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Abstract

Background: Pancreatic cancer is the fourth leading cause of cancer deaths in the United States both in females
and in males, and is projected to become the second deadliest cancer by 2030. The overall 5-year survival rate
remains at around 10%. Cancer metabolism and specifically lipid metabolism plays an important role in pancreatic
cancer progression and metastasis. Lipid droplets can not only store and transfer lipids, but also act as molecular
messengers, and signaling factors. As lipid droplets are implicated in reprogramming tumor cell metabolism and in
invasion and migration of pancreatic cancer cells, we aimed to identify lipid droplet-associated genes as prognostic
markers in pancreatic cancer.

Methods: We performed a literature search on review articles related to lipid droplet-associated proteins. To select
relevant lipid droplet-associated factors, bioinformatics analysis on the GEPIA platform (data are publicly available)
was carried out for selected genes to identify differential expression in pancreatic cancer versus healthy pancreatic
tissues. Differentially expressed genes were further analyzed regarding overall survival of pancreatic cancer patients.

Results: 65 factors were identified as lipid droplet-associated factors. Bioinformatics analysis of 179 pancreatic
cancer samples and 171 normal pancreatic tissue samples on the GEPIA platform identified 39 deferentially
expressed genes in pancreatic cancer with 36 up-regulated genes (ACSL3, ACSL4, AGPAT2, BSCL2, CAV1, CAV2, CAVI
N1, CES1, CIDEC, DGAT1, DGAT2, FAF2, G0S2, HILPDA, HSD17B11, ICE2, LDAH, LIPE, LPCAT1, LPCAT2, LPIN1, MGLL, NAPA,
NCEH1, PCYT1A, PLIN2, PLIN3, RAB5A, RAB7A, RAB8A, RAB18, SNAP23, SQLE, VAPA, VCP, VMP1) and 3 down-regulated
genes (FITM1, PLIN4, PLIN5). Among 39 differentially expressed factors, seven up-regulated genes (CAV2, CIDEC, HILP
DA, HSD17B11, NCEH1, RAB5A, and SQLE) and two down-regulation genes (BSCL2 and FITM1) were significantly
associated with overall survival of pancreatic cancer patients. Multivariate Cox regression analysis identified CAV2 as
the only independent prognostic factor.

Conclusions: Through bioinformatics analysis, we identified nine prognostic relevant differentially expressed genes
highlighting the role of lipid droplet-associated factors in pancreatic cancer.
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Background
Pancreatic cancer is the fourth leading cause of can-
cer deaths in the United States both in females and
males [1], and is predicted to be the second most
common cancer by 2030 [2]. Although recent thera-
peutic advances such as more effective adjuvant and
neo-adjuvant chemotherapies, together with more rad-
ical and safer surgery, pancreatic cancer prognosis is
very poor and the overall 5-year survival rate is still
10% [1, 3]. Metabolic reprogramming has been recog-
nized as a hallmark of cancer [4]. Aberrant lipid syn-
thesis and reprogrammed lipid metabolism are both
associated with the development and progression of
pancreatic cancer [5]. This can be because lipids such
as phospholipid bilayers are fundamental structural
components enabling cellular proliferation [5]. Lipid
droplets (LDs) are ubiquitous intracellular organelles
that store neutral lipids, such as, triacylglycerides, and
cholesterol esters [6, 7]. The storage of neutral lipids
in LDs is important for protecting cells from lipotoxi-
city due to the buildup of excess lipids in cell mem-
branes [7]. Some cancer cells accumulate massive
amount of LDs [7]. LDs are further implicated to me-
diate the proliferation, invasion, metastasis, as well as
chemotherapy resistance in several types of cancer
[8]. Oncogenic KRAS, which is the most important
driver for pancreatic cancer development, controls the
storage and utilization of LD supporting reprogram-
ming of tumor cell metabolism, invasion and migra-
tion [9]. LDs are composed of a monolayer of
phospholipids together with a variety of proteins such
as structural proteins, membrane transport proteins,
and enzymes [8]. LDs can associate with most other
cellular organelles through membrane contact sites
mediated by a set of proteins [10]. Since LD-
associated proteins play an important role in dynam-
ics of LD, we hypothesized that LD-associated factors
may be associated with the outcome of pancreatic
cancer patients.

