Pfannenstiel et al., 2019). Thus, expressing classical exhaustion
markers (e.g., checkpoints) does not necessarily define a CD8
T cell as anergic and can be associated with a form of active
dysfunction; little is known about this phenomenon outside of
nonmalignant pathologies (Flippe et al., 2019; Van Kaer, 2010).
Instead, targeting suppressor cells like CD4 T regulatory cells,
myeloid-derived suppressor cells, and M2-macrophages remains
the main focus in the majority of cancer studies (Klug et al., 2013;
Liu et al., 2018; Ugel et al., 2015). CD8 T cells, a critical player in
immunotherapy effectiveness, have been extensively studied, but
mainly in terms of their exhaustiveness or inefficiency of tumor
infiltration (Huang et al., 2017; Jansen et al., 2019; Mariathasan
et al., 2018). Thus, if additional TIL CD8 T cell heterogeneity exists
within the population targeted by checkpoint inhibitors, then this
should prompt additional investigation to improve this line of
immunotherapeutics.

Interestingly, CD8+PD-1+ T cells in the periphery of cancer
patients were found to contain overlapping TCRs with CD8
T cells in the tumor and are also the most likely to yield (after
expansion and adoptive transfer) an anti-tumor response (Gros
et al., 2016). The NCI surgery branch that made this discovery

surmised that the peripheral and intratumoral TCR sharing
CD8+PD-1+ T cells could be interrelated (Gros et al., 2016). If this
peripheral blood–intratumoral relationship exists, then it may
provide insight into the same tumor-derived CD8 T cells ex-
pressing checkpoints that we have been studying and were found
to be affected by ICIs (Pfannenstiel et al., 2019). We hypothesized
that we can leverage this PBL–TIL relationship to gauge the status
of immunotherapy resistance and learn from the related bio-
chemical pathways within CD8 T cell subpopulations.

Using scRNaseq, we discovered that only three unique tran-
scriptionally shared/overlapping clusters in PBL-CD8 and TIL-
CD8 T cells exist, two of which we determined spawn from naive
CD8 T cells through specific reprogramming, as illustrated in
our trajectory analysis; we defined them above as inert dormant
and CD8+ TOXPHOS cells. Unlike classic exhausted CD8 T cells,
CD8+ TOXPHOS cells in particular appear to contain many of the
hallmarks of exhausted CD8 T cells that we previously studied,
including checkpoint expression (e.g., PD-1), but they also ex-
pressed cytotoxic markers (e.g., IFN-γ and GZMB), corroborat-
ing recent reports illustrating that exhausted T cells are not
homogeneous but a gradual transition (van der Leun et al., 2020;
Yost et al., 2019). This is not completely surprising, as we and
others had already identified that suppressor CD8 T cells (which
we later found express multiple checkpoints) regulate other cells
via expression of IFN-γ (Hidalgo and Halloran, 2002; Mele et al.,
2003; Montes et al., 2008; Robb and Hill, 2012; Robb et al., 2011).
In fact, studies show that IFN-γ, depending on the conditions,
can act as an effector or suppressor immune mediator, and the
ramifications of our findings are under investigation (Lee and
Ashkar, 2018). These CD8+ TOXPHOS cells also have up-regulated
metabolic pathways, consistent with the fact that dysfunctional
CD8 T cells are functionally diverse (van der Leun et al., 2020).
Our discovery of metabolically active CD8+ TOXPHOS cells sup-
ports recent work that CD8 T cells in TILs with PD-1 expression
have two distinct states, low and high metabolism (Hartmann
et al., 2021). Interestingly, in their study, which used CYTOF
(cytometry by time of flight), Hartmann et al. (2021) found that
cells that, based on our work, would likely be CD8+ TOXPHOS cells
interface directly with the tumor, whereas the more classical
exhausted CD8 T cells were found in the peripheral areas of the
tumor, thus supporting a unique role for CD8+ TOXPHOS cells in
tumor immunology.

