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Abstract: Cathodic protection (CP), in combination with an insulating coating, is a preventative
system to control corrosion of buried carbon steel pipes. The corrosion protection of coating defects
is achieved by means of a cathodic polarization below the protection potential, namely −0.85 V vs.
CSE (CSE, copper-copper sulfate reference electrode) for carbon steel in aerated soil. The presence of
alternating current (AC) interference, induced by high-voltage power lines (HVPL) or AC-electrified
railways, may represent a corrosion threat for coated carbon steel structures, although the potential
protection criterion is matched. Nowadays, the protection criteria in the presence of AC, as well as
AC corrosion mechanisms in CP condition, are still controversial and discussed. This paper deals
with a narrative literature review, which includes selected journal articles, conference proceedings
and grey literature, on the assessment, acceptable criteria and corrosion mechanism of carbon steel
structures in CP condition with AC interference. The study shows that the assessment of AC corrosion
likelihood should be based on the measurement of AC and DC (direct current) related parameters,
namely AC voltage, AC and DC densities and potential measurements. Threshold values of the
mentioned parameters are discussed. Overprotection (EIR-free < −1.2 V vs. CSE) is the most dangerous
condition in the presence of AC: the combination of strong alkalization close to the coating defect
due to the high CP current density and the action of AC interference provokes localized corrosion of
carbon steel.

Keywords: alternating current; cathodic protection; carbon steel; pipeline; AC interference corrosion;
AC corrosion assessment; protection criteria; corrosion mechanism

1. Introduction

Cathodic protection (CP), in combination with an insulating coating, is a well-known
electrochemical technique that reduces (or halts) the external corrosion rate of buried carbon steel
pipes used to transport liquid or gas. In CP condition, the corrosion rate is reduced below 0.01 mm·a−1,
which is the maximum acceptable value fixed by CP standards [1,2]. Carbon steel in aerated soil, i.e.,
where oxygen reduction is the controlling cathodic process, operates in CP condition if the IR-free
potential (excluding the ohmic drop contribution in soil) is more negative than −0.85 V vs. CSE
(Cu/CuSO4 reference electrode, +0.318 V vs. standard hydrogen electrode, SHE) [1,2].

The presence of alternating current (AC) interference on buried pipelines in free corrosion or
under CP condition can lead to severe localized corrosion through the pipe thickness. In the case
of AC interference, the sources of electrical disturbance are the high-voltage power lines (HVPL) or
the AC-electrified railways (fed by a high voltage line at 50 or 60 Hz), the receptor is the pipeline
that runs parallel to the interference source and the coupling mechanism occurs mainly via a resistive
(or conductive) and inductive (or electromagnetic) mechanism [3].
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The resistive coupling is primarily a concern when there is a fault or an unbalanced condition
on the power line and large currents and voltages are conveyed to the earth during the HVPL short
circuit. Although the interference time is short, it represents a hazard to the operators and to the
buried pipe corresponding to the coating defects. The inductive coupling occurs when AC flowing
in phase wires produces an electromagnetic field inducing alternating currents and voltages to the
pipeline, which shares the way with the power line. The induced AC voltage depends on the length of
parallelism with the power line, and it is inversely proportional to the distance between the HVPL and
the pipeline; the AC density, i.e., the current for unit surface, is a function of AC voltage, the coating
defect dimension and soil resistivity.

Nowadays, there is agreement that corrosion induced by AC interference can occur even on
carbon steel structures that fully respect the CP criterion and that AC corrosion is less than that
provoked by the equivalent direct current, i.e., considering the same current density. In the presence of
AC interference, the CP criteria reported by international standards [1,2] are not sufficient to prove
that steel is protected from corrosion. In the past 50 years, great effort has been made in order to
propose criteria to assess AC corrosion likelihood and to understand the mechanism by which AC
causes corrosion. This effort brought about the international standard ISO 18086 (Corrosion of metals
and alloys—Determination of AC corrosion—Protection criteria) [4] that replaced in 2017 the EN
15280 standard (Evaluation of a.c. corrosion likelihood of buried pipelines applicable to cathodically
protected pipelines). The ISO 18086 standard provides monitoring procedures, mitigation measures
and information to deal with long-term AC interference. Nevertheless, some aspects related to the
phenomenon were not fully understood and the protection criteria as well as the corrosion mechanism
have been debated for a long time.

This paper deals with a narrative literature review, which includes a deep analysis of the AC
corrosion phenomenon, in particular the assessment of AC interference, and the evaluation of AC
corrosion likelihood and interference levels, the corrosion mechanism.

2. Assessment of AC Corrosion Likelihood

The assessment of AC interference likelihood on a buried pipeline should include several
parameters related to both the interference source and the interfered structure. During the design phase,
the evaluation of AC interference on a buried structure can be carried out by mathematical/electrical
modelling, e.g., according to EN 50443 (Effects of electromagnetic interference on pipelines caused by
high voltage AC electric traction systems and/or high voltage AC power supply systems) [5] or IEEE
Guide for Safety in AC Substation Grounding [6]. These approaches aim to evaluate the tolerable AC
voltage based on parameters, such as the electrical configuration of the AC power line, the distance
between the AC source (power line or traction system) and the pipeline, the insulation properties of
the coating as well as soil resistivity. In the case of existing structures, field measurements can be used
as an alternative to calculation. According to calculations or field measurements, relevant mitigation
measures should be installed to decrease the AC corrosion probability. Nevertheless, not only electrical
parameters are involved in the AC corrosion mechanism and an electrochemical approach is required
for an understanding of the mechanism, in particular in the presence of cathodic protection.

According to ISO 18086 [4], the assessment of AC corrosion should be performed by evaluation of
some or all of the following parameters:

• AC voltage, VAC;
• AC density, iAC;
• DC density, iDC;
• AC/DC densities ratio, iAC/iDC;
• DC potential (IR-free potential, EIR-free, and ON potential, EON);
• Soil resistivity, ρ.
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2.1. AC Voltage

The measurement of the AC voltage, VAC, on a pipeline is carried out with respect to a reference
electrode located at remote position, i.e., where the AC voltage gradient does not change and is close
to zero. The AC voltage gradient is measured by means of two-reference electrodes spaced 1 to 5 m
transverse to the pipeline.

According to [4], acceptable AC voltages on the pipeline in CP condition are lower than 15 V
r.m.s. measured as an average over a representative time (e.g., 24 h). According to NACE SP0177
(Mitigation of Alternating Current and Lightning Effects on Metallic Structures and Corrosion Control
Systems) [7], the maximum AC voltage is set at 15 V with respect to local earth (approximately 1 m);
this threshold is mostly driven by safety considerations (shock hazard).

In a recent work, Tang et al. [8] investigate the effects of several parameters on the electric
field distribution of AC interference, such as the unbalanced current magnitude, soil and coating
resistivity and the distance between the power line and the pipeline. By means of numerical simulation,
the authors conclude that the reference electrode should be placed farther from the pipeline route with
the increase of mitigation wire length, soil resistivity and the distance between the power line and the
structure; conversely, the earth remote position is closer to the pipe by increasing coating resistivity if
mitigation is applied [8].

2.2. AC Density

AC and DC densities on a coating defect control both the AC interference and the CP level,
respectively. Contrary to the AC voltage measurement, the AC density, iAC, cannot be readily
determined. The numerical approach considers the calculation of AC density from the AC voltage,
the soil resistance, ρ, and the diameter, φ, of a circular coating defect, according to the following
equation, as reported in [8–12]:

iAC =
8 ·VAC

ρ ·π ·φ
(1)

Considering a maximum AC voltage of 15 V measured on a circular coating defect of 1 cm2

and a medium soil resistivity of 100 Ω·m, the expected AC density threshold is about 30 A·m−2.
Nevertheless, this calculation is generally not possible since the coating defect area is not known.
Moreover, the application of CP can significantly change the electrolyte composition in proximity to
the coating defect and consequently the local soil resistivity. The formula is valid when the coating
defect size is larger than the coating thickness, although rigorous calculations are available [13].
The current density can only be estimated by means of coupons or probes. According to ISO 18086 [4],
the measurement of AC density has to be carried out on a 1 cm2 coupon surface area connected to
the structure.