Methods
Literature search for selecting lipid droplet-associated
factors
To identify lipid droplet-associated factors, we per-
formed a literature search in the PubMed database re-
lated to lipid droplet-associated proteins (last search
date: July 2020). All publications with keywords “lipid
droplet-associated protein” and the category “review”
were collected. There was no restriction on the publica-
tion period. We analyzed all retrieved articles [11–39],
and selected factors that were described to localize on
lipid droplet including factors on contact sites to other
organelles, such as endoplasmic reticulum and
mitochondria.

Gene expression profiling interactive analysis (GEPIA)
bioinformatics analysis
For gene expression profiling and overall survival ana-
lysis, we conducted bioinformatics analysis on the
GEPIA platform (http://gepia.cancer-pku.cn/) [40].
GEPIA is an online analysis tool for processing high-
throughput RNA sequencing expression data of bulk tu-
morous and normal samples based on the Cancer Gen-
ome Atlas (TCGA) (https://portal.gdc.cancer.gov/) and
the Genotype-Tissue Expression (GTEx, https://www.
gtexportal.org/) databases. Our analysis included 179
pancreatic cancer samples and 171 normal pancreatic
tissue samples. Dot maps of selected genes were gener-
ated. Furthermore, the GEPIA differential analysis mod-
ule was used for analyzing gene expression profiles of
pancreatic cancer and paired normal samples, and for
screening differentially expressed genes (DEGs) between
tumor and normal tissues. DEGs were further analyzed
for overall survival (OS) on the GEPIA platform. Median
expression was used as the threshold between high ex-
pression and low expression cohorts. The Human Pro-
tein Atlas version 20.1 (https://www.proteinatlas.org)
[41] was used to analyze DEGs at the protein level by
immunohistochemistry.

Statistical analysis
Statistical analysis was performed through the plug-in
units of GEPIA. Analysis of variance (ANOVA) and
Limma package plug-in were performed for screening
DEGs. The data analysis function of Limma package is
for the construction of linear models and differential ex-
pression for RNA-seq data. Genes with log2 (fold
change) > 1 or < − 1, and a P value < 0.05 were consid-
ered DEGs. P-values were calculated as false discovery
rate (FDR)-adjusted P-values with the Limma packages.
OS analysis was performed using the Kaplan-Meier sur-
vival plots tool in the GEPIA platform. Via Log-rank
test, log-rank P-values, hazards ratios (HR), and Cox P-
values were obtained. Univariate and multivariate Cox
regression analysis was carried out via Cox Proportional-
Hazards (CoxPH) function in R. P < 0.05 was considered
statistically significant.

Results
Selection of lipid droplet-associated factors for the
bioinformatics analysis
Following the literature search and analysis, 65 factors
were retrieved as LD-associated factors. The selecting
criteria included factors not only directly implicated as
LD factors, but also factors localized on contact sites of
LD with other organelles such as endoplasmic reticulum
and mitochondria. The majority of publications indi-
cated perilipin family members PLIN1–5 (Table 1). The
selected factors further included: Abhydrolase 5
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(ABHD5, also known as Comparative gene identification
CGI-58), Acetyl-CoA acetyltransferase 1 (ACAT1), Acyl-
CoA synthetase long chain family member (ACSL) 3–4,
1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPA
T2, also known as Berardinelli-Seip congenital lipody-
strophy BSCL1), Angiopoietin like 8 (ANGPTL8, also
known as C19orf80), Apolipoprotein APOA4, APOB,
Ancient ubiquitous protein 1 (AUP1), BSCL2 (Seipin),
Caveolin 1 (CAV1, also known as BSCL3), CAV2,
Caveolae-associated protein 1 (CAVIN1), Carboxyester-
ase 1 (CES1), Cell death-inducing DNA fragmentation
factor-like effector (Cide) family members (CIDEA,
CIDEB, CIDEC), Diacylglycerol O-Acyltransferase
(DGAT) 1–2, Fas-associated factor 2 (FAF2, also known