Recent scRNAseq studies have shown that TIL CD8 T cells
with hallmarks of exhaustion (e.g., expression of PD-1) contain
subpopulations that are actively cycling and proliferating (Li
et al., 2019). However, few studies have focused on identifying
the mechanistic drivers of these active dysfunctional cells. Most
reports study lymphocytes in general and not solely lympho-
cytes on CD8 T cells (Li et al., 2019; Sade-Feldman et al., 2018b;
Tirosh et al., 2016; van der Leun et al., 2020). Despite recent
attempts by using scRNaseq to investigate and identify CD8
T cells in the peripheral blood and TILs, onlyWu et al. and Fairfax
et al. have reported the identification of shared populations (and
only within cytotoxic CD8 T cells; they did not identify the CD8+

TOXPHOS cells found in our study; Fairfax et al., 2020; Wu et al.,
2020). By focusing on enriched CD8 T cells in both TILs and PBLs,
with sufficient cell numbers from individualized paired patient
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samples, we had greater sensitivity and resolution comparedwith
most previous studies, allowing us to better analyze these un-
derexplored CD8 subpopulations.

Recent studies have explored the role of TIL T cell metabo-
lism in regulating immunotherapy, where metabolic properties
of T cells exert an essential role in anti-tumor immunity (Guerra
et al., 2020; Hartmann et al., 2021; Leone and Emens, 2018;
Leone et al., 2019; Scharping et al., 2021). The metabolic state of
peripheral blood CD8 T cells is an even more immature field
(Hatae et al., 2020; Varanasi et al., 2020; Voss et al., 2021). Re-
markably, our data indicate that higher metabolic activity, in-
cluding up-regulation of OXPHOS and glycolysis within CD8+

TOXPHOS cells in TILs and PBLs, is associated with ICI resistance.
To translate this work for both potential immunotherapeutic
targeting and cellular validation, we identified uniquely high
expression of the cell surface molecules CD38 and CD39 on CD8+

TOXPHOS cells, whose inhibitors are being assessed in current
ongoing clinical trials targeting solid cancers like melanoma
(Allard et al., 2017; Lokhorst et al., 2015; Perrot et al., 2019; van
der Leun et al., 2020). Both CD38 and CD39 are ectonucleoti-
dases that play a role in NAD+/ATP regulation, which is con-
nected to several metabolic pathways (Kishton et al., 2017;
Sukumar et al., 2017; Thommen and Schumacher, 2018). Based
on these findings, it is possible that these ectonucleotidases are
associated with the high metabolic state that we observed in
CD8+ TOXPHOS cells.

Another group demonstrated that activation of PBL Ki-
67+PD-1+CD8+ T cells (where Ki-67 represents increased prolif-
eration capacity and assumedly increased metabolism) before
anti-PD-1 therapy correlates with poor ICI response (Huang
et al., 2017). The same group later reported that patients with
sustained high levels of Ki-67 in PD-1+CD8+ T cells in blood have
better outcomes after a single dose of neoadjuvant anti-PD-1
therapy (Huang et al., 2019). To understand this discrepancy,
they hypothesized that these proliferating T cells likely convert
to a more reinvigorated and functional state after treatment
with anti-PD-1 therapy (Huang et al., 2019). Whether these cells
in PBLs represent CD8+ TOXPHOS cells or other populations that
can contain these makers is unknown. However, if these Ki-
67+PD-1+CD8+ exhausted T cells are CD8+ TOXPHOS cells, then it
would imply that patients whose CD8+ TOXPHOS cells become
reinvigorated by anti-PD-1 therapy have better outcomes, and
identifying why this does not occur ubiquitously could create
strategies to improve survival in all melanoma patients. Our
study, which illuminates many of the mechanisms found to be
activated in CD8+ TOXPHOS cells, offers many targets that may
become new therapeutic avenues.

Anti-PD-1–based ICI has revolutionized the care of mela-
noma; unfortunately, a correlative assay that reliably aids
clinicians in predicting who will respond continues to be an
unmet need (Halim, 2015; Masucci et al., 2016). Currently, only
three predictive biomarkers were approved by the US Food and
Drug Administration for ICI therapies for any cancer: protein
expression of PD-L1 by immunohistochemistry, microsatellite
instability status by PCR phenotyping, and tumor mutation
burden (Boyiadzis et al., 2018; Davis and Patel, 2019; Prasad and
Addeo, 2020). In recent years, most biomarker exploration has

been focused on searching for methods that use minimally in-
vasive approaches (Hofman et al., 2019; Nixon et al., 2019). To
date, despite a large amount of effort, whether it be with tumor
tissue or PBLs, and using various “omic” technologies or
immunohistochemistry-based studies, there is no standard cor-
relative assay used for ICI therapy in the treatment of melanoma
(Auslander et al., 2018; Fattore et al., 2021; Havel et al., 2019).

