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Abstract: In colorectal cancer (CRC), upregulation of the C-X-C motif chemokine receptor 4 (CXCR4)
is correlated with metastasis and poor prognosis, highlighting the need to further elucidate CXCR4’s
regulation in CRC. For the first time, DNA methylation and 5-hydroxymethylcytosine aberrations
were investigated to better understand the epigenetic regulation of CXCR4 in CRC. CXCR4 expression
levels were measured using qPCR and immunoblotting in normal colon tissues, primary colon cancer
tissues and CRC cell lines. Publicly available RNA-seq and methylation data from The Cancer Genome
Atlas (TCGA) were extracted from tumors from CRC patients. The DNA methylation status spanning
CXCR4 gene was evaluated using combined bisulfite restriction analysis (COBRA). The methylation
status in the CXCR4 gene body was analyzed using previously performed nano-hmC-seal data from
colon cancers and adjacent normal colonic mucosa. CXCR4 expression levels were significantly
increased in tumor stromal cells and in tumor colonocytes, compared to matched cell types from
adjacent normal-appearing mucosa. CXCR4 promoter methylation was detected in a minority of
colorectal tumors in the TCGA. The CpG island of the CXCR4 promoter showed increased methylation
in three of four CRC cell lines. CXCR4 protein expression differences were also notable between
microsatellite stable (MSS) and microsatellite instable (MSI) tumor cell lines. While differential
methylation was not detected in CXCR4, enrichment of 5-hydroxymethylcytosine (5hmC) in CXCR4
gene bodies in CRC was observed compared to adjacent mucosa.
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1. Introduction

C-X-C motif chemokine ligand 12 (CXCL12), and its cognate receptor C-X-C motif chemokine
receptor 4 (CXCR4), constitutes a major cytokine-signaling pathway involved in both health
and disease [1,2]. CXCR4 deletion is embryonic lethal, emphasizing its essential role in normal
development [3]. In addition, CXCR4 overexpression promotes tumorigenesis and its expression
and activity are associated with cell proliferation [4–8], invasion [8–13], migration [8,14–20],
inflammation [21], angiogenesis [22], and metastasis [23–30] in several cancer models. These myriad
roles reflect the fact that CXCR4/CXCL12 signaling pathways can be activated by both autocrine and
paracrine signaling pathways (e.g., via stromal (CXCL12)-epithelial (CXCR4) crosstalk). In the case
of tumor metastasis, CXCL12 is released from stromal cells within the metastatic microenvironment,
which in turn activates CXCR4 on cancer cells to increase cancer cell adhesion, motility and invasion
in colon cancer cells [8]. Indeed, CXCR4 expression is an independent prognostic marker for several
malignancies including: AML, multiple myeloma, squamous cell carcinoma, gastric cancer, renal
cancer, hepatocellular carcinoma, and colorectal cancer (CRC) [31–37]. In the case of CRC patients, a
meta-analysis correlated high CXCR4 expression with liver and lymph node metastasis and ultimately
a reduction in overall survival [38].

Although the functions of CXCR4 are well described in tumor growth and invasion, the regulation
of CXCR4 gene expression in cancer is less well understood. While upstream loss-of-function mutations
of the von Hippel-Lindau tumor suppressor gene (VHL) or aberrant signaling may result in CXCR4
overexpression in some cancers [39,40], other studies point to epigenetic regulation of CXCR4. For
example, cytosine methylation (5mC) occurs widely in cancers including CRC [41–46]. Prior studies
have linked increased CXCR4 promoter cytosine methylation (5mC) to decreased CXCR4 protein
expression in several non-colonic cancers such as primary breast cancer [29], decreased mRNA and
protein in melanoma cell lines [47] and primary cervical cancer [48]. Increased CXCR4 expression was
achieved with the knock-down of DNA methyltransferase 1 (DNMT1) or DNA methyltransferase 3 beta
(DNMT3B), or with the inhibition of DNA methylation by 5-aza-2-deoxycytidine (5-aza) in pancreatic
cancer cells [49]. Similarly, 5-aza treatment increased CXCR4 mRNA and protein levels in melanoma
cells, and concomitantly enhanced cell migration [47]. These studies suggest that 5mC is an epigenetic
silencer of CXCR4 in cancer. Another epigenetic marker is 5-hydroxymethylcytosine (5hmC), which is
either stable or serves as an “intermediate” of an active demethylation process [50]. Gene expression
is commonly associated with 5hmC deposition in gene bodies [51] and differential 5hmC mapping
in several cancers, including CRC has been achieved [52]. With these reports in mind, we sought to
explore 5mC and 5hmC and CXCR4 upregulation in CRC. We hypothesized that enhanced CXCR4
gene expression in CRC could be the result of epigenetic modifications, either through demethylation
of the CXCR4 promoter or an increase in 5hmC modification in the CXCR4 gene body.