The definition of a critical threshold of AC density over which AC corrosion could occur is still
controversial and large data variability is found. Compared to DC interference corrosion, AC corrosion
of carbon steel is lower considering the same current density. Since the sixties of the last century [14,15],
the effect of AC density was determined in terms of “equivalent DC density”, defined as the percent
ratio of the weight loss caused by AC to the expected weight loss due to the same DC density.
The values of equivalent DC density are in the range between 0.1% and 0.3% with AC density up to
600 A·m−2 [14,15]. Using laboratory tests on carbon steel in soil-simulating solution (1200 mg·dm−3

sulphates, 200 mg·dm−3 chlorides), Goidanich et al. [16] reported that AC corrosion efficiency (defined
similarly to the “equivalent DC density”) is lower than 1% when AC density ranges from 50 to
500 A·m−2, but it increases up to 4% for AC density lower than 50 A·m−2 (Figure 1). In 2010, Fu and
Cheng [17] reported comparable results.
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Figure 1. Weight loss tests on carbon steel in free corrosion condition exposed to a soil-simulating
solution: (a) corrosion rates vs. AC density (iAC) and (b) AC corrosion efficiency vs. AC density (iAC)
as reported by Goidanich et al. [16].

Gummow et al. [18] stated that the corrosion rate increases with increased AC density greater than
20 A·m−2 and becomes significant at AC densities greater than 100 A·m−2, regardless of the magnitude
of CP density. Based on laboratory tests, Pourbaix et al. [19] reported that AC corrosion is associated
with the IR-free potential oscillation during interference but it is not related to a critical value of the
AC density. As reported by Yunovich and Thompson [20], steel corrosion can significantly increase in
the presence of 20 A·m−2 AC density: the measured corrosion rate at 20 A·m−2 AC density is nearly
two times higher than that of the control specimen in free corrosion condition and decreases with the
application of CP. This last consideration introduces the need of the additional consideration of the
cathodic DC density.

2.3. AC/DC Current Density Ratio

For carbon steel structures under CP conditions, AC corrosion likelihood should be evaluated also
considering the level of DC polarization, by means of the IR-free potential or DC density. The latter
can be measured by means of a corrosion coupon or probes with a known surface area, e.g., 1 cm2.
In order to assess AC corrosion conditions, it is better to refer to the AC density-DC density ratio
(iAC/iDC), which is dimensionless. Nevertheless, use of only the iAC/iDC ratio could be misleading in the
assessment of AC corrosion likelihood, i.e., different AC corrosion conditions can be represented by the
same iAC/iDC ratio. For instance, an iAC/iDC ratio equals to 10 results from an interference condition of
30 A·m−2 AC density in the presence of 3 A·m−2 DC density or 3 A·m−2 AC density with 0.3 A·m−2 DC
density. Although the ratio between the current densities is equal in the two conditions, they represent
a different corrosion risk, i.e., 3 A·m−2 AC density is not recognized as a threat, dissimilarly from
30 A·m−2. As discussed in Paragraph 3, several authors [21–27] investigated the effect of iAC/iDC

ratio on corrosion rate, proposing different threshold limits. ISO 18086 standard [4] reports that AC
corrosion can be mitigated by maintaining the iAC/iDC ratio less than 3 over a representative time (e.g.,
24 h) and it is valid for DC density greater than 10 A·m−2 (severe over-protection condition) and AC
density over 30 A·m−2.

2.4. AC Frequency

There is full agreement that the corrosion rate decreases by increasing the frequency of the
AC signal. The effect of frequency has been investigated on mild steel, nickel and copper-nickel
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alloys [28–35]. AC can cause severe corrosion at the industrial frequencies of 50 or 60 Hz, while the
effect decreases at frequencies higher than 150 Hz.

Fernandes et al. [28] and the other authors [29–32] proposed a kinetic interpretation: by increasing
the frequency, the time between the anodic and cathodic half-cycles becomes shorter and the metallic
ions dissolved during the anodic period would be available for the subsequent deposition in the
cathodic cycle.

Guo et al. [34,35] reported that at an AC density of 50 A·m−2, the corrosion rate of X60 steel
decreases from 1.2 mm·a−1 at 10 Hz frequency to about 0.6 mm·a−1 at 50 Hz. In parallel, the free
corrosion potential increases to about 50 mV. Yunovich and Thompson [36] proposed an electrical
circuit in order to simulate the behavior of a steel specimen exposed to soil varying the frequency of
the AC signal. The model shows that the corrosion current in the circuit decreases with increasing
frequency and is approximately 0.3% of the total current at 60 Hz frequency, in agreement with the
results using weight loss tests, as reported in Figure 1.

2.5. Soil Resistivity and Chemical Composition

According to Equation (1), the AC density corresponding to a coating defect depends on the
alternating voltage and on the spread resistance, which is the ohmic resistance through a coating defect
(or a corrosion coupon) to earth. The ISO 18086 standard [4] reports an empirical relation between soil
resistivity and AC corrosion risk:

• ρ < 25 Ω·m: very high risk;
• 25 Ω·m < ρ < 100 Ω·m: high risk;
• 100 Ω·m < ρ < 300 Ω·m: medium risk;
• ρ > 300 Ω·m: low risk.

Soil resistivity close to a coating defect is significantly affected by the electrochemical reactions at
the metal-to-electrolyte interface, due to the application of the CP current. In CP condition, oxygen
reduction (O2 + 2H2O + 4e−→ 4OH−) and, at lower potential, hydrogen evolution (2H+ + 2e−→ H2),
cause a growth of alkalinity at the metal surface. The pH value can increase over 10 and up to 12–13
at very high cathodic current densities. The local soil chemical composition can play a crucial role
in the AC corrosion assessment, as documented in [27,37]. Earth-alkaline ions (as Ca2+ and Mg2+),
moved towards the metal surface by the CP electric field, form slightly soluble hydroxides; the pH
increase, shifting the carbonate-bicarbonate chemical equilibrium, favors the growth of a scale of
calcium and magnesium carbonate that increases the spread resistance. Otherwise, alkaline cations (as
Na+, K+ or Li+) form not-scaling hydroxides. Büchler et al. [37] reported a reduction of AC density
due to the growth of chalk layers on the surface in the presence of calcium ions.

Recently, Xiao et al. [27] reported that the spread resistance of a X70 steel specimen at constant
CP potential and different AC densities is higher in the presence of calcium and magnesium ions.
Moreover, the corrosion rate of the specimens exposed to higher content of Na+ was greater than that
in the presence of earth-alkaline ions at the same potential and AC density (100 A·m−2, 300 A·m−2).

2.6. Effect on DC Potential (Free Corrosion Condition)

2.6.1. Negative Shift of Potential

There is general agreement that the free corrosion potential of carbon steel, i.e., without cathodic
protection, decreases as the AC density increases. This has been documented from the sixties of the
last century. Bolzoni et al. [38] reported laboratory tests on the influence of AC interference on carbon
steel corrosion in free corrosion condition in different environments (sulfate and chloride aqueous
solutions, with or without oxygen, simulating soil conditions and seawater). AC was overlapped to
the specimens ranging from 10 to 6000 A·m−2. The free corrosion potential of carbon steel in chloride
and sulfate solutions decreases as AC density increases. At AC densities below 100 A·m−2, the DC
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potential variation was low (about 50 mV); above 100 A·m−2, the effect was higher (100–200 mV).
In chloride solutions, the DC potential variation is less significant at high AC density (higher than
1000 A·m−2). Results were confirmed in [39]: except for carbon steel in soil-simulating solution (1200
ppm SO4

2− (Na2SO4) + 200 ppm Cl− (CaCl2·2H2O) [16]), the corrosion potential of galvanized steel,
copper and carbon steel in different environmental conditions decreases with increasing AC density.
Authors investigated the effects of AC density on anodic and cathodic overvoltages: AC has a significant
effect on the kinetics parameters, with a decrease of overvoltages and increase of exchange current
density of anodic and cathodic processes [39,40]. Nevertheless, in these papers some inconsistencies
were observed between the experimental tests and the results expected from mathematical models
based on the asymmetry of anodic and cathodic reactions. Li et al. [41] and Wang et al. [42] have
measured a lowering of free corrosion potential on X70 and X80 carbon steel samples at various
AC densities in simulated soil solution and 3.5% sodium chloride solution. Potential shift in both
environments is about 0.2 V at 300 A·m−2 AC density. Moreover, authors investigated the kinetic
effect of AC interference on anodic and cathodic overvoltages, measuring a variation of anodic and
cathodic Tafel slope and their ratio in the presence of AC. Zhang et al. [43] proposed a nonlinear model
(an electrical equivalent model considering the anodic and cathodic reactions under activation control)
for the investigation of AC interference effect on corrosion potential and corrosion rate. Results show
that the expected variation of the free corrosion potential depends on the AC peak potential, as expected,
and on the ratio of the anodic and cathodic Tafel slope (r = βa/βc). When r = 1 (symmetry of anodic
and cathodic overvoltages), no DC potential variations are predicted by the model. For r > 1, a positive
(anodic) potential shift is expected, while for r < 1 the DC potential lowers as AC peak potential
increases. The latter covers the electrochemical condition of active carbon steel in soil or waters where
the cathodic processes (oxygen reduction and/or hydrogen evolution) have a higher Tafel slope than
that of steel dissolution. These data are consistent with the observations made in [44] and in previous
works [45–47].