Based on our discovery set, we developed a GEP-coined NiCir
that we validated with a published dataset (Yost et al., 2019) and
four independent datasets, including from TILs and PBLs from
our own patients. NiCir had an average accuracy of 88% in the
validation datasets, indicating good prediction value across a
spectrum of different sequencing platforms. NiCir showed ex-
cellent predictive power, with an area under the curve (AUC) of
0.90, as compared with several previously reported immu-
notherapy response predictions; for example, IMPRES (im-
munopredictive score) achieved an AUC of 0.83 for overall
accuracy (Auslander et al., 2018); a radiographical characteristic
in non–small cell lung cancer patients using artificial intelli-
gence with an AUC of up to 0.76 (Trebeschi et al., 2019); and
tumor mutational burden in non–small cell lung cancer pre-
dicting ICI response with an AUC range of 0.554–0.755 (Wang
et al., 2019). We plan to translate this work into an assay that can
be easily applied in a clinical setting for more timely decision
making.

In summary, our results increase the field’s knowledge of the
heterogeneity of dysfunctional CD8 T cells in cancer patients.
Our work implicates the potential of manipulating the im-
munometabolism of T cell populations like CD8+ TOXPHOS cells
to regulate and improve anti-tumor immunity. Moreover, the
presence of CD8+ TOXPHOS cells in particular can be exploited
even with blood-based approaches for a rapid predictive ICI ef-
ficacy assay to improve clinical outcomes in melanoma patients.

Materials and methods
Study approval
All human tissue was obtained at the Cleveland Clinic under a
protocol approved by Cleveland Clinic’s institutional review
board, and written informed consent was obtained from each
patient. All patient samples used for scRNaseq were immuno-
therapy nonresponders. Peripheral blood samples of immuno-
therapy responders were used as additional validation cohort for
the predictive model (NiCir).

Isolation of PBLs and TILs
Peripheral blood mononuclear cells were purified from buffy
coats by centrifugation over a Ficoll-Hypaque gradient accord-
ing to the manufacturer’s protocol (GE Healthcare). Matched
PBLs and tumor specimens were obtained from patients with
melanoma. PBLs were obtained by venipuncture and isolated by
centrifugation over a Ficoll-Hypaque gradient. After surgical
resection, tumor specimens were rinsed with antibiotic-
containing media and minced with crossed scalpels under ster-
ile conditions. Enzymatic digestion was then used to dissociate
tumor tissue using 1,500 U/ml collagenase IV (Gibco/Life Tech-
nologies), 1,000 U/ml hyaluronidase (Sigma), and 0.05 mU/ml
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DNase IV (Gibco) in RPMI for 1 h at 37°C followed by mechanical
agitation. The resulting single-cell suspensions were separated
from debris by centrifugation over a Ficoll-Hypaque gradient
followed by being immediately gated and sorted for LIVE >
CD3+ > CD8+ using LIVE/DEAD (Invitrogen; #L10119) CD3
(BioLegend; #300406) and CD8 (BioLegend #300912). The
negative population was dumped using dump channel PE-Cy7
(YG) for CD4 (BioLegend; #300454), CD19 (BioLegend; #302215),
and CD56 (BioLegend; #302215). On average, sorted cell counts
were between 18,605 and 297,000, with an average of 91% ef-
ficiency for scRNaseq. Sorted cells were analyzed with flow
cytometry to ensure over 90% purity (data not shown).