While past studies utilized immunohistochemistry in determining CXCR4 protein expression in
human CRC, we combined proteomic and transcriptomic approaches of Western blotting and RT-PCR
with 5mC combined bisulfite restriction analysis (COBRA) [53] to measure CXCR4 protein and mRNA
expression along with promoter methylation status in CRC tumors. Moreover, for the first time, normal
stromal cells and tumor-associated stromal cells were investigated for CXCR4 mRNA and protein
expression. In addition, CXCR4 analyses using publicly available databases of CRC transcriptomes,
methylomes and 5-hydroxymethylomes were conducted to address our hypothesis. Herein, for the first
time, we report that while 5mC distribution in the CXCR4 promoter was not significantly changed in
DNA from primary colon cancer tissue (compared to control tissue DNA), we observed that enhanced
CXCR4 expression in CRC associates with increased 5hmC deposition in the gene body.
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2. Results

2.1. CXCR4 Is Highly-Expressed in Colorectal Cancers

A prior study reported CXCR4 protein was upregulated in CRC compared to colonic mucosa and
colonic adenomas [8]. In other studies, CXCR4 mRNA and protein were shown to be upregulated in
metastatic tissue of the liver and lymph nodes compared to primary CRC tumors [30,37]. However, in
the prior studies, it was not determined if CXCR4 overexpression correlated with CXCR4 in tumor
colonocytes and/or in tumor stromal cells. Therefore, to extend our understanding of CXCR4 regulation
in colorectal cancer, we separated colonocytes from stromal cells and examined their CXCR4 expression
levels compared to their control counterparts.

We first examined CXCR4 mRNA levels in colon tissues from four healthy controls and six CRC
patients. We found in each case that colonocytes from normal colon, adjacent colon and cancers more
strongly expressed CXCR4 compared to stromal cells matched to the same tissue (q-value < 0.05)
(Figure 1a,b). While CXCR4 expression was lower in stromal cells, tumor-associated stromal cells
expressed CXCR4 more strongly than normal stromal cells (Figure 1a).
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Figure 1. C-X-C motif chemokine receptor 4 (CXCR4) transcript and protein expression in tumor and
adjacent normal tissue. RT-PCR analysis of CXCR4 transcript abundance in normal and tumor tissue: (a)
stromal cells and (b) colonocytes after multiple testing correction (Tukey post hoc test, Supplementary
Table S1). Note the increase of CXCR4 transcripts in both tumor stromal cells and colonocytes compared
to adjacent matched tissue controls (q-value < 0.05). (c) CXCR4 protein expression in tumor colonocytes
(T) and normal colonocytes adjacent to tumor (adj). Note the increased CXCR4 protein expression in
tumor colonocytes compared to adjacent colonocytes from normal appearing mucosa (n = 5; p-value <

0.05, paired Student’s t-test, Supplementary Table S2).
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We next evaluated CXCR4 protein expression in tumor colonocytes from primary freshly isolated
colorectal tumors and colonocytes from matched adjacent normal-appearing colonic mucosa. Overall,
CXCR4 protein expression correlated with qPCR findings with increased CXCR4 protein in tumor
colonocytes compared to colonocytes from adjacent mucosa (Figure 1c). To assess the effects of
cancer stage on CXCR4 expression, we analyzed RNA-seq data in n = 1625 CRC patients from the
TCGA. Normalized CXCR4 transcript reads (FPKM values) served as the basis for comparing mRNA
expression differences among the CRC that were categorized into 4 tumor stages. We found that
there was a wide variation in the FPKM distribution within each tumor stage, ranging from low
expression (FPKM value = 1) to high expression (FPKM value = 61). However, when comparing mean
FPKM values, we did not find statistically significant differences among tumor stages (Supplementary
Figure S1).

2.2. CXCR4 Promoter Hypomethylation Is Associated with Metastatic CRC

To investigate 5mC methylation in CXCR4 in human colon cancers, we extracted DNA from tumor
colonocytes and adjacent normal-appearing colonocytes and tested DNA for the presence of 5mC in 3
CXCR4 genomic loci by COBRA as illustrated in Supplementary Figure S2. Each sample was run on
two lanes: lane (1) bisulfite-treated PCR amplified DNA without restriction enzyme digestion, which
served as a reference control for unmethylated CpG and lane (2) bisulfite-treated PCR amplified DNA
digested with a restriction enzyme recognizing amplicons containing a 5’mCpG sequence. Amplicons
of region #3 showed complete digestion indicating methylation of tumor and adjacent control samples
(Figure 2a).

The lack of 5mC in regions #1 and #2 in colorectal cancers, prompted an additional study to
evaluate the 5mC beta-value (methylation) distribution of 5’mCpG probes (n = 5) located within
promoter region #1 across n = 371 tumors from CRC patients archived in TCGA that were classified by
the Tumor, Node, Metastasis (TNM) staging system (M0 = no evidence of metastasis, M1 = evidence
of metastasis). Typically, normalized 450K 5mC beta-values of CpG probes ranging from 0.00–0.19
are interpreted as unmethylated, whereas beta values ranging from 0.20–0.59 are considered partially
methylated, and beta values > 0.59 are considered fully methylated [54]. The beta-distribution of
CpG probes located within promoter region #1 revealed three findings. First, the vast majority of
beta-values of each CpG probe were under 0.20, indicating that the promoter region #1 of CXCR4 was
unmethylated in CRC in agreement with our COBRA findings (Figure 3).