2.6.2. Positive Shift of Potential

In 2012, He et al. [24] report that the average corrosion potential of X65 steel in loam soil moves to
more positive values by increasing AC density from 5 to 150 A·m−2. At 150 A·m−2, a positive shift of
about 200 mV has been measured with respect to the condition without interference. Xu et al. [48]
examined the effect of AC (60 Hz frequency) on 16Mn steel potential in a simulated soil solution by
means of real-time AC/DC signal acquisition. AC moves corrosion potential negatively at an AC
density lower than 400 A·m−2, while at higher AC density, the DC potential variation with respect to the
absence of AC interference is positive. In a recent work, Wu et al. [49] reported polarization curves of
X70 steel tested at AC densities up to 100 A·m−2 in simulated seawater. The presence of AC has a strong
effect on the polarization curves with a general shift toward higher current density and a positive
(anodic) variation of the zero-current potential, i.e., the free corrosion potential. Nevertheless, as the
AC density was raised from 10 to 100 A·m−2, the corrosion current density and the free corrosion
potential roughly remained constant.

2.7. Effect on DC Potential (Cathodic Protection Condition)

The potential measurement is affected by AC interference, even if CP is applied. Several authors
have investigated in the last decades the effect of AC on IR-free potential. Bolzoni et al. [38] investigated
the influence of AC interference on carbon steel in CP condition in different environments (sulfate
and chloride aqueous solutions, with or without oxygen). In the presence of cathodic polarization,
the potential trend depends on DC density: at 0.1 A·m−2, the DC potential is lowered after AC
application; conversely, at 1 and 10 A·m−2 DC density, the DC potential increases as the AC density
increases. In 2008 [50], and later in 2010 [23], Ormellese et al. reported the measurements of IR-free
potential of carbon steel specimens exposed for about four months to a soil-simulating solution. DC and
AC density were in the range 0.1–10 and 10–500 A·m−2, respectively. The increment of potential is not
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significant at 10 A·m−2 AC, while it is about 0.1 and 0.2 V at 100 and 200 A·m−2, respectively. The effect
of AC density on IR-free potential is more pronounced at high DC density [23].

Xu et al. [51,52] investigated the effects of AC on the CP potential reading of a 16Mn pipeline steel
in a simulated soil solution. At −0.85 V vs. SCE (maintained in a galvanostatic way, SCE—saturated
calomel electrode), AC moves DC potential negatively. Furthermore, the higher the AC density,
the more negative the DC potential is. Conversely at −1 V vs. SCE, AC shifts potential in the positive
direction. Similar observations were reported by Kuang et al. [53,54]: the DC potential of X65 steel in
near-neutral pH bicarbonate solution is shifted negatively by AC at −0.85 V vs. CSE, but positively
shifted by AC under the CP of −1 V vs. CSE (Figure 2). Nevertheless, differently to what can be
expected, the potential variation reported is higher at smaller AC density (Figure 2b). When the applied
CP level was −0.925 V vs. CSE (data not shown), the DC potential becomes more positive at low AC
densities of 10 and 50 A·m−2, while it decreases with 100 A·m−2 AC density. Recently, Wang et al. [55]
reported similar conclusions for X70 steel in near-neutral bicarbonate solution: at −0.775 V vs. SCE,
the DC potential is shifted negatively consequently to the application of AC, while at −0.95 V vs. SCE
and −1.2 V vs. SCE, an increase of DC potential is measured (Figure 3). In this case, the potential
variation is proportional to AC density.
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Generally, it can be concluded that there is good agreement on the increase of DC potential in the
presence of AC, although a negative shift is measured at small CP current density.

3. Acceptable AC Interference Levels—Protection Criteria

There is large agreement that corrosion can occur on AC interfered carbon steel structures that
fully match the CP potential criterion (E < Eprot) defined by ISO 15589-1 [2]. Much effort has been
made in the last decades in order to define acceptable AC interference levels for carbon steel under
CP condition. Kajiyama et al. [56–59] proposed a CP criterion based on the ratio between DC and
AC densities, measured by means of corrosion coupons. The criterion can be summarized as follows
(Figure 4):

• if 0.1 A·m−2
≤ iDC < 1 A·m−2, then iAC/iDC < 25,

• if 1 A·m−2
≤ iDC ≤ 20 A·m−2, then iAC < 70 A·m−2.
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Figure 4. Acceptable AC interference levels based on current densities criterion according to
Kajiyama et al. (adapted from [56]).

Accordingly, the maximum AC density depends on the CP level: at higher DC densities (i.e.,
more negative potential), a higher AC density can be tolerated. Even if the criterion has been applied
successfully to some case studied [58], some authors recognized a greater AC corrosion risk at higher
DC density differently to this criterion, as discussed later. Moreover, this criterion does not consider
directly the value of the measured potential.

In 2012, He et al. [24] reported a similar approach based on current densities: the AC density
threshold increases linearly with CP current density. The criterion (Figure 5) suggests there is not
corrosion risk if iAC < 10 + 100·iDC (with iDC ≥ 0.01 A·m−2). Comparing the two criteria, the latter
(Figure 5) is less conservative at a DC density lower than 1 A·m−2 and does not take into account AC
corrosion at greater DC densities. For instance, at 0.1 A·m−2 DC density, the maximum allowed AC
density is 2.5 and 20 A·m−2, considering the corrosion criterion of Figures 4 and 5, respectively.
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Figure 5. Acceptable AC interference levels based on current densities criterion according to He et al.
(adapted from [24]).

The effect of potential has been investigated by Ormellese et al. in [50] and later in [23,26].
The authors propose corrosion maps based on corrosion rate data evaluated using a weight loss test of
carbon steel specimens exposed to a soil simulation environment, with varying AC interference and CP
levels. Two AC corrosion risk regions are defined, low and high, for corrosion rates lower or greater than
10 µm·a−1, respectively. Corrosion risk increases by increasing the iAC/iDC ratio (Figure 6a): corrosion
protection is achieved up to a maximum value of the iAC/iDC ratio, which decreases as the IR-free
potential becomes more negative. Differently from the criteria discussed previously, in overprotection
condition a few A·m−2 of AC density (ranging from 5 to 20 A·m−2, depending on potential) provokes
corrosion of overprotected carbon steel. The authors proposed the following criterion (Figure 6b):

• if 0.1 A·m−2
≤ iDC < 1 A·m−2, then iAC < 30 A·m−2,

• if 1 A·m−2
≤ iDC ≤ 10 A·m−2, then iAC < 10 A·m−2.
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and DC (i.e., cathodic protection—CP) current densities.

The−0.85 V vs. CSE criterion is not always safe in the presence of AC interference; in overprotection
condition (EIR-free < −1.2 V vs. CSE), severe AC corrosion could occur.

Fu et al. [60] proposed a criterion based on both potential and current densities: potentials more
positive than −0.95 V vs. CSE are considered not safe in the presence of AC. The maximum acceptable
AC density increases as the potential becomes more negative: at −0.95 V vs. CSE, the maximum AC
density is 20 A·m−2, while at −1.05 V vs. CSE, the threshold increases up to 100 A·m−2.

Büchler in 2012 [61] and previously in 2009 [22] investigated new protection criteria based on
laboratory and field investigations. For current density average values measured by means of on-site
coupons, one of the criteria below must be met (Figure 7):
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• iAC < 30 A·m−2;
• iDC < 1 A·m−2;
• iAC/iDC < 3.
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Nevertheless, the author [61] stated that the measurement with coupons is fraught with problems,
since the obtained results are affected by coupon geometry and local soil conditions. The use of ON
potential, EON, and AC voltage (VAC, indicated by the authors as UAC) is therefore suggested (Figure 8).
For ON potential, one of the following criteria must be met:

• average VAC < 15 V and average EON more positive than −1.2 V vs. CSE;
• VAC < 3·(|EON| − 1.2) where EON is in V vs. CSE and EON < −1.2 V vs. CSE.
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The region below the dotted lines corresponds to acceptable AC interference conditions.