as UBX domain UBXD8), Fat storage inducing trans-
membrane protein (FITM) 1–2, G0/G1 switch protein
(G0S2), Glycerol-3-phosphate acyltransferase 4
(GPAT4), Hypoxia inducible LD associated (HILPDA),
Hydroxysteroid HSD17B11, HSD17B13, Interactor of lit-
tle elongation complex ELL ICE2, LD-associated hydro-
lase (LDAH), Lipase E (LIPE, also known as Hormone
sensitive lipase HSL), Lysophosphatidylcholine Acyl-
transferase (LPCAT) 1–2, phosphatidic acid phosphohy-
drolase Lipin 1 (LPIN1, PAP1), Lanosterol synthase
(LSS), Methyltransferase like 7A (METTL7A, also
known as AAMB), METTL7B (also known as Associated
with LD protein I, ALDI), Monoglyceride lipase (MGLL),
Microsomal triglyceride transfer protein (MTTP), N-

Table 1 Lipid droplet-associated factors retrieved by literature search. Sixty-five factors were identified as lipid droplet-associated
factors by literature search and analysis.

Factor
name

References Factor name References Factor name References

ABHD5
(CGI-58)

[11, 12, 15, 17–20, 22–29,
34, 35, 37, 38]

ACAT1 [28, 33] ACSL3 [14, 15, 18, 35]

ACSL4 [18, 35] AGPAT2 (BSCL1) [18, 21] ANGPTL8
(C19orf80)

[21]

APOA4 [18] APOB [18] AUP1 [15, 18]

BSCL2
(Seipin)

[14, 18, 20] CAV1 (BSCL3) [18, 20, 29] CAV2 [18, 29]

CAVIN1 [18] CES1 [18, 32] CIDEA [13, 18–20, 22–24, 28–31, 39]

CIDEB [13, 18, 19, 22–24, 31, 39] CIDEC (FSP27) [13, 17–20, 22–25, 28–31,
39]

DGAT1 [11, 15, 18, 33, 38]

DGAT2 [11, 14, 15, 18, 20, 21, 33,
35, 38]

FAF2 (UBXD8) [15, 18] FITM1 [19]

FITM2 [14, 19, 20] G0S2 [11, 17, 19, 20, 25, 28] GPAT4 [15, 18, 21, 38]

HILPDA [11, 17, 19] HSD17B11 [15, 18, 35] HSD17B13 [15, 18]

ICE2 [14] LDAH [18] LIPE (HSL) [11, 15, 17, 18, 20, 22, 23, 28, 29, 31,
32, 34, 35, 37, 38]

LPCAT1 [18, 21] LPCAT2 [18, 21] LPIN1 [38]

LSS [35] METTL7A (AAMB) [15] METTL7B
(ALDI)

[15]

MGLL [11] MTTP [20] NAPA [38]

NCEH1 [18] NSF [38] OSBPL2
(ORP2)

[21]

PCYT1A
(CCTA)

[18, 20] PEMT [21] PLD1 [38]

PLIN1 [11, 14–20, 22–25, 28–33,
35, 36, 38]

PLIN2 (ADRP) [11, 14–20, 22–25, 28, 30–
33, 35, 36, 38]

PLIN3 (TIP47) [11, 14, 16–20, 22–25, 28, 31–36, 38]

PLIN4 (S3–
12)

[11, 14, 16–20, 22–24, 28,
33, 35]

PLIN5 (OXPAT/
MLDP/LSDP5)

[11, 14, 16–20, 22–25, 28,
31, 33–35]

PNPLA2
(ATGL)

[11, 12, 15, 17–25, 28, 29, 31–38]

PNPLA3
(ADPN)

[12, 18, 27] PNPLA5 [21] RAB5A [18, 36, 38]

RAB7A [21, 36] RAB8A [18] RAB18 [14, 15, 18, 20, 24, 38]

SNAP23 [38] SQLE [35] STX5 [38]

UBE2G2 [15] VAMP4 [38] VAPA [21]

VCP (p97) [15, 18] VMP1 [14]
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ethylmaleimide-sensitive factor (NSF)-attachment pro-
tein α (NAPA, also known as α-SNAP), Neutral choles-
terol ester hydrolase 1 (NCEH1), NSF, Oxysterol binding
protein like 2 (OSBPL2, also known as ORP2), Phosphate
Cytidylyl transferase PCYT1A (also known as CTP:phos-
phocholine cytidyltransferase CCTA), Phosphatidyletha-
nolamine N-methytransferase (PEMT), Phospholipase 1
(PLD1), Patatin-like phospholipase domain containing 2
(PNPLA2), PNPLA3, PNPLA5, RAS oncogene family
RAB5A, RAB7A, RAB8A, RAB18, SNAP23, Squalene
epoxidase (SQLE), Synthaxin 5 (STX5), Ubiquitin conju-
gating enzyme UBE2G2, Vesicle associated membrane
protein 4 (VAMP4), Vesicle-associated membrane
protein-associated protein (VAPA), Valosin containing
protein (VCP, also known as p97), and Vesicular mem-
brane protein 1 (VMP1) (Table 1).