Since the vast number of CRC have low beta values in the promoter region #1, it is not surprising
that we did not detect 5mC in region #1 in tumors from our patient subset. Secondly, some tumors from
CRC patients had beta-values of CpG probes exceeding the 0.19 threshold, suggesting region #1 of the
CXCR4 promoter region #1 was partially methylated in a subset of CRC. Lastly, the average beta-value
for 2 of 5 CpG probes was statistically lower in the metastatic (M1) cohort compared to patients without
metastasis (M0), suggesting that CXCR4 promoter hypomethylation may be occurring in metastatic
CRC (Figure 3). Taken together, this suggests that hypomethylation of the CXCR4 promoter region #1
associates with more aggressive CRC.
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Figure 2. Representational combined bisulfite restriction analysis (COBRA) results of 3 regions of
interest located in CXCR4 from one colorectal cancer (CRC) patient: (a) (#492) and one healthy individual
(Supplementary Figure S3) (b) (#578) (Supplementary Figure S4). Each sample was run on two lanes:
lane 1) bisulfite-treated PCR amplified DNA without restriction enzyme digestion, which served as a
reference control for unmethylated CpG and lane 2) bisulfite-treated PCR amplified DNA digested
with a restriction enzyme recognizing amplicons containing a 5’mCpG sequence. Region #3 shows
complete PCR product digestion, indicating that region #3 possesses cytosine methylation (5mC)
CXCR4 in tumor colonocytes (T# patient ID number), adjacent normal colonocytes (C# patient ID
number), and proximal/distal colon of healthy individuals (H# patient ID number P/D proximal/distal
colon). Restriction enzyme digestion was not evident in regions #1 or #2 in any tumor or normal
colonocytes from any CRC patient or controls and therefore unmethylated in both regions. PCR product
treated with restriction enzyme lane = +; PCR product from untreated sample lane = −; Restriction
enzyme sensitive digestion was not detected for the amplicons of the intragenic CpG island region #2 or
promoter region #1 in either tumor or control samples, indicating the absence of 5mC in those regions
(Figure 2a). In addition to CRC samples, regions #1–#3 were assessed in colonocytes from proximal and
distal colon in five healthy control individuals. The 5mC results of CXCR4 for colonocytes from healthy
control individuals were identical to those of malignant colonocytes from CRC patients, with 5mC
present in region #3, but absent in regions #1 or #2 (Figure 2b). Whole COBRA gel images of region
#1–#3 for the other CRC and normal control colons tested for CXCR4 5mC are shown in Supplementary
Figures S3 and S4, respectively.
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Figure 3. 5 Boxplots displaying methylation beta-values (Y-axis) of 5 probes within promoter CpG
island region #1, extracted from CRC patients classified in the Tumor, Node, Metastasis (TNM) staging
system as M1 = evidence of metastasis and M0 = no evidence of metastasis from the TCGA registry.
The [CG########] ID on the X-axis of each boxplot represents the unique ID of each probe within the
450K-array data set. A student t-test was conducted in finding mean beta-value differences for two CG
probes between M0 and M1 cohorts (p-value < 0.05).

2.3. CXCR4 Promoter Hypermethylation Correlates with Decreased Expression in CRC Cell Lines

In addition to tumors and adjacent normal colonic mucosa, we investigated CRC cell lines, HT29,
SW480, HCT116, and RKO colonocytes; and untransformed colon cell lines, FHC, FHs 74, and CCD-841
colonocytes and CCD-18Co fibroblasts for the presence of 5mC in regions #1-#3. Consistent with
results in primary tissues, region #3 was fully methylated in 3 of 4 CRC cell lines, HT29, SW480, and
HCT116 cells and in 2 of 4 untransformed colon cell lines, FHC and FHs-74 cells (Figure 4a,b).
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Figure 4. Combined bisulfite restriction analysis (COBRA) results of 3 regions of interest located in
CXCR4 from: (a) 4 CRC cell lines: HT29, SW480, HCT116, and RKO cells and (b) 4 untransformed
colon cell lines: CCD-841, CCD-18Co, FHC, and FHs 74 cells. Region #3 shows complete PCR product
digestion in CRC cell lines: HT29, SW480, and HCT116 cells and untransformed cell lines: FHC and
FHs 74 cells, indicating that region #3 is fully methylated. Incomplete PCR product digestion in RKO
cells and untransformed colon cell lines: CCD-841 and CCD-18Co cells indicate partial methylation
in region #1. Incomplete PCR digestion was only evident in RKO cells in region #2 indicating partial
methylation. 3 of 4 CRC cell lines: HT29, HCT116, and RKO cells displayed incomplete PCR digestion
in region #1, whereas no PCR digestion was evident in any untransformed colon cell line cells. (c)
RT-PCR analysis of CXCR4 transcript abundance in 4 CRC cell lines: HCT116, SW480, Caco2, and
DLD1 cells (q-value < 0.05) after multiple testing correction (Tukey post hoc test, Supplementary Table
S1). Note the increase of CXCR4 transcripts in SW480 cells compared to HCT116, Caco2, and DLD1
cells. (d) Western blot analysis of CXCR4 in 9 CRC cell lines: Caco2, HCA-7, HCT116, HT29, DLD1,
Lovo, LS174T, RKO, and SW480 cells (Supplementary Table S2). PCR product treated with restriction
enzyme lane = +; PCR product untreated lane = −.