In 2015, these efforts brought to the AC corrosion protection criteria of the ISO 18086 standard [4]
for buried carbon steel in CP condition:
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• As a first step, the AC voltage on the pipeline should be decreased below 15 V r.m.s. The AC
voltage is measured as an average over a representative time (e.g., 24 h) with respect to a reference
electrode located in remote position;

• As a second step, AC corrosion mitigation is achieved by matching the CP protection potentials
defined in ISO 15589-1 [2] and — maintaining the AC density (iAC) lower than 30 A·m−2 on a 1 cm2

coupon or probe over a representative time (e.g., 24 h), or — maintaining the average cathodic
current density lower than 1 A·m−2 on a 1 cm2 coupon or probe over a representative time (e.g.,
24 h), if AC density is higher than 30 A·m−2, or — maintaining the ratio between AC and DC
densities (iAC/iDC) less than 3 over a representative time (e.g., 24 h).

In Annex E (informative), the standard reports other criteria that have been used in the presence
of AC. These criteria have been derived from Büchler’s work [61] and are based on AC voltage,
ON potential and current densities, as discussed. The protection criteria reported in the ISO 18086
standard are shown in Figure 9.
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Figure 9. Graphical representation of the AC protection criteria reported on ISO 18086 [4]: (a) iAC vs.
iDC, (b) VAC vs. EON.

In 2018, Junker et al. [62] reported results of laboratory and field tests varying AC and DC levels
and soil chemistry. Both laboratory and field data confirmed very high AC corrosion rates under
excessive CP (> 1 A·m−2) and AC interference higher than 30 A·m−2. Moreover, they recognized in
the spread resistance of a coating defect a highly dynamic parameter under AC and DC influence.
The investigations illustrate that the chemical environment alters the AC and DC density limits for AC
corrosion, however the present limits of ISO 18086 constitute a safe strategy in most environments.

Figure 10 reports the AC corrosion rate measured on corrosion coupons with varying AC and
DC density, as reported by Nielsen [63]. Data are overlapped to the AC protection criteria reported in
ISO 18086.
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It can be concluded that overprotection (namely EIR-free lowers than −1.2 V vs. CSE [2] or iDC >

1 A·m−2) is the most dangerous condition in the presence of AC interference. At “high” CP levels,
the maximum tolerable AC density is 30 A·m−2. Below 1 A·m−2 DC density, the AC corrosion likelihood
decreases. Nevertheless, some doubts are revealed regarding the inexistence of an AC density threshold
at “low” CP condition (iDC < 1 A·m−2).

4. AC Corrosion Mechanism

Numerous theories and models have been proposed on the AC corrosion mechanism of carbon
steel. Some models referring to carbon steel structures in free corrosion conditions as well as in the
presence of CP are discussed hereafter.

4.1. Effect of Anodic and Cathodic AC Half-Wave on Metal Dissolution

Büchler et al. [22,61] proposed a corrosion mechanism based on thermodynamic and kinetic
considerations on the reactions involved during AC interference on cathodically protected carbon steel.
When an AC voltage is present, current will flow through the coating defects exposed to soil. If the pH
value is sufficiently high (above 10, as in CP condition), during the anodic half-cycle, steel oxidation
occurs, promoting the formation of a passive film. During the cathodic half-wave, the passive film is
electrochemically destroyed and converted in porous rust. In the successive anodic cycle, the passive
film is reformed under the non-protective rust layer. Moreover, the Fe2+ present in the rust layer is
oxidized to Fe3+ (Fe2+

→ Fe3+ + e−). In the subsequent cathodic cycle, the dissolution of the passive
film will increase the volume of porous rust. Hence, every AC cycle results in the oxidation of the metal
with a significant metal loss in the long term (Figure 11). A simplified description of this mechanism is
reported also in the ISO 18086 standard [4].
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4.2. The Alkalization Mechanism and the Effect of Spread Resistance

Nielsen et al. [64–66] proposed the “alkalization model” of AC-induced corrosion of carbon steel
under CP condition. The model is based on the combination of two effects: (1) the alkalization of the
metal-to-electrolyte interface of overprotected carbon steel, and (2) potential oscillations across the
immunity, the passive and the high-pH corrosion domain of the iron potential-pH diagram.

As known, the presence of a cathodic current on the metal surface under CP condition is beneficial
because it promotes the reduction (or zeroing) of the corrosion rate and the increase of alkalinity due
to the accumulation of hydroxyl ions (OH−) close to coating defect. The pH increase is proportional to
the cathodic current density and depends on the diffusion and electrical migration of ions towards
and from the metal surface. In overprotection condition, namely IR-free potential more negative than
−1.2 V vs. CSE, the high cathodic current density (in the order of a few A·m−2) can promote a significant
increase of pH up to 13 or higher. According to the Pourbaix diagram, at elevated pH the potential
oscillations caused by AC interference could lead to periodic entry in the high-pH corrosion region
with formation of dissolved HFeO2

− ions. The authors report the presence of an “incubation time”
defined as the period to reach a critical pH (close to 14) at the metal-to-soil interface, with a significant
lowering of the spread resistance and increase of AC density due to depolarization effects of the AC
(Figure 12). Then, potential oscillations could cause corrosion due to different time constants associated
to iron dissolution (fast) and the formation of a passive film (slower). Accordingly, AC corrosion of
carbon steel in CP condition cannot be reduced by adding a surplus of cathodic current, as in the case
of DC corrosion phenomena, but by avoiding high DC densities and the overprotection condition,
in agreement with the protection criteria of the ISO standard [4].
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Figure 12. Schematic representation of the AC corrosion mechanism of carbon steel under CP condition,
as proposed by Nielsen et al. [63–66].

This “vicious circle” is supported by the data shown in Figure 13a–f [63], which illustrates
experimental results in a laboratory soil box environment in purified quartz sand. At a constant
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AC voltage (15 V), six different levels of CP (ON potential) were applied for some weeks to monitor
the corrosion rate of an electrical resistance probe and various electrical parameters. At a fixed AC
voltage, the corrosion rate depends strongly on the CP level (ON potential), and therefore, AC voltage
alone cannot be considered a valid indicator of AC corrosion risk. Despite the constant AC voltage,
the AC density varies from about 100 A·m−2 at low CP levels up to 500 A·m−2 at higher CP levels.
Figure 13e shows corrosion rate as a function of cathodic current density: the corrosion rate increases
with increasing CP current density, in agreement with the proposed mechanism. At the same time,
the spread resistance is strongly influenced by the DC density with the consequent increase of AC
density and corrosion rate (Figure 13f).
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The crucial role of soil chemical composition, pH and spread resistance was carefully investigated
by Junker et al. [62,67–69]. The spread resistance is identified as a key parameter, controlling the current
densities, and is highly influenced by the formation of calcareous deposits or corrosion products.
At high CP density, AC corrosion of an ER probe element is associated with strong alkalization of the
electrolyte and consequently dense calcareous deposit formation. The calcareous deposit dramatically
increases the spread resistance and reduces the AC and DC densities. Corrosion decreases, but only
as long as the calcareous deposit is stable and fully covering the surface. Due to brittle fracture or
a ‘flake of’ mechanism of the scale (probably provoked by hydrogen evolution at low potentials),
the spread resistance suddenly decreases, causing an increase of current densities and AC corrosion.
The cathodic reactions on the re-exposed probe surface will restart the alkalization and precipitation of
calcareous deposits and with time (days) the corrosion stops again. This causes a cyclic variation of
spread resistance, current densities and corrosion rate. The detailed chemical investigation of stone
hard soil formed on cathodically protected pipeline under AC interference is reported in [68].

The effect of spread resistance on AC corrosion has been also documented by Nielsen and
Cohn [70] with the help of an electrical equivalent circuit analysis that represents the impedances
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existing between the pipe and remote earth. AC and DC sources impose a DC and AC voltage on
the pipe: the simulated AC source is the HVTL (High Voltage Transmission Line), whereas the DC
source represents the CP system. The authors consider static and dynamic elements. Static elements,
namely spread resistance and charge transfer resistance, are defined as elements where impedance is
frequency independent. Conversely, dynamic elements are frequency dependent: these include the
double layer capacitance and diffusion elements. Because of the low impedance of the capacitance,
the spread resistance is the dominant impedance element at 50–60 Hz frequency and plays a key role
in controlling the AC corrosion process.