Expression of a large number of lipid droplet-associated
genes is significantly altered in pancreatic cancer patient
specimens
We analyzed the RNA-seq expression data of 65 genes re-
lated to lipid metabolism in 179 PDAC and 171 normal
samples. Thirty-nine differentially expressed genes
(DEGs), with 36 up-regulated (ACSL3, ACSL4, AGPAT2,
BSCL2, CAV1, CAV2, CAVIN1, CES1, CIDEC, DGAT1,
DGAT2, FAF2, G0S2, HILPDA, HSD17B11, ICE2, LDAH,
LIPE, LPCAT1, LPCAT2, LPIN1, MGLL, NAPA, NCEH1,
PCYT1A, PLIN3, RAB5A, RAB7A, RAB8A, RAB18,
SNAP23, SQLE, VAPA, VCP, VMP1) and 3 down-
regulated genes (FITM1, PLIN4, PLIN5) were identified in
bulk pancreatic cancer as compared to normal pancreatic
tissues (Fig. 1). Statistical data are summarized in Table 2.

Lipid droplet-associated gene expression of CAV2, CIDEC,
HILPDA, HSD17B11, NCEH1, RAB5A, and SQLE is associated
with poor survival while expression of BSCL2 and FITM1 is
associated with longer overall survival of pancreatic
cancer patients
Next, overall survival (OS) analysis of 39 DEGs was per-
formed on the GEPIA platform. The results revealed
that up-regulation of seven genes (CAV2, CIDEC, HILP
DA, HSD17B11, NCEH1, RAB5A, and SQLE) and down-
regulation of FITM1 were significantly associated with a
decrease in OS. Interestingly, up-regulation of BSCL2
was associated with favorable OS. Hence, through the
above analysis, nine prognostic DEGs of lipid droplet-
associated factors were identified in pancreatic cancer
(Fig. 2, 3a). To further verify, whether these nine genes
have prognostic power, we performed univariate Cox
proportional hazards regression analysis and calculated
hazard ratios (HRs) and 95% confidence intervals (CIs).
Among nine prognostic DEGs, FITM1 was not a signifi-
cant prognostic factor in the univariate Cox regression
analysis (coefficient: -0.089, HR: 0.91 (0.77–1.1), P = 0.3),

whereas the other eight genes were confirmed as prog-
nostic factors (BSCL2 coefficient: -0.53, HR: 0.59 (0.39–
0.88), P = 0.011; CAV2 coefficient: 0.54, HR: 1.7 (1.3–
2.2), P < 0.001; CIDEC coefficient: 0.11, HR: 1.1 (1–1.2),
P = 0.016; HILPDA coefficient: 0.22, HR: 1.2 (1–1.5),
P = 0.015; HSD17B11 coefficient: 0.42, HR: 1.5 (1.1–2.1),
P = 0.011; NCEH1 coefficient: 0.51, HR: 1.7 (1.3–2.1),
P < 0.001; RAB5A coefficient: 0.91, HR: 2.5 (1.4–4.3),
P = 0.001; SQLE coefficient: 0.29, HR: 1.3 (1.1–1.7), P =
0.007) (Fig. 3b). To identify, whether these genes were
independent prognostic factors, we performed multivari-
ate Cox proportional hazards regression analysis. Among
the prognostic DEGs, only CAV2 was an independent
prognostic factor (coefficient: 0.4, HR: 1.5, P = 0.005)
(Fig. 3c). We further analyzed protein expression of the
nine DEGs on the Human Protein Atlas database. Repre-
sentative immunohistochemistry pictures of the DEGs
are shown in Fig. 4.
Taken together, LD-associated factors seem to be rele-

vant in pancreatic cancer since there are linked by bio-
informatics analyses to overall survival of pancreatic
cancer patients.