However, as we found only partial amplicon digestion for region #3 in CRC cell line RKO and
non-transformed colon cell lines CCD-841 and CCD-18Co, we concluded that region #3 of these cell
lines was only partially methylated.

Interestingly, CRC cell line RKO was the only cell line that exhibited partial methylation in region
#2. Furthermore, differential methylation between CRC and untransformed colon cell lines were more
pronounced in promoter region #1, where 3 of 4 CRC cell lines: HT29, HCT116, and RKO were partially
methylated, whereas none of the 4 untransformed colon cell lines were methylated. Therefore, it is
reasonable to suggest that methylation within promoter region #1 may be associated with CXCR4
silencing or downregulation in these 3 CRC cell lines. Increased 5mC in region #1 and little or no
transcript or protein was detected in HCT116 cells and RKO cells (Figure 4c,d).
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Conversely, low 5mC was detected in HT29 cells, where CXCR4 protein was expressed. Only 3 of
9 CRC cell lines had high protein expression of CXCR4: HT29, Lovo, and SW480 cells, with strongest
expression in SW480 cells. Given that CXCR4 upregulation correlates with CRC metastasis and
SW480 and Lovo cells possess strong migratory properties, high CXCR4 protein expression may well
contribute to their migratory properties [55]. In contrast, CRC cell lines: Caco2, HCT116, and DLD1
had undetectable CXCR4 protein levels (Figure 4d) and very low CXCR4 transcript levels (Figure 4c).
Surprisingly, HT29 cells exhibited both CXCR4 protein expression and promoter methylation.

We therefore investigated whether promoter methylation might modulate CXCR4 expression by
administering a demethylating agent (5-aza-2’-deoxycytidine) to HCT116 and HT29 cells. After 5-aza
treatment there was increased CXCR4 mRNA compared to untreated cells (Figure 5). These results
suggest that promoter hypermethylation might partially inhibit CXCR4 mRNA expression in HCT116
and HT29 cells. We speculate that increased 5mC in CXCR4 promoter might similarly inhibit CXCR4
expression in some tumors and control colons.
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Figure 5. Demethylating agent 5-aza-2’deoxycytidine increases CXCR4 transcript abundance. RT-PCR
results display a decreased normalized Ct value (average) and therefore reflects the increased CXCR4
mRNA expression in colorectal cancer cell lines (a) HCT116 and (b) HT29 after treatment with 5 µM
concentration of demethylating agent 5-aza-2’-deoxycytidine.

2.4. Increased 5hmC Deposition within CXCR4 Gene Body Correlates with Increased CXCR4 Expression

Since we did not detect any relationship between 5mC levels and CXCR4 expression in primary
CRC vs. controls, we next examined levels of another epigenetic mark, 5hmC, in CXCR4. This
epigenetic modification is frequently associated with active gene transcription [56]. We found that
5hmC was increased significantly in the CXCR4 gene bodies in n = 42 cases of CRC compared to
matched adjacent normal-appearing colonic mucosa (Figure 6a). In our CRC cohort 5hmC accumulation
was most abundant within the terminal 3’ end of CXCR4 (Figure 6b). This phenomenon has been
reported in several genome-wide studies [56–59]. For example, a study by Lin et al., found that the
average 5hmC read counts were consistently higher towards the 3’ end for many genes expressed in
brain and liver tissues [56]. The authors speculated that a bias for 5hmC modification might begin
near the end of the ORF of these genes. The underling mechanism for this bias, however, will require
further study. Our observation of increased 5hmC in the CXCR4 gene body supports the hypothesis
that 5hmC modification associates with increased CXCR4 expression.
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Figure 6. 5-hydroxymethylcytosine (5hmC) abundance in CXCR4 gene bodies in colon cancers and
matched adjacent mucosa (n = 42 samples, p < 0.01, paired Student’s t-test): (a) Counts per million
reads at CXCR4 gene, (b) plus promoter (upstream 3kb region) in matched tumors and adjacent healthy
tissue in 30 colorectal cancer patients. The moving averages at 0.01 smoother span are shown. black
bars mark exons.