4.3. Effect of AC on Anodic and Cathodic Overvoltages

The increase of corrosion rate in the presence of AC has been explained by some authors using the
effect of AC on anodic and cathodic overvoltages [39,46,49,65,71,72]. Goidanich et al. [39] investigated
by means of laboratory tests the influence of AC on kinetic characteristics of carbon steel, galvanized
steel, copper and zinc under different experimental conditions. Results showed that AC has a significant
influence on kinetic parameters, such as Tafel slope and exchange current density, and on corrosion
and equilibrium potential. The authors proposed a “mixed” corrosion mechanism, with a general
decrease of overvoltages and increase of exchange current density in the presence of AC. This effect
could be related to the local rise in temperature, associated with high AC densities, as reported in [16].
In a recent work, Wu et al. [49] reported polarization curves of X70 steel tested with varying AC
densities (up to 100 A·m−2) in simulated seawater (Figure 14). AC shifts toward higher current density
in the polarization curves, promoting both the anodic and cathodic processes.
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Figure 14. Polarization curves on X70 steel tested at various AC densities in simulated seawater [49].

As discussed previously, some authors [43–47] proposed theoretical models based on the
fundamental thermodynamic and kinetic laws of corrosion in order to investigate the effect of
AC interference on DC potential and corrosion rate. Accordingly, the sensitivity of the corroding
system is influenced by the ratio of the anodic-to-cathodic Tafel slope (r = βa/βc). The effect of r on DC
potential variation has already been discussed in Section 2.6. Considering a corrosion system under
activation control, Lalvani and Lin [45] proposed an analytical solution for the relationship between
corrosion rate and voltage peak amplitude. In a revised model [46], the authors introduced the effect
of the double layer capacity, without considering the resistance of the electrolyte. The model indicates
that corrosion current increases with voltage peak for all values of r, while the potential shift depends
strongly on the anodic and cathodic characteristic curves, i.e., on the ratio between the anodic and
cathodic Tafel slope. Potentiodynamic polarization curves were obtained using the revised model;
nevertheless, these approaches predict that corrosion current and corrosion potential are independent
of the frequency of the AC signal, differently to what is observed.



Materials 2020, 13, 2158 16 of 22

The model was improved in 2008 [43,44]; the authors considered three elements in an electrical
equivalent circuit of a metal subjected to an induced AC voltage: the polarization impedance, the double
layer capacitance and the electrolyte resistance. The model shows that the corrosion current increases
as the frequency of the AC signal decreases (Figure 15a), in agreement with experimental observations,
and by increasing the peak potential. Moreover, the model shows that corrosion current increases by
decreasing the DC corrosion potential. For instance, by decreasing the DC corrosion potential from
−0.6 to −0.7 V vs. SCE at a peak potential of 1.25 V vs. SCE, the corrosion rate increases several orders
of magnitude (Figure 15b); an increase of DC corrosion potential from −0.2 to 0.0 V does not result in
a further reduction of corrosion current [43].
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Recently, Ibrahim et al. [73–75] proposed a theoretical approach (Part 1, 2, 3) to evaluate the effect
of double layer capacitance and electrolyte resistance on corrosion current density and potential shift.
The authors stated that corrosion rate enhancement is due to the faradaic rectification as a consequence
of the nonlinear current-potential relationship [73].

4.4. Breakdown of the Passive Film and High-pH Corrosion

Recently, Brenna et al. [76,77] proposed a two-step AC corrosion mechanism. In the first
step, AC causes the weakening of the passive film formed under CP condition on carbon steel,
due to electromechanical stresses. Electrostriction appears to be a convincing explanation of the
passive film breakdown mechanism, because of the presence of high alternating electric field (in the
order of 106 V· cm−1 [78]) across the passive film [77]. The effect of AC on passive condition has
been documented for carbon steel in alkaline solution or concrete and for stainless steel in neutral
solution [79–85]: AC causes localized corrosion of passive metals with a decrease of corrosion resistance.
Mechanical failure of the film can result from high electromechanical stresses (electrostriction pressure)
generated by the presence of an electric field across the film and by the interfacial tension, which is not
negligible as a result of the thin thickness of the oxide.

After film breakdown, high-pH chemical corrosion (i.e., potential independent) occurs in
the overprotection condition because of the high cathodic current density supplied to the metal.
According to the Pourbaix diagram of iron, high-pH corrosion can occur with formation of di-hypo
ferrite ions (HFeO2

−). This mechanism can also explain the unexpected corrosion of the metal below its
equilibrium potential. Indeed, CP electrons are involved in the cathodic process, which depends on the
potential assumed by the metal. Thus, below the equilibrium potential, the applied cathodic current
makes electrons available to the metal; therefore, no anodic electrochemical reactions can take place.
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Consequently, if no oxidation reaction takes place, such as iron ion production, this can occur only
through chemical corrosion, which is not potential dependent, or, in other words, is not influenced by
the electrons made available otherwise [86].

5. AC Corrosion Monitoring

According to ISO 18086 [4], AC voltage should be measured with respect to remote earth at
test posts during the general and detailed assessment of CP effectiveness, as defined in ISO 15589-1.
Additional measurements should be carried out at sites where AC corrosion risk is suspected, e.g.,
areas where the soil resistivity is low (lower than 25 Ω·m), areas with highest AC interference levels,
areas where AC corrosion has previously taken place and areas where local DC polarization conditions
can favor AC corrosion, as high levels of CP.

The measurement of AC and DC densities should be carried out by means of coupons or probes
installed in the same soil or backfill as the pipeline itself. The measurements with respect to the criteria
defined in ISO 18086 have to be carried out on a 1 cm2 coupon surface area. Coupon or probe currents
can be measured by the voltage drop across a series resistor; the value of the resistance should be
sufficiently low to avoid disturbance of the system. For field measurements, a typical value is 10 Ω for
a 1 cm2 coupon.

For corrosion rate measurements, weight loss measurements, perforation measurements or
electrical resistance (ER) measurements can be applied. Weight loss measurements require installation
of pre-weighed coupons. After some time of operation (months to years), the coupon is excavated and
weight loss rate is determined. The main drawback of this measurement is that the coupon provides
no information until the excavation. Perforation measurements are made on special perforation probes:
a signal is generated when the corrosion process has perforated the wall thickness of the coupon. In this
case, information about the maximum (localized) corrosion depth is available without excavating
the coupon; the primary disadvantage is that this information is not available until the coupon is
perforated. Electrical resistance measurements require the installation of electrical resistance probes
(ER probes). Corrosion is detected by the increase of the electrical resistance of the coupon when
corrosion progressively decreases its thickness [64,87,88].

6. Conclusions

This paper deals with a narrative literature review on AC corrosion assessment, protection criteria
and corrosion mechanisms for buried carbon steel structures in CP condition. Main conclusions can be
summarized as follows:

• The assessment of AC corrosion likelihood should be based on the measurement of AC and DC
related parameters. The AC interference level is evaluated by AC remote voltage and AC density,
while the CP level is assessed by DC density and potential measurements;

• AC and DC densities should be measured by means of a corrosion coupon (1 cm2 area) connected
to the structure in CP condition; IR-free potential is considered more accurate than ON potential,
because it does not contain the ohmic drop contribution in soil;

• There is general agreement that the DC potential of carbon steel in CP condition increases in the
presence of AC interference, although a negative shift is measured at small DC density. Conversely,
in free corrosion condition, i.e., without CP, the potential decreases as the AC density increases;

• Overprotection (namely EIR-free < −1.2 V vs. CSE) is the most dangerous condition in the
presence of AC interference. At “high” CP levels, the maximum tolerable AC density is 30 A·m−2.
Below 1 A·m−2 DC density, the AC corrosion likelihood decreases. Nevertheless, some doubts are
revealed regarding the inexistence of the criterion reported in the ISO 18086 standard of an AC
density threshold at “low” CP condition (iDC < 1 A·m−2);

• The higher AC corrosion likelihood at high CP levels could be explained by a corrosion mechanism
that involves both the AC and DC levels:
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◦ At high DC density, a strong alkalization of the electrolyte close to the coating defect occurs
with formation of a passive film and deposits (as a calcareous deposit) on carbon steel.
Soil chemical composition, pH and spread resistance at the coating defects seem to have
a crucial role, controlling the local AC and DC densities;

◦ AC interference provokes a weakening of the passive condition due to an effect on anodic
and cathodic overvoltages; moreover, the scale formed in CP condition is not stable in the
presence of AC due to potential oscillations that could break the protective layer;

◦ High-pH corrosion occurs with localized corrosion attacks; chemical corrosion (i.e., potential
independent) with formation of di-hypo ferrite ions (HFeO2

−) is a possible explanation for
the occurrence of corrosion at low potentials.

Author Contributions: A.B. conceptualized and prepared the manuscript; M.O. and S.B. contributed to literature
analysis and to the organization of the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. General Principles of Cathodic Protection of Buried or Immersed Onshore Metallic Structures; EN 12954;
British Standards Institution: London, UK, 29 August 2019.