Discussion
LD accumulation in non-adipose tissues has been recog-
nized as a new hallmark of cancer cells [8]. Higher LD
content has been reported in colorectal, breast, prostate
cancer, hepatocellular carcinoma, renal cell carcinoma
and glioblastoma [8]. LDs have been implicated to medi-
ate aspects of proliferation, invasion, metastasis, as well
as chemotherapy resistance in several types of cancer
[8]. Increased storage of lipids in LDs has been suggested
to be beneficial for the survival of cancer cells. Increased
LD contents may expand the energy source for the
metabolic need of proliferative cancer cells [8]. Storage
of excess FAs and cholesterol in LDs can prevent lipo-
toxicity and endoplasmic reticulum (ER) stress [8]. Cru-
cial regulators in LD homeostasis include structural
proteins, membrane transport proteins and enzymes [8].
We hypothesized that expression of LD-associated fac-
tors is relevant in pancreatic cancer, because LD-
associated factors support the storage of neutral lipids in
lipid droplets providing energy source for cancer cells
and potentially protecting cancer cells from lipotoxicity.
Furthermore, LDs can associate with most other cellular
organelles such as ER, nucleus, mitochondria, peroxi-
somes, and lysosomes through membrane contact sites
[10]. It is not known whether LDs can be transferred be-
tween cells, or can be secreted into the blood stream. It
has been shown that tumors signal over long distances
to sites of future metastases to promote formation of a
pre-metastatic niche that potentially supports growth of
disseminated tumor cells upon their arrival [42]. If lipid
droplets act as “transporters” of lipids and signaling
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molecules between cells, LDs and LD-associated factors
might be involved in metastasis. The molecular mecha-
nisms, however, need to be clarified in future.
In the current study, we identified 36 upregulated and

3 downregulated genes characterized as LD-associated
factors in pancreatic cancer (Table 2). We further identi-
fied that enhanced expression of 7 genes namely CAV2,
CIDEC, HILPDA, HSD17B11, NCEH1, RAB5A, and
SQLE are associated with significantly shorter overall
survival whereas elevated expression of BSCL2 and
FITM1 correlates with longer overall survival of pancre-
atic cancer patients (Fig. 3a). To verify those findings
also on the protein level, normal pancreatic tissue

samples, in addition to cancerous and para-cancerous
tissues, would be required. However, we confirmed pro-
tein expression of the DEGs by using the Human Protein
Atlas database. Although gene transcripts levels and pro-
tein concentrations do not always correspond to each
other, we identified prognostic LD-associated factors at
the transcriptome level, providing clues for future prote-
omics, metabolomics and downstream functional
analysis.
CAV-2 is a caveolin family member and CAV-2 ex-

pression is increased during the accumulation of intra-
cellular LDs and the adipogenic differentiation [43].
CAV-2 plays a key role in intracellular cell transport and

Fig. 1 The mRNA expression levels of 39 differentially expressed genes in pancreatic cancer. Gene mRNA expression level of lipid droplet-
associated factors was analyzed with the GEPIA platform. The 39 differentially expressed genes (ACSL3, ACSL4, AGPAT2, BSCL2, CAV1, CAV2, CAVIN1,
CES1, CIDEC, DGAT1, DGAT2, FAF2, FITM1, G0S2, HILPDA, HSD17B11, ICE2, LDAH, LIPE, LPCAT1, LPCAT2, LPIN1, MGLL, NAPA, NCEH1, PCYT1A, PLIN2,
PLIN3, PLIN4, PLIN5, RAB5A, RAB7A, RAB8A, RAB18, SNAP23, SQLE, VAPA, VCP, VMP1) were depicted via bar plots between pancreatic cancer versus
pancreas normal tissue (T: pancreatic cancer tissue, N: pancreas normal tissue)
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higher level of CAV-2 is associated with different types
of cancer progression [44]. It has been demonstrated
that higher expression of CAV-2 and its upstream

regulator bromodomain containing 4 (BRD4) is associ-
ated with shorter overall survival of 76 pancreatic cancer
patients [44]. In our study, both CAV1 and CAV2 were

Table 2 Statistical data of lipid