3. Discussion

CXCR4 is deregulated in several cancer types and appears to be important in CRC metastasis
as suggested by increased CXCR4 mRNA and protein in liver [30,37] and increased protein in
lymph nodes [30] in metastatic tumors compared to primary tumors. This is further supported by
increased metastatic properties in colon cancer cells following CXCR4 activation and inhibition of these
characteristics with anti-CXCR4 antibodies [8]. Our studies are the first to have measured CXCR4 in
matched isolated malignant colonocytes and tumor-associated stroma by Western blotting. For the first
time, we also observed that CXCR4 mRNA expression levels were higher in tumor-associated stromal
cells compared to control stromal cells, suggesting that CXCR4 may play a critical role in regulating
the tumor microenvironment as observed for other genes that are highly expressed in CRC-associated
stromal cells [60,61]. The expression patterns of CXCR4 in our study were consistent with prior reports
that analyzed CXCR4 expression in CRC. For example, RNA-seq expression profiles from a large
sample of colon tumors in TCGA, revealed that CXCR4 mRNA expression in tumors remained stable
across tumor stages (I–IV). This result was consistent with two earlier studies that compared CXCR4
mRNA expression among CRC tumor stages [30,37]. In addition, our Western blotting results showed
increased CXCR4 expression in tumor colonocytes compared to matched adjacent normal-appearing
colonocytes, and were in agreement with Ottaiano and colleagues’ findings of increased CXCR4 in
malignant colonocytes as assessed by immunostaining [8].

Of the cell lines examined in the report, N = 6 of 9 CRC cell lines: RKO, HCT116, LS174T, Lovo,
DLD1, and HCA-7 cells exhibit a hypermutable phenotype and are classified as micro-satellite instable
(MSI) tumor cell lines, whereas the remaining three CRC cell lines: HT29, SW480, and Caco2 cells
are classified as microsatellite stable (MSS) tumor cell lines. The microsatellite unstable phenotype
is associated with poor overall survival and is caused by biallelic loss of a DNA mismatch repair
enzyme, which accounts for about 15% of all sporadic CRCs [62,63]. One study concluded that overall
most genes were downregulated in MSI tumors, but noted upregulation of mucin-related genes as a
key molecular biomarker characterizing MSI tumors [64]. Interestingly, CXCR4 protein expression in
microsatellite unstable CRC cell lines was detected only in Lovo cells, which represents 1 of 6 (17%)
MSI tumors assayed; but CXCR4 was detected in 2 of 3 (67%) of MSS tumors assayed: HT29, SW480



Cancers 2020, 12, 539 10 of 18

cells. Further studies comparing primary MSI and MSS tumors will be needed to determine whether
CXCR4 expression levels differ between these tumor types.

To examine potential epigenetic mechanisms regulating CXCR4 in CRC, we assessed 5mC
modifications in CXCR4 by COBRA analysis, TCGA methylation data, and 5hmC modifications by
publicly available nano-hmC-Seal data. The 5mC portion of the study was initially prompted by the
fact that the 450 K methylation data from the UCSC Genome Browser identified CXCR4 promoter
hypermethylation in HCT116 and Caco-2 cells, which lacked CXCR4 protein expression. In addition,
the 5mC pattern spanning CXCR4 in HCT116 and Caco-2 cells served as a template in identifying
potential regulatory hotspots to test for the presence/absence of 5mC in CRCs. In turn, regions #1 and
#2 were identified as both regions overlap a CpG island within the promoter or a 5’ regulatory region
in CXCR4 and are therefore most likely to impact the transcription status of CXCR4. The COBRA
technique was chosen in that it allowed for a greater number CpGs to be evaluated in regions #1
and #2 (n = 9) compared to other forms of methylation-interrogating end-point PCR techniques like
methylation-specific PCR (MSP).

In our sample set of CRC tissues we did not observe decreased 5mC in CXCR4 despite increased
mRNA and protein expression in these tumors. Upon analysis of CRC tumor methylation in the TCGA,
we found that promoter CXCR4 5mC hypermethylation exists in a small subset of primary colon
cancers and those primary tumors with metastasis exhibit loss of 5mC in the promoter region. Recent
studies of TCGA for both DNA 5’mCpG methylation and RNA-seq analysis suggest that 5’mCpG
methylation could exert gene-specific positive or negative effects on gene transcription [65,66]. We
also found increases in 5hmC in the CXCR4 gene body in an independent cohort of colon tumors [52],
consistent with 5hmC serving as a marker of active gene transcription. A limitation of our 5hmC
analysis is that expression levels of CXCR4 mRNA and protein were not available for this cohort and
the TCGA cohort did not have 5hmC analysis.

Although, the mechanisms underlying aberrant methylation patterns in cancer remain
incompletely understood, global hypomethylation, associated with genomic instability and promoter
hypermethylation of tumor suppressor genes are observed in many tumors, including colon
cancer [41–46]. The latter may be related to increased enzymatic activity of DNA methyltransferases
in CRC compared to normal colonic mucosa [67]. Whether changes in 5hmC and/or 5mC promoter
methylation regulate CXCR4 expression in metastatic CRC will require additional studies.