Seahorse assay
The oxygen consumption and glucose dependency of healthy
donor PBLs and melanoma TILs were determined using the
Seahorse XF Mito Fuel Flex Test (Agilent; 103260–100) with the
XFe96 Bioanalyzer (Agilent) according to the manufacturer’s
instructions. Briefly, enriched CD8 T cells of PBLs and sorted
CD8+PD-1+ T cell TILs were plated into Agilent Seahorse XF96
microplate in triplicate (75,000 cells/well) overnight, followed
by 1-h incubation at 37°C in a non-CO2 incubator on the day of
the assay. The pyruvate inhibitor UK5099 (2 mM) was injected
into the microplates to determine the glucose oxidation depen-
dency. Baseline OCR was monitored at 24 min, followed by se-
quential pyruvate inhibitor UK5099 (2 mM) injections, and the
OCR readings were recorded for a duration of 2 h at 8-min in-
tervals. Glucose OCR and dependency were calculated using the
precent dependency equation based on the instructions, and
graphs were plotted with GraphPad Prism software.

ATP assay
The ATP bioluminescence assay was used to quantify ATP levels.
TIL and PBL samples were labeled with CD8 microbeads (Mil-
tenyi Biotec; #130-045-201, MACS) and then positively selected
for CD8 T cells by passing them through the LS column (Miltenyi
Biotec; #130-042-401, MACS) according to the manufacturer’s
instructions. ATP levels of the positive-selection CD8 T cells
were determined using a Luminescent ATP Detection Assay kit
(Abcam; ab113849) following the manufacturer’s instructions.
Briefly, CD8 T cells were incubated with detergent for 5 min,
followed by incubation with substrate solution for 10 min at
room temperature in the dark with agitation. Then, lumines-
cence was quantified on a microplate reader (Molecular Devices;
SpectraMax M2). The luminescence values of ATP standards
were determined in a similar manner. ATP concentration was
calculated according to an ATP-standard curve.

Flow cytometry
Human-specific antibodies and key reagents used are tabulated
in Table S7. Cell viability was determined using LIVE/DEAD
Fixable DEAD Cells Stain Kit (Thermo Fisher Scientific). Human
PBLs (naive, n = 4; responders, n = 5; nonresponders, n = 7) and
TILs (naive, n = 5; nonresponders, n = 6) from melanoma pa-
tients were stained with CD3, CD8, PD-1, CD38, CD39 (all from
BioLegend), TMRM (Thermo Fisher Scientific), andMitoTracker
Green (Thermo Fisher Scientific; for details, refer to Table S8).

Cells were incubated for 20 min at 37°C with TMRM and
MitoTracker Green according to the manufacturer’s in-
structions. Next, the cells were stained with antibodies for
13 min at 4°C in FACS buffer, followed by flow cytometry
analysis. Compensation controls and fluorescence minus one
controls were used to determined cell populations. Flow cy-
tometry was performed using a BD LSRFortessa and analyzed
with FlowJo software, and normalized mean fluorescence in-
tensity (MFI) graphs were plotted with GraphPad Prism
software.

scRNaseq library preparation and data processing
All cells were resuspended in DPBS with 0.04% BSA, and im-
mediately processed for scRNaseq as follows. Cell count and
viability were determined using trypan blue on a Countess FL II,
and ∼12,000 cells were loaded for capture onto the Chromium
system using the v2 single-cell reagent kit according to the
manufacturer’s protocol (10x Genomics). Following capture and
lysis, cDNA was synthesized and amplified (12 cycles) as per the
manufacturer’s protocol (10x Genomics). The amplified cDNA
from each channel of the Chromium system was used to con-
struct an Illumina sequencing library and sequenced on an Il-
lumina NovaSeq with 150-cycle sequencing (asymmetric reads
per 10x Genomics). Illumina basecall files (*.bcl) were converted
to FASTQs using CellRanger v3.0, which uses bcl2fastq for
FASTQ file generation. FASTQ files were then aligned to GRCh38
human reference genome and transcriptome using the Cell-
Ranger v3.0 software pipeline with default parameters as re-
ported previously (Larkin et al., 2019); this demultiplexes the
samples and generates a gene versus cell expression matrix
based on the barcodes and assigns unique molecular identifiers
(UMIs) that enable determination of the individual cell from
which the RNA molecule originated.