2. Petroleum, Petrochemical and Natural Gas Industries. Cathodic Protection of Pipeline Systems. Part 1: On-land Pipelines;
ISO 15589-1; ISO - International Organization for Standardization: Geneva, Switzerland, 1 March 2015.

3. CIGRE Working Group 36.02. Guide on the Influence of High Voltage AC Power Systems on Metallic Pipelines;
CIGRE Technical Brochure no. 095; CIGRE: Paris, France, 1995.

4. Corrosion of Metals and Alloys. Determination of AC Corrosion. Protection Criteria; ISO 18086; ISO - International
Organization for Standardization: Geneva, Switzerland, 2019.

5. Effects of Electromagnetic Interference on Pipelines Caused by High Voltage a.c. Electric Traction Systems and/or High
Voltage a.c. Power Supply Systems; EN 50443; CEN-CENELEC - European Committee for Electrotechnical
Standardization: Brussels, Belgium, 1 January 2011.

6. IEEE. IEEE Guide for Safety in AC Substation Grounding; IEEE Std. 80-2000; IEEE - The Institute of Electrical
and Electronics Engineers, Inc.: New York, NY, USA, 2000.

7. Mitigation of Alternating Current and Lightning Effects on Metallic Structures and Corrosion Control Systems;
NACE SP0177; NACE International: Houston, TX, USA, 22 June 2007.

8. Tang, D.; Du, Y.; Lu, M.; Chen, S.; Jiang, Z.; Dong, L. Study on location of reference electrode for measurement
of induced alternating current voltage on pipeline. Int. Trans. Electr. Energy Syst. 2013, 25, 99–119. [CrossRef]

9. NACE International Task Group 327. AC corrosion State-of-the-Art: Corrosion Rate, Mechanism, and Mitigation
Requirements; NACE Technical Committee Report 35110; NACE International: Houston, TX, USA, 2010.

10. Gummow, R.A.; Segall, S.M.; Fieltsch, W. Pipeline ac mitigation misconceptions. In Proceedings of the
Northern Area Western Conference, Calgary, AB, Canada, 15–18 February 2010; p. 14.

11. Panossian, Z.; Filho, S.E.A.; De Almeida, N.L.; Filho, M.L.P.; De L. Silva, D.; Laurino, E.W.; De L. Oliver, J.H.;
De S. Pimenta, G.; De C. Albertini, J.Á. Effect of alternating current by high power lines voltage and electric
transmission systems in pipelines corrosion. In Proceedings of the Corrosion 2009 Conference & Expo,
Atlanta, GA, USA, 22–26 March 2009; p. 41.

12. Wakelin, R.G.; Gummow, R.A.; Segall, S.M. AC corrosion—Case histories, test procedures, & mitigation.
In Proceedings of the Corrosion/98, San Diego, CA, USA, 22–27 March 1998; p. 14.

13. Ouadah, M.; Touhami, O.; Ibtiouen, R.; Zergoug, M. Method for diagnosis of the effect of AC on the X70
pipeline due to an inductive coupling caused by HVPL. IET Sci. Meas. Technol. 2017, 11, 766–772. [CrossRef]

14. Williams, J.F. Corrosion of metals under the influence of alternating current. Mater. Prot. 1966, 5, 52–53.
15. Pookote, S.R.; Chin, D.-T. Effect of alternating current on the underground corrosion of steels.

Mater. Performance 1978, 17, 9–15.

http://dx.doi.org/10.1002/etep.1827
http://dx.doi.org/10.1049/iet-smt.2016.0519


Materials 2020, 13, 2158 19 of 22

16. Goidanich, S.; Lazzari, L.; Ormellese, M. AC corrosion. Part 2: Parameters influencing corrosion rate.
Corros. Sci. 2010, 52, 916–922. [CrossRef]

17. Fu, A.; Cheng, Y.F. Effects of alternating current on corrosion of a coated pipeline steel in a chloride-containing
carbonate/bicarbonate solution. Corros. Sci. 2010, 52, 612–619. [CrossRef]

18. Gummow, R.A.; Wakelin, R.G.; Segall, S.M. AC corrosion—A new challenge to pipeline integrity.
In Proceedings of the Corrosion/98, San Diego, CA, USA, 22–27 March 1998; p. 18.

19. Pourbaix, A.; Carpentiers, P.; Gregoor, R. Detection and assessment of AC induced corrosion.
Mater. Performance 2000, 39, 34–37.

20. Yunovich, M.; Thompson, N.G. AC corrosion: Corrosion rate and mitigation requirements. In Proceedings
of the Corrosion/2004, New Orleans, LA, USA, 22 March–1 April 2004; p. 18.

21. Ragault, I. AC corrosion induced by V.H.V. electrical lines on polyethylene coated steel gas pipelines.
In Proceedings of the Corrosion/98, San Diego, CA, USA, 22–27 March 1998; p. 14.

22. Büchler, M.; Schöneich, H.-G. Investigation of Alternating Current Corrosion of Cathodically Protected
Pipelines: Development of a Detection Method, Mitigation Measures, and a Model for the Mechanism.
Corrosion 2009, 65, 578–586. [CrossRef]

23. Ormellese, M.; Lazzari, L.; Brenna, A.; Trombetta, A. Proposal of CP criterion in the presence of AC-interference.
In Proceedings of the Corrosion 2010 Conference & Expo, San Antonio, TX, USA, 14–18 March 2010; p. 17.

24. He, X.; Jiang, G.; Qiu, Y.; Zhang, G.; Jin, X.; Xiang, Z.; Zhang, Z.; Tang, H. Study of criterion for assuring
the effectiveness of cathodic protection of buried steel pipelines being interfered with alternative current.
Mater. Corros. 2011, 63, 534–543. [CrossRef]

25. Ding, H.; Li, J.; Wang, S.; Yang, Y. Experimental study on stray current corrosion of coated pipeline steel.
J. Nat. Gas Sci. Eng. 2015, 27, 1555–1561. [CrossRef]

26. Ormellese, M.; Lazzari, L.; Brenna, A. AC corrosion of cathodically protected buried pipelines: Critical
interference values and protection criteria. In Proceedings of the Corrosion 2015 Conference & Expo, Dallas,
TX, USA, 15–19 March 2015; p. 11.

27. Xiao, Y.; Du, Y.; Tang, D.; Ou, L.; Sun, H.; Lu, Y. Study on the influence of environmental factors on AC
corrosion behavior and its mechanism. Mater. Corros. 2017, 69, 601–613. [CrossRef]

28. Fernandes, S.Z.; Mehendale, S.G.; Venkatachalam, S. Influence of frequency of alternating current on the
electrochemical dissolution of mild steel and nickel. J. Appl. Electrochem. 1980, 10, 649–654. [CrossRef]

29. Lalvani, S.; Zhang, G. The corrosion of carbon steel in a chloride environment due to periodic voltage
modulation: Part I. Corros. Sci. 1995, 37, 1567–1582. [CrossRef]

30. Qiu, W.W.; Pagano, M.; Zhang, G.; Lalvani, S. A periodic voltage modulation effect on the corrosion oF
Cu-Ni Alloy. Corros. Sci. 1995, 37, 97–110. [CrossRef]

31. Lalvani, S.B.; Kang, J.-C.; Mandich, N.V. The corrosion of Cu-Ni alloy in a chloride solution subjected to
periodic voltage modulation: Part I. Corros. Sci. 1998, 40, 69–89. [CrossRef]

32. Lalvani, S.B.; Kang, J.-C.; Mandich, N.V. The corrosion of Cu-Ni alloy in a chloride solution subjected to
periodic voltage modulation: Part II. Corros. Sci. 1998, 40, 201–214. [CrossRef]

33. Song, H.; Kim, Y.; Lee, S.; Kho, Y.; Park, Y. Competition of AC and DC current in AC corrosion under cathodic
protection. In Proceedings of the Corrosion/2002, Denver, CO, USA, 7–11 April 2002; p. 12.

34. Guo, Y.-B.; Liu, C.; Wang, D.-G.; Liu, S.-H. Effects of alternating current interference on corrosion of X60
pipeline steel. Pet. Sci. 2015, 12, 316–324. [CrossRef]

35. Guo, Y.; Meng, T.; Wang, D.; Tan, H.; He, R. Experimental research on the corrosion of X series pipeline steels
under alternating current interference. Eng. Fail. Anal. 2017, 78, 87–98. [CrossRef]

36. Yunovich, M.; Thompson, N.G. AC Corrosion: Mechanism and Proposed Model. In Proceedings of the 2004
International Pipeline Conference, Calgary, AB, Canada, 4–8 October 2004; Volumes 1–3, pp. 183–195.