In CRC cell lines our results suggest that 5mC present within CpG island region #1 of the promoter
may contribute to CXCR4 gene silencing in HCT116 and RKO cells as negligible levels of CXCR4
mRNA and no protein were detected in HCT116 cells and no CXCR4 protein was detected in RKO
cells. Indeed, our COBRA findings of 5mC located in the CpG rich region #1 of the CXCR4 promoter in
HCT116 cells are consistent with CXCR4 promoter methylation data in HCT116 cells available in the
UCSC Genome Browser. While CXCR4 was still expressed in HT29 cells, despite CXCR4 promoter
methylation, our demethylation studies suggest that DNA methylation limits CXCR4 expression in
these cells. In this regard, treating both HT29 and HCT116 cells with DNA hypomethylating agent
(5-aza) increased CXCR4 mRNA. A previous study in MCF7 breast cancer cells also demonstrated
that 5-aza treatment demethylated the CXCR4 promoter and concomitantly increased CXCR4 mRNA
expression [68]. We speculate that similar demethylation-induced changes in the CXCR4 promoter are
occurring in (5-aza) treated HT29 and HCT116 cells that showed increased CXCR4 mRNA. Persistent
CXCR4 gene expression in HT29 cells might result from lower levels of 5mC methylation in region #1
or in other CXCR4 promoter regions compared to those of HCT116 and RKO cells. We were only able
to interrogate one CpG site in region #1 and in the promoter region, because of design limitations of
suitable primers, thereby limiting the number of promoter associated CpG islands tested in this study.
Future studies will also address potential differences in 5hmC in the CXCR4 promoters in these cell
lines that could also contribute to differences in CXCR4 expression
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4. Materials and Methods

4.1. Human Tissue Collection

Human colonic adenocarcinomas and adjacent normal appearing colonic mucosa were obtained
for the Department of Surgical Pathology at The University of Chicago under an approved IRB
protocol (10-209-A). Resected tissues were placed in an ice bath and transported promptly to the
Surgical Pathology Department. Representative tumor sections and adjacent normal appearing
colonic mucosa were dissected free of underlying muscle. Care was taken to avoid areas with visible
necrosis. Colonocytes and stromal cells were isolated as previously described and purities assessed by
cytokeratin20 (colonocyte marker) and vimentin (stromal cell marker) Western blotting [69]. Normal
colon tissues were obtained from colon biopsies taken 20 cm from the anus under the approved IRB
10-209-A. For DNA methylation studies, biopsies were stored in RNA later that also preserves DNA.

4.2. Isolation of Coloncytes and Stromal Cells from Colonic Mucosa

Colonocytes and stromal cells were isolated following previously published methods with minor
modifications [70–72]. Briefly, colon tissues were removed and mucosa scrape-isolated and minced
with razor blade into 2 mm fragments that were collected in tubes containing 6 mL sterile ice-cold
transport media, 50 IU/mL penicillin (Millipore Sigma, St. Louis, MO, USA), 50 µg/mL streptomycin
(Millipore Sigma, St. Louis, MO, USA) and 0.5 mg/mL gentamycin (Millipore Sigma, St. Louis, MO,
USA). Tissue was washed 3 times by gentle inversion and collected by gravity sedimentation and
re-suspended in 10 mL chelating buffer (transport media plus 1 mM EDTA (Millipore Sigma, St. Louis,
MO, USA) and 1 mM EGTA (Millipore Sigma, St. Louis, MO, USA). Tissue was incubated on a shaker
overnight at 4 ◦C to release colonocytes into the supernatant. The pellet was washed three times with
3 mL ice-cold PBS (Thermo Fisher Scientific, Waltham, MA, USA), releasing residual colonocytes,
and colonocyte-containing supernatants were combined. Supernatants containing the epithelial cell
fraction, and pellets containing the stromal cell fraction were centrifuged at 400× g for 5 min at 4 ◦C,
yielding loosely packed pellets from which proteins were solubilized in 2× Laemmli buffer (Millipore
Sigma, St. Louis, MO, USA).

4.3. Cell Culture

All colon cancer and normal colon cell lines were obtained from ATCC and cultured at 37 ◦C in
a humified atmosphere of 95% O2 and 5% CO2 and 10% fetal calf serum (Thermo Fisher Scientific,
Waltham, MA, USA). Cell authentications for all lines were confirmed by short tandem repeats by
(IDEXX Bioanalytics, Columbia, MO, USA). Cells were shown to be mycoplasma free by IDEXX.
HCT116 and FHC cells were grown in high glucose DMEM medium (Thermo Fisher Scientific, Waltham,
MA, USA). DLD-1 cells were cultured in RPMI-1640 media (ATCC, Manassas, VA, USA). SW480
cells were grown in ATCC-formulated Leibovitz’s L-15 Medium (ATCC, Manassas, VA, USA). RKO,
LS-174T, Caco2, CCD-841, CCD-18Co cells were grown in ATCC-formulated Eagle’s Minimum Essential
Medium (ATCC, Manassas, VA, USA). Lovo cells were cultures in ATCC-formulated F-12K Medium
(ATCC, Manassas, VA, USA). FHs 74 cells were grown in ATCC-formulated Hybri-Care medium
(ATCC, Manassas, VA, USA). HCA-7 cells, derived from a rectal carcinoma {Marsh, 1993 #1850}, were
generously provided by Dr. Susan Kirkland (ICRF, London UK). Cells were grown in McCoy’s media
(ATCC, Manassas, VA, USA).