Bulk RNaseq library preparation and data processing
PBLs were sorted for CD8 T cells using a selective gating strategy
based on staining with the following monoclonal antibodies:
negative gating for staining with LIVE/DEAD Aqua (Invitrogen;
#L34957), CD14 (BD Biosciences; #564444), CD19 (BioLegend;
#302242), CD56 (BD Biosciences; #564058), and CD4 (In-
vitrogen; #Q10008) to exclude all dead cells and monocytes,
B cells, natural killer cells, and CD4 T cells, followed by positive
gating on CD3 (BD Biosciences; #557943) and CD8 (Invitrogen;
#MHCD0817) to selectively sort 15,000 cells from a pure CD8
population. Purity tests for sorting were performed routinely.
RNA was purified from CD8 T cells using RNeasy Micro Kits
(Qiagen). Libraries of T cell RNA samples were prepared using
Illumina’s Nextera XT DNA Library Prep Kit and sequenced on
Illumina NovaSeq 6000. The libraries were generated following
the Library Prep Kit manual. The libraries were pooled and
prepared for sequencing following the “Standard Normalization
Method” within the Illumina Novaseq6000 System Denature
and Dilute Libraries Guide. The BCL files were demultiplexed
using Illumina’s bcl2fastq v2.20.0.422. Reads in FASTQ files
were aligned to GRCh38 human reference genome and tran-
scriptome with Hisat2. Tags per million reads were calculated
from aligned reads using StringTie.
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Dimensionality reduction and clustering
t-SNE dimensionality reduction of cells based on whole tran-
scriptomes was generated by 10x Genomics Cell Ranger pipeline
(version 3.0), as reported previously (Larkin et al., 2019). Di-
mensionality of gene-barcode matrices was first reduced to
10 principal components using principal-component analysis
(PCA). PCA-reduced datawere further reduced to 2D space using
the t-SNE method and visualized in the Loupe Cell Browser (10×
Genomics) and/or R. Graph-based clustering of cells was con-
ducted in the PCA space; a sparse nearest-neighbor graph of the
cells was built first, and Louvain modularity optimization was
then applied. The number of nearest neighbors was logarith-
mically in accordance with the number of cells. In the last step,
repeated cycles of hierarchical clustering and merging of cluster
pairs that had no significant differential expression were per-
formed until no more cluster pairs could merge.

3D t-SNEs of cells were calculated using the “cellranger re-
analyze” command with modified parameters and visualized
using R plotly package (https://plot.ly).

Gene differential expression of clusters
Gene differential expression analyses of each cluster were con-
ducted by cellranger (10x Genomics). The log2 fold change of a
certain gene’s expression (UMIs) in one cluster compared with
all other clusters, and the corresponding adjusted P values, were
calculated for each cluster.

Transcriptional similarity of clusters
To compare similarity between the three shared clusters (2, 6,
and 15) and other clusters, Pearson correlations were calculated
between each pair using the clusters’ average gene expressions
(mean UMIs of genes). The results were visualized using Circos
Table Viewer (http://mkweb.bcgsc.ca/tableviewer/), with rib-
bons connecting two clusters representing significant similarity
(50th percentile of all Pearson distances) between them
(Krzywinski et al., 2009).

PD-1 coexpression analyses
Coexpression patterns of genes with PD-1 (PDCD1) were calculated
in T cells of the three shared clusters (clusters 2, 6, and 15).
Pearson correlations of expression levels were calculated between
PD-1 and 13,411 genes that were expressed (UMI >1) in more than
0.1% of the total cells using R and the following formula:

rpg �
Pn

i�1(pi − p̄)(gi − ḡ)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i�1(pi − p̄)2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i�1(gi − ḡ)2

q ,

where n is total number of cells in the three shared clusters; pi is
expression (UMI) of PD-1 in the cell i; gi is expression (UMI) of
the query gene in cell i;p̄ and ḡ are mean expression of PD-1 and
the query gene in the total n cells, respectively; and rpg is the
Pearson correlation coefficient between PD-1 and the query gene.

The t statistics of Pearson correlation were calculated by the
following formula:

t � rpg
ffiffiffiffiffiffiffiffiffiffi
n − 2

√
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − rpg2

p ,

where rpg is correlation coefficient of PD-1 and the query gene
and n is the number of samples (cells).