37. Büchler, M.; Voûte, C.-H.; Schöneich, H.-G.; Stalder, F. Characteristics of potential measurements in the field
of ac corrosion. In Proceedings of the CeoCor International Congress and Technical Exhibition, Giardini
Naxos, Italy, 13–16 May 2003.

38. Bolzoni, F.; Goidanich, S.; Lazzari, L.; Ormellese, M. Laboratory test results of AC interference on polarized
steel. In Proceedings of the Corrosion/2003, San Diego, CA, USA, 16–20 April 2003; p. 13.

39. Goidanich, S.; Lazzari, L.; Ormellese, M. AC corrosion—Part 1: Effects on overpotentials of anodic and
cathodic processes. Corros. Sci. 2010, 52, 491–497. [CrossRef]

http://dx.doi.org/10.1016/j.corsci.2009.11.012
http://dx.doi.org/10.1016/j.corsci.2009.10.022
http://dx.doi.org/10.5006/1.3319160
http://dx.doi.org/10.1002/maco.201006036
http://dx.doi.org/10.1016/j.jngse.2015.10.022
http://dx.doi.org/10.1002/maco.201709843
http://dx.doi.org/10.1007/BF00615488
http://dx.doi.org/10.1016/0010-938X(95)00066-S
http://dx.doi.org/10.1016/0010-938X(94)P4303-X
http://dx.doi.org/10.1016/S0010-938X(97)00115-7
http://dx.doi.org/10.1016/S0010-938X(97)00116-9
http://dx.doi.org/10.1007/s12182-015-0022-0
http://dx.doi.org/10.1016/j.engfailanal.2017.03.003
http://dx.doi.org/10.1016/j.corsci.2009.10.005


Materials 2020, 13, 2158 20 of 22

40. Bolzoni, F.; Goidanich, S.; Lazzari, L.; Ormellese, M.; Pedeferri, M. Laboratory testing on the influence
of alternated current on steel corrosion. In Proceedings of the Corrosion/2004, New Orleans, LA, USA,
22 March–1 April 2004; p. 11.

41. Li, Y. Effects of Stray AC Interference on Corrosion Behavior of X70 Pipeline Steel in a Simulated Marine Soil
Solution. Int. J. Electrochem. Sci. 2017, 12, 1829–1845. [CrossRef]

42. Wang, X. Corrosion Behavior of X70 and X80 Pipeline Steels in Simulated Soil Solution. Int. J. Electrochem. Sci.
2018, 13, 6436–6450. [CrossRef]

43. Zhang, R.; Vairavanathan, P.R.; Lalvani, S. Perturbation method analysis of AC-induced corrosion. Corros. Sci.
2008, 50, 1664–1671. [CrossRef]

44. Xiao, H.; Lalvani, S.B. A Linear Model of Alternating Voltage-Induced Corrosion. J. Electrochem. Soc.
2008, 155, C69. [CrossRef]

45. Lalvani, S.; Lin, X. A theoretical approach for predicting AC-induced corrosion. Corros. Sci. 1994, 36, 1039–1046.
[CrossRef]

46. Lalvani, S.; Lin, X. A revised model for predicting corrosion of materials induced by alternating voltages.
Corros. Sci. 1996, 38, 1709–1719. [CrossRef]

47. Bosch, R.; Bogaerts, W. A theoretical study of AC-induced corrosion considering diffusion phenomena.
Corros. Sci. 1998, 40, 323–336. [CrossRef]

48. Xu, L.; Su, X.; Yin, Z.; Tang, Y.; Cheng, Y.F. Development of a real-time AC/DC data acquisition technique for
studies of AC corrosion of pipelines. Corros. Sci. 2012, 61, 215–223. [CrossRef]

49. Wu, W.; Pan, Y.; Liu, Z.; Du, C.; Li, X. Electrochemical and Stress Corrosion Mechanism of Submarine Pipeline in
Simulated Seawater in Presence of Different Alternating Current Densities. Materials 2018, 11, 1074. [CrossRef]

50. Ormellese, M.; Lazzari, L.; Goidanich, S.; Sesia, V. CP criteria assessment in the presence of AC interference.
In Proceedings of the Corrosion 2008 Conference & Expo, New Orleans, LA, USA, 16–20 March 2008; p. 10.

51. Xu, L.; Su, X.; Cheng, Y.F. Effect of alternating current on cathodic protection on pipelines. Corros. Sci.
2013, 66, 263–268. [CrossRef]

52. Xu, L.; Cheng, Y.F. A Real-Time AC/DC Measurement Technique for Investigation of AC Corrosion of
Pipelines and Its Effect on the Cathodic Protection Effectiveness. In Proceedings of the Corrosion 2013
Conference & Expo, Orlando, FL, USA, 17–21 March 2013; p. 10.

53. Kuang, D.; Cheng, Y.F. Effect of alternating current interference on coating disbondment and cathodic
protection shielding on pipelines. Corros. Eng. Sci. Technol. 2015, 50, 211–217. [CrossRef]

54. Kuang, D.; Cheng, Y.F. Effects of alternating current interference on cathodic protection potential and its
effectiveness for corrosion protection of pipelines. Corros. Eng. Sci. Technol. 2016, 52, 1–7. [CrossRef]

55. Wang, L.; Cheng, L.; Li, J.; Zhu, Z.; Bai, S.; Cui, Z. Combined Effect of Alternating Current Interference and
Cathodic Protection on Pitting Corrosion and Stress Corrosion Cracking Behavior of X70 Pipeline Steel in
Near-Neutral pH Environment. Materials 2018, 11, 465. [CrossRef] [PubMed]

56. Hosokawa, Y.; Kajiyama, F.; Nakamura, Y. New CP criteria for elimination of the risks of ac corrosion and
overprotection on cathodically protected pipelines. In Proceedings of the Corrosion/2002, Denver, CO, USA,
7–11 April 2002; p. 12.

57. Hosokawa, Y.; Kajiyama, F. New CP maintenance concept for buried steel pipelines—Current density-based
CP criteria, and on-line surveillance system for CP rectifiers. In Proceedings of the Corrosion/2004,
New Orleans, LA, USA, 22 March–1 April 2004; p. 15.

58. Hosokawa, Y.; Kajiyama, F. Case studies on the assessment of AC and DC interference using steel coupons
with respect to current density CP criteria. In Proceedings of the Corrosion 2006 Conference & Expo, Orlando,
FL, USA, 10–14 September 2006; p. 15.

59. Kajiyama, F.; Nakamura, Y. Development of an advanced instrumentation for assessing the AC corrosion
risk of buried pipelines. In Proceedings of the Corrosion 2010 Conference & Expo, San Antonio, TX, USA,
14–18 March 2010; p. 13.

60. Fu, A.Q.; Cheng, Y.F. Effect of alternating current on corrosion and effectiveness of cathodic protection of
pipelines. Can. Met. Q. 2012, 51, 81–90. [CrossRef]

61. Büchler, M. Alternating current corrosion of cathodically protected pipelines: Discussion of the involved
processes and their consequences on the critical interference values. Mater. Corros. 2012, 63, 1181–1187.
[CrossRef]

http://dx.doi.org/10.20964/2017.03.18
http://dx.doi.org/10.20964/2018.07.12
http://dx.doi.org/10.1016/j.corsci.2008.02.018
http://dx.doi.org/10.1149/1.2815357
http://dx.doi.org/10.1016/0010-938X(94)90202-X
http://dx.doi.org/10.1016/S0010-938X(96)00065-0
http://dx.doi.org/10.1016/S0010-938X(97)00139-X
http://dx.doi.org/10.1016/j.corsci.2012.04.038
http://dx.doi.org/10.3390/ma11071074
http://dx.doi.org/10.1016/j.corsci.2012.09.028
http://dx.doi.org/10.1179/1743278214Y.0000000246
http://dx.doi.org/10.1080/1478422X.2016.1175773
http://dx.doi.org/10.3390/ma11040465
http://www.ncbi.nlm.nih.gov/pubmed/29565270
http://dx.doi.org/10.1179/1879139511Y.0000000021
http://dx.doi.org/10.1002/maco.201206690


Materials 2020, 13, 2158 21 of 22

62. Junker, A.; Nielsen, L.V.; Heinrich, C.; Møller, P. Laboratory and field investigation of the effect of the
chemical environment on AC corrosion. In Proceedings of the Corrosion 2018 Conference & Expo, Phoenix,
AZ, USA, 15–19 April 2018; p. 15.