4.4. Measurement of CXCR4 Steady-State Transcript Levels

mRNA was extracted from colonocytes and stromal cells isolated from tumors and control colon
(CRC n = 6; control colons n = 4) and from CRC cell lines: HCT116, SW480, Caco2, DLD1 and cells
using the RNeasy® Mini Kit (Qiagen, Germantown, MD, USA). mRNA (150 ng) was then reverse
transcribed into cDNA using High Capacity cDNA Reverse Transcription Kit (Applied Biosystems,
Beverly, MD, USA) in 20 µL total volume. Incubation conditions were 37 ◦C for 60 min, and 95 ◦C for
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5 min. The resulting first-strand cDNA was used as template for quantitative PCR in triplicate using
Fast SYBR Green QPCR Master Mix kit (Applied Biosystems, Beverly, MD, USA). Reverse transcribed
cDNA (1:10 dilution) and primers were mixed in 20 µL with fast SYBR green master mixture. Reactions
were monitored on the LightCycler® 480 II System (Roche Diagnostic Corporation, Basel, Switzerland).
Reactants were initially heated to 95 ◦C for 20 s followed by 40 cycles: denaturation step at 95 ◦C for
10 s, annealing step at 55 ◦C for 15 s and extension step at 60 ◦C for 30 s. PCR amplification was verified
by melting curve and electrophoretic analyses of the PCR products on a 2% agarose gel. Negative
control reactions were also included (omitting reverse transcriptase or template cDNA). Data were
analyzed using the comparative 2ˆ(-∆∆Ct) method [73] and mRNA levels were normalized to β-actin
and expressed as fold-control (Supplementary Table S1). The multiple comparisons analysis using
Tukey’s method (q < 0.05) consisted of 11 groups, including: human whole tissue, control colonocytes
and stromal cells, colonocytes and stromal cells from normal appearing mucosa adjacent to tumor,
tumor colonocytes and tumor stromal cells. CXCR4 expression was also assessed in 4 CRC: HCT116,
SW480, Caco2, and DLD1 cell lines. Primer sequences for quantitative RT-PCR include:

β-actin Forward primer (5’->3’) CAGCCATGTCGTTGCTATCCAGG;
β-actin Reverse primer (5’->3’) AGGTCCAGACGCAGGATGGCATG;
CXCR4 Forward primer (5’->3’) GCGGTTACCATGGAGGGGAT;
CXCR4 Reverse primer (5’->3’) CCCATGACCAGGATGACCAAT;

4.5. CXCR4 Western Blotting

Western blotting was performed to assess CXCR4 expression in primary colon cancers and adjacent
normal appearing colonic mucosa, and 9 colorectal cell lines: Caco2, HCT116, HCA-7, HT29, DLD1,
Lovo, LS174T, RKO, and SW480 colonocytes. Proteins were extracted in SDS-containing Laemmli
buffer, quantified by RC-DC protein assay and subjected to Western blotting. Sample lysates (60 µg
protein) and pre-stained molecular weight markers were separated by SDS-PAGE on 4%–20% resolving
polyacrylamide gradient gels and electroblotted to PVDF membranes. Blots were incubated overnight
at 4 ◦C with specific primary rabbit monoclonal antibody at 1:1000 dilution (CXCR4, Abcam ab181020,
Cambridge, MA, USA) followed by 1hr incubation with appropriate peroxidase-coupled secondary
antibodies. CXCR4 Abcam Cat#ab181020 Blocking: 5% milk for 3 h 1◦AB 1:1000 in 5% milk overnight at
4 ◦C secondary AB 1:3000 anti-rabbit antibodies in 5% milk for 1 h at RT that were detected by enhanced
chemiluminescence using X-OMAT film (Carestream, Rochester, NY, USA). Xerograms were digitized
using Epson Perfection V600I scanner (Epson, Long Beach, CA, USA). and CXCR4 band intensity was
quantified using Un-Scan-It software V6.3 (Silk Scientific Inc., Orem, UT, USA) [69] (Supplementary
Table S2). A paired t-test was conducted to determine CXCR4 band intensity differences between
matched CRC tumor and adjacent tissue samples.

4.6. Combined Bisulfite Restriction Analysis

Prior to COBRA [53], genomic DNA (gDNA) was extracted and eluted in water from human
tissue samples and colorectal cell lines (HCT116, RKO, HT29, and SW480) using the DNeasy Blood
and Tissue Kit (Qiagen, Germantown, MD, USA). Clinical information for patients for the methylation
studies is summarized in Supplementary Table S3. Briefly, gDNA (~200 ng) was treated with bisulfite
using the EZ DNA Methylation-Gold Kit (Zymo, Irvine, CA, USA) per the manufacturer’s protocol.
Bisulfite-treated DNA was eluted in water. Bisulfite converted DNA (~200 ng) of bisulfite converted
DNA was used as template under standard thermal conditions (15 min hot start (94 ◦C denaturation
for 30 s, 56 ◦C annealing temp, and 72 ◦C extension for 40 cycles) 72 ◦C final extension for 10 min)
in a 25 µL reaction using the PyroMark PCR kit (Qiagen, Germantown, MD, USA) according to the
manufacturer’s instructions. The bisulfite-specific primers with sequences designed by MethPrimer
software [74] include:

Region #1: Promoter CpG island upstream of CXCR4 TSS [1 CpG] HpyCH4IV
Forward primer: (5’>3’)TTTTGAGTAGAGGATAAGTTTTGGTA;
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Reverse primer: (5’->3’) ACAAACCTCAACCAATCTAAAATC;
Region #2: Intragenic CpG island at the 5’ regulatory end of CXCR4 [8 CpGs] BstUI
Forward primer: (5’>3’)GGTGGTTATTGGAGTATTTAGGTTTT;
Reverse primer: (5’->3’)AACAAAATCCCTAAACTTC;
Region #3: Terminal 3’ exon of CXCR4 [2CpGs] HpyCH4IV
Forward primer: (5’->3’)TTATTTATAAGTTATTGGGGTAGAAG;
Reverse primer: (5’->3’)ATCCTAACCTTCATCAATCTAAAC;
PCR products (~7 µL) were digested in a 25 µL reaction containing either BstUI (60 ◦C) or

HpyCH4IV (37 ◦C) restriction enzyme for 4 h. Restriction digests were then resolved on a 2.5% agarose
gel with ethidium bromide. BstUI: cuts 5’CGCG’3 sequence and HpyCH4IV: cuts 5’ACGT’3 sequence.

4.7. 5hmC-Modified Locations in the CXCR4 Gene Body

5hmC-Seal data were downloaded for 42 pairs of tumor (TU) and adjacent tissue (TI) samples
from patients with colorectal cancer (GSE89570) [52]. Raw sequencing reads were summarized for the
gene bodies or promoters according to the current GENCODE annotations (release 19). The normalized
counts from DESeq2 by library size were log2 transformed and corrected for batch effect using linear
regression. The paired t test was used to evaluate whether the 5hmC modification levels in CXCR4
gene body were different between tumors and adjacent tissues (p-value < 0.01).

4.8. Inhibition of 5mC Deposition in Colorectal Cancer Cell Lines HCT116 and HT29

HCT116 and HT29 cells were seeded at ~10,000 cells at day -2. On day 0, culture medium was
removed and replaced with fresh medium containing 5µM 5’-aza-2’-deoxycytidine (Millipore Sigma,
St. Louis, MO, USA) dissolved in DMSO and incubated for 72 h. On day 3, cells were rinsed twice
with PBS and harvested for RNA and proteins. CXCR4 mRNA expression was analyzed by RT-PCR as
previously described.

4.9. CXCR4 Bioinformatics Analysis

High-throughput data from tumors from CRC patients were extracted from The Cancer Genome
Atlas (TCGA) and utilized for dissecting relationships among 5mC methylation, mRNA gene expression
and clinical correlates [75]. CRC were categorized into respective TNM (M0, M1) or tumor stages (I–IV)
for analysis. A python statistical data visualization library (Seaborn) was used to generate boxplots
showing mRNA expression and methylation distributions [76]. The x-axis represents the TNM staging
classification of CRC and the y-axis represents FPKM (mRNA gene expression) values from RNA-seq
data or beta (methylation) values from 450K methylation microarray probes spanning two CpG islands
within CXCR4 (Supplementary Table S4).

5. Conclusions

In summary, we confirmed upregulation of CXCR4 in CRC and extended prior studies to show
by cell-specific isolation and Western blotting that malignant colonocytes in CRC have the highest
expression levels. Furthermore, for the first time, we demonstrate that tumor-associated stromal cells
express increased CXCR4 mRNA. These changes in CXCR4 expression were not accompanied by
changes in 5mC, but rather by previously unreported increased 5hmC that we postulate marks this
gene for increased transcription in CRC. Multiple mechanisms regulating CXCR4 expression in CRC
are likely involved, including DNA epigenetic processes such as increases in 5hmC in the CXCR4 gene
body [52], acquisition of activating and loss of repressive histone marks such as increased H3K4me3
and decreased H3K27me3, respectively, [77]; and recruitment of trans-activating factors such as nuclear
respiratory factor1 (NRF1) [78]. Additional studies to discover new or novel genetic and epigenetic
mechanisms regulating CXCR4 are warranted to potentially target CXCR4 in colon cancer.
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Figure S1: Normalized CXCR4 FPKM values from CRC patients categorized by tumor stage, Figure S2: UCSC
Genome Browser (hg19 build) depiction of CXCR4 containing 2 CpG islands (green) and 3 Methyl 450K probe
sub tracks for colorectal cell lines Caco2 and HCT116 (Probe colors of Blue = unmethylated, Purple = partially
methylated, and Yellow = fully methylated), Figure S3: Full-length COBRA images from Figure 2a (T tumor, C
control), Figure S4: Full-length COBRA images from healthy control patients from Figure 2b (H# human subject
number; P proximal colon, D distal colon), Table S1: Clinical characteristics and statistical analysis of patients used
in the qPCR studies, Table S2: Densitometry statistics of CXCR4 bands in Figures 1c and 4d. Table S3: Clinical
characteristics of patients used in the COBRA analysis in Figure 2 and Figures S3 and S4. Table S4: Number of
patients deposited in TCGA that were used in the CXCR4 RNA-seq and 450K methylation microarray analysis.
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