P values of Pearson correlation were probabilities of T > t or < −t,
where T follows a t distribution with n − 2 degrees of freedom.

The P values were adjusted with FDR correction, and the
genes of significant adjusted P values (< 0.05) were then ranked
by their Pearson correlation coefficient r calculated in the three
shared clusters from the most significant to the least significant
correlation.

Cell signaling enrichment analyses
Signaling pathway enrichment and upstream regulator predic-
tion were analyzed using Ingenuity Pathway Analysis (IPA;
Qiagen), unless indicated specifically.

Cell trajectory analysis
Single-cell trajectories of cells were built using the Monocle
package (version 2.8.0) as previously reported (Larkin et al.,
2019). Briefly, whole-transcriptome trajectories of T cells were
built using 9,080 genes that were expressed (UMI >1) in more
than 1% of the total T cells. Dimensionality reduction was con-
ducted using the DDRTree method, and the minimum spanning
tree was plotted using the plot_cell_trajectory function.

Expression levels of the signature genes along trajectories
(i.e., from the cluster 2 end to the cluster 6 or cluster 15 end)
were visualized using the plot_genes_branched_heatmap func-
tion; on the generated heatmap, gene expression levels were
smoothened using the VGAM package, rescaled to a −3 to 3
range, and hierarchically clustered.

Prognosis model building and validating
The prognosis model to predict response of patients to ICI
therapy was built using PD-1 and the top 20 genes of the PD-1
coexpression genes (21 predictor genes in total) that weremostly
correlated (most significant P values) with PD-1. Responders/non-
responders were defined following the RECIST criteria (i.e., complete
response and partial response for responders or stable disease and
progressive disease for nonresponders; Eisenhauer et al., 2009).

The Gene Expression Omnibus (GEO) database was surveyed
for all available data that were provided with both T cell tran-
scriptomics and matching patient treatment response records to
immune checkpoint therapy. A total of two published datasets,
GSE120575 (Sade-Feldman et al., 2018b) and GSE123813 (Yost
et al., 2019), were returned from this survey, and both were
used for this study. We randomly assigned GSE120575 as
training data, and GSE123813, along with our two additional
datasets, were used as independent validation sets.

Model training and testing were conducted using R. The
training data (GSE120575; Sade-Feldman et al., 2018b) provided
scRNaseq of immune cells collected before and after immune
from melanoma patients treated with checkpoint inhibitors. We
used all 1,802 tumor-infiltrating CD8 T cells (as identified in the
article of that dataset) that were collected before ICI therapy for
model training. The 21 predictor genes identified by our coex-
pression analyses were used as independent variables, and
the response to ICI was applied as the dependent variable
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(1, responder; 0, nonresponder). Logistic regression was per-
formed using these independent variables and dependent var-
iables from the dataset based on the following equation to
calculate β0 and βi for the model:

P(Y � 1) � 1

1 + e−(β0+
Pk

i�1βiXi)
,

where Y is the dependent variable, Xi is the independent varia-
ble, k is the number of independent variables, P is probability of
a 1 value of Y, and β0 and βi are model parameters to be deter-
mined in the regression.

Themodel with β0 and βi determined from the regression test
were applied to calculate P (probability) for each individual CD8
T cells from the dataset and returned with a predicted status
(1, responder; 0, nonresponder). Subsequently, the proportions
of all calculated CD8 T cells in one sample were calculated and
presented for each patient with the scored output using the
abovementioned formula.