63. Nielsen, L.V. AC Corrosion. In Oil and Gas Pipelines; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 363–386.
64. Nielsen, L.V.; Nielsen, K.V.; Baumgarten, B.; Breuning-Madsen, H.; Cohn, P.; Rosenberg, H. AC-induced

corrosion in pipelines: Detection, characterization, and mitigation. In Proceedings of the Corrosion/2004,
New Orleans, LA, USA, 22 March–1 April 2004; p. 16.

65. Nielsen, L.V. Role of alkalization in AC induced corrosion of pipelines and consequences hereof in relation
to CP requirements. In Proceedings of the Corrosion/2005, Houston, TX, USA, 3–7 April 2005; p. 11.

66. Nielsen, L.V.; Baumgarten, B.; Cohn, P. On-site measurements of AC induced corrosion: Effect of AC and DC
parameters—A report from the Danish activities. In Proceedings of the CeoCor International Congress and
Technical Exhibition, Dresden, Germany, 15–16 June 2004.

67. Junker, A.; Møller, P.; Nielsen, L.V. Effect of chemical environment and pH on AC corrosion of cathodically
protected structures. In Proceedings of the Corrosion 2017 Conference & Expo, New Orleans, LA, USA,
26–30 March 2017; p. 14.

68. Junker, A.; Belmonte, L.J.; Kioupis, N.; Nielsen, L.V.; Møller, P. Investigation of stone-hard-soil formation
from AC corrosion of cathodically protected pipeline. Mater. Corros. 2018, 69, 1170–1179. [CrossRef]

69. Santana-Diaz, E.; Nielsen, L.V.; Junker-Holst, A. A critical review of parameters for meaningful AC corrosion
modelling. In Proceedings of the Corrosion 2018 Conference & Expo, Phoenix, AZ, USA, 15–19 April 2018; p. 15.

70. Nielsen, L.V.; Cohn, P. AC corrosion and electrical equivalent diagrams. In Proceedings of the CeoCor
International Congress and Technical Exhibition, Bruxelles, Belgium, 9–12 May 2000.

71. Wang, X.; Wang, Z.; Chen, Y.; Song, X.; Xu, C. Research on the Corrosion Behavior of X70 Pipeline Steel
Under Coupling Effect of AC + DC and Stress. J. Mater. Eng. Perform. 2019, 28, 1958–1968. [CrossRef]

72. Cui, Y.; Shen, T.; Ding, Q. Study on the Influence of AC Stray Current on X80 Steel under Stripped Coating
by Electrochemical Method. Int. J. Corros. 2019, 2019, 1–8. [CrossRef]

73. Ibrahim, I.; Tribollet, B.; Takenouti, H.; Meyer, M. AC-Induced Corrosion of Underground Steel Pipelines.
Faradaic Rectification under Cathodic Protection: I. Theoretical Approach with Negligible Electrolyte
Resistance. J. Braz. Chem. Soc. 2014, 26, 196–208. [CrossRef]

74. Ibrahim, I.; Meyer, M.; Takenouti, H.; Tribollet, B. AC Induced Corrosion of Underground Steel Pipelines.
Faradaic Rectification under Cathodic Protection: II. Theoretical Approach with Electrolyte Resistance and
Double Layer Capacitance for Bi-Tafelian Corrosion Mechanism. J. Braz. Chem. Soc. 2015, 27, 605–615.
[CrossRef]

75. Ibrahim, I.; Meyer, M.; Takenouti, H.; Tribollet, B. AC Induced Corrosion of Underground Steel Pipelines under
Cathodic Protection: III. Theoretical Approach with Electrolyte Resistance and Double Layer Capacitance for
Mixed Corrosion Kinetics. J. Braz. Chem. Soc. 2017, 28, 1483–1493. [CrossRef]

76. Brenna, A.; Diamanti, M.V.; Lazzari, L.; Ormellese, M. A proposal of AC corrosion mechanism in cathodic
protection. In Proceedings of the 2011 NSTI Nanotechnology Conference and Expo, Boston, MA, USA, 13–16
June 2011; pp. 553–556.

77. Brenna, A.; Ormellese, M.; Lazzari, L. Electro-mechanical breakdown mechanism of passive film in AC-related
corrosion of carbon steel under cathodic protection condition. Corrosion 2016, 72, 1055–1063. [CrossRef]

78. Sato, N. A theory for breakdown of anodic oxide films on metals. Electrochimica Acta 1971, 16, 1683–1692.
[CrossRef]

79. Bertolini, L.; Carsana, M.; Pedeferri, P. Corrosion behaviour of steel in concrete in the presence of stray
current. Corros. Sci. 2007, 49, 1056–1068. [CrossRef]

80. Ormellese, M.; Brenna, A.; Lazzari, L. Effects of AC-interference on passive metals corrosion. In Proceedings
of the Corrosion 2011 Conference & Expo, Houston, TX, USA, 13–17 March 2011; p. 12.

81. Zhu, M.; Du, C.-W.; Li, X.; Liu, Z.-Y.; Wu, X.-G. Effect of AC on corrosion behavior of X80 pipeline steel in
high pH solution. Mater. Corros. 2014, 66, 486–493. [CrossRef]

82. Brenna, A.; Beretta, S.; Bolzoni, F.M.; Pedeferri, M.; Ormellese, M. Effects of AC-interference on
chloride-induced corrosion of reinforced concrete. Constr. Build. Mater. 2017, 137, 76–84. [CrossRef]

83. Zhu, M. Corrosion Behavior of X65 and X80 Pipeline Steels under AC Interference Condition in High pH
Solution. Int. J. Electrochem. Sci. 2018, 13, 10669–10678. [CrossRef]

http://dx.doi.org/10.1002/maco.201709947
http://dx.doi.org/10.1007/s11665-019-03959-7
http://dx.doi.org/10.1155/2019/4372430
http://dx.doi.org/10.5935/0103-5053.20140246
http://dx.doi.org/10.5935/0103-5053.20150302
http://dx.doi.org/10.21577/0103-5053.20160330
http://dx.doi.org/10.5006/1849
http://dx.doi.org/10.1016/0013-4686(71)85079-X
http://dx.doi.org/10.1016/j.corsci.2006.05.048
http://dx.doi.org/10.1002/maco.201307580
http://dx.doi.org/10.1016/j.conbuildmat.2017.01.087
http://dx.doi.org/10.20964/2018.11.54


Materials 2020, 13, 2158 22 of 22

84. Zhu, M. Synergistic Effect of AC and Cl- on Stress Corrosion Cracking Behavior of X80 Pipeline Steel in
Alkaline Environment. Int. J. Electrochem. Sci. 2018, 13, 10527–10538. [CrossRef]

85. Wang, H.; Du, C.; Liu, Z.; Wang, L.; Ding, D. Effect of Alternating Current on the Cathodic Protection and
Interface Structure of X80 Steel. Materials 2017, 10, 851. [CrossRef]

86. Drazic, D.; Popic, J. Anomalous dissolution of metals and chemical corrosion. J. Serbian Chem. Soc. 2005, 70, 489–511.
[CrossRef]

87. Nielsen, L.V.; Nielsen, K.V. Differential ER-technology for measuring degree of accumulated corrosion as well as
instant corrosion rate. In Proceedings of the Corrosion/2003, San Diego, CA, USA, 16–20 April 2003; p. 13.

88. Nielsen, L.V.; Galsgaard, F. Sensor technology for on-line monitoring of ac-induced corrosion along pipelines.
In Proceedings of the Corrosion/2005, Houston, TX, USA, 3–7 April 2005; p. 12.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.20964/2018.11.48
http://dx.doi.org/10.3390/ma10080851
http://dx.doi.org/10.2298/JSC0503489D
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Assessment of AC Corrosion Likelihood 
	AC Voltage 
	AC Density 
	AC/DC Current Density Ratio 
	AC Frequency 
	Soil Resistivity and Chemical Composition 
	Effect on DC Potential (Free Corrosion Condition) 
	Negative Shift of Potential 
	Positive Shift of Potential 

	Effect on DC Potential (Cathodic Protection Condition) 

	Acceptable AC Interference Levels—Protection Criteria 
	AC Corrosion Mechanism 
	Effect of Anodic and Cathodic AC Half-Wave on Metal Dissolution 
	The Alkalization Mechanism and the Effect of Spread Resistance 
	Effect of AC on Anodic and Cathodic Overvoltages 
	Breakdown of the Passive Film and High-pH Corrosion 

	AC Corrosion Monitoring 
	Conclusions 
	References