The model was then further validated in two additional da-
tasets. Dataset 1 was from a previously published study
(GSE123813; Yost et al., 2019), in which CD8 tumor-infiltrating
T cells were collected before ICI therapy from three and six
patients who responded or did not respond to anti-PD-1 therapy,
respectively. The response status of each T cell was predicted,
and the percentage of predicted responding/nonresponding
T cells in each patient was calculated. NRSs of patients were
calculated by scaling the percentage of predicted nonresponding
T cells to a 0∼10 range. Patients that had NRSs higher than 5.0
(more than 50% of T cells are predicted to respond) were con-
sidered responders to ICI therapy; otherwise, patients were
predicted as nonresponders. Dataset 2 was collected in the
present study, including peripheral CD8 T cells of 32 melanoma
patients (15 responders and 17 nonresponders) profiled by
RNaseq. Patients’ gene expression levels were input into out
prediction model. For CD8 T cell scRNaseq data, the model pre-
dicted status of each T cells, and the ratio of nonresponding
T cells in a patient was rescaled to 0∼10 as the patient’s NRS. For
bulk RNaseq data, the output values of our logistic regression
model (ranging 0∼1) were rescaled to 0∼10 as patients’ NRSs.
Patients that had NRSs higher than 5.0 were considered re-
sponders to ICI therapy. The P values comparing the NRSs be-
tween true responders and true nonresponders were calculated
by t test. A P value < 0.05 is considered significant.

Statistics
Unless otherwise stated, P values of gene differential expression
were determined by two-tailed Welch’s t test. P values of en-
richment of pathways, upstream regulators, and gene ontology
terms were generated by the corresponding bioinformatics
tools. All statistics calculations were conducted using R unless
otherwise stated.

To determine the size of samples for validating our NiCir
model, we conducted power calculation to determine the re-
quired sample size for NiCir using the rocr package in R. Power
calculation suggested that in a balanced feature model (kappa =
1), with a power of 0.9 and a significance level of 0.05 for the
logistic regression predictionmodel, a proper sample size should

be at least 14 samples (seven responders and seven non-
responders), as shown in this case of NiCir for a AUC of 0.9 (as
indicated in our training set, Fig. 8 B), a proper sample size
should be at least 14 samples (seven responders and seven
nonresponders). We validated the NiCir model using nine pre-
viously published samples (Yost et al., 2019) and 32 samples
collected in the present study (Fig. 8 C). We collected samples
from both responders and nonresponders to ensure a proper
kappa = 1 for the model evaluation.

Online supplemental material
Fig. S1 shows scRNaseq data of melanoma patients’ PBLs and
TILs. Fig. S2 shows clusters of CD8 T cell profiles from mela-
noma patients. Fig. S3 shows the characteristics of three clusters
containing equal numbers of CD8 PBLs and TILs from each pa-
tient. Fig. S4 shows the characterization of CD8 T cells. Fig. S5
shows a heatmap of CD8 T cell state depicted by signature genes,
a heatmap of the top 1,000 PD-1–coexpressing genes, MFI of
TMRMtotal and TMRMlow in both CD8 PBLs and TILs, and the
performances of NiCir’s prediction in the validation dataset
(GSE152590) of PBL samples from lung cancer patients collected
at Cleveland Clinic core. Table S1 shows the patient character-
istics. Table S2 shows scRNaseq data of CD8 T cells from mela-
noma patients. Table S3 lists the pathways in CD8 PBLs and TILs
from melanoma patients. Table S4 lists genes enriched in
pathways in CD8 PBLs and TILs. Table S5 lists the signature
genes for each cluster. Table S6 lists the enriched pathways in
clusters 2, 6, and 15. Table S7 lists the genes enriched in path-
ways in clusters 2, 6, and 15. Table S8 lists the antibodies and
reagents used for flow cytometry.

Data availability
T cell scRNaseq and RNaseq data generated during this study
are available through National Center for Biotechnology Infor-
mation GEO accession numbers GSE138720, GSE153098, and
GSE171256. The other T cell scRNaseq data used in this study are
from previously published studies and are available through
GEO accession numbers GSE120575 (Sade-Feldman et al., 2018b)
and GSE123813 (Yost et al., 2019).
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Supplemental material

Figure S1. scRNaseq of 173,061 CD8 T cells from 8 melanoma patients’ PBLs (CD8-mPBL) and TILs (CD8-mTIL). (A) Patient characteristics. Subcu,
subcutaneous. (B) t-SNE plots of CD8 T cell scRNaseq profiles. F, female; M, male.
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Figure S2. Clusters of 173,061 CD8-mPBL and CD8-mTIL scRNaseq profiles from eight melanoma patients. (A–C) 3D t-SNE plots of 20 clusters:
combined samples (A), CD8-mPBLs (B), and CD8-mTILs (C). (D) Percentage of cells from each patient in the 20 clusters. (E) Percentages of CD8-mPBLs/CD8-
mTILs from each patient in the three clusters shared by CD8-mPBLs and CD8-mTILs. (F) Signaling pathways enriched in the three shared clusters. Activation of
signaling pathways was calculated by IPA (QIAGEN).
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Figure S3. Characteristics of the three clusters in the dataset containing equal number (1,000) of peripheral and tumor-infiltrating CD8 T cells from
each patient. (A) Among a total of 17 major clusters, three (clusters 2, 5, and 13) contained comparable proportions of cells from CD8-mPBLs and CD8-mTILs.
(B) Similarities of the three shared clusters to each of the other clusters (the top 50% nearest mathematical distances between clusters are shown as ribbons).
(C) Violin plots showing expression levels of representative signature genes in shared clusters (2, 5, and 13). (D) Pathways enriched in clusters 2, 5, and 13. The
log P value, z score, and dot size represent significant activity of pathway enrichment and number of genes found in that pathway, respectively. (E) Three
common clusters in CD8-mPBLs and CD8-mTILs are located at the extreme end of each branch of the tripod-shaped trajectory plot of all combined samples,
CD8-mPBLs, or CD8-mTILs on the whole-transcriptome trajectory consisting of 16,000 cells.
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Figure S4. Characterization of CD8 T cells. (A) z score of glycolysis versus OXPHOS signaling of the T cell clusters. (B) z score of OXPHOS signaling versus
normalized cytotoxic genes (PRF1, GZMB, CX3CR1, GZMA, GZMH, GNLY, FGFBP2, KLRG1, FCGR3A, GZMK, GZMM, LYAR, TXNIP, FCRL6, NKG7, and KLRD1).
(C) Heatmap showing expression/activation of cytotoxic genes, OXPHOS, and T cell exhaustion. Activation of OXPHOS and T cell exhaustion were calculated
by IPA (QIAGEN). (D) Enriched expression of PD-1, CD38, and CD39 in the CD8+ TOXPHOS cell cluster of the trajectory. (E) z score of exhaustion versus CD38/
CD39 genes expression. (F) z score of PD-1 versus CD38/CD39 genes expression. Expression of cytotoxic genes were normalized by the z score method
((expression − mean expression)/standard deviation of expression).

Li et al. Journal of Experimental Medicine S4

Unique CD8 T cells define immunotherapy resistance https://doi.org/10.1084/jem.20202084

https://doi.org/10.1084/jem.20202084


Figure S5. Heatmap of CD8 T cell state and PD-1 co-expressing genes. (A) Heatmap of CD8+ T cell state depicted by signature genes. (B and C) TMRMtotal

MFI (B) and TMRMlow MFI (C) in PD-1+CD39+ and PD-1+CD38+CD39+ T cells in CD8+ PBL (naive, n = 4; responder, n = 5; nonresponder, n = 7) and TIL (naive, n =
5; nonresponder, n = 6). (D) Heatmap of the top 1,000 PD-1–coexpressing genes in CD8-mPBL– or CD8-mTIL–dominated clusters and shared clusters.
(E) Performances of NiCir’s prediction in the validation dataset (GSE152590) of PBL samples from lung cancer patients collected at the Cleveland Clinic core. *,
P < 0.05; **, P < 0.01, unpaired t test (two tailed). Error bars represent SEM.
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Table S1, Table S2, Table S3, Table S4, Table S5, Table S6, Table S7, and Table S8 are provided online as separate Word and Excel
files. Table S1 lists patient characteristics. Table S2 lists scRNaseq data from 173,061 CD8 T cells from eight melanoma patients.
Table S3 lists pathways in CD8-mPBL and CD8-mTIL T cells from eight melanoma patients. Table S4 lists genes enriched in
pathways in CD8-mPBL and CD8-mTIL T cells. Table S5 lists signature genes for each cluster. Table S6 lists enriched pathways in
clusters 2, 6, and 15. Table S7 lists genes enriched in pathways in clusters 2, 6, and 15. Table S8 lists antibodies and reagents used for
flow cytometry.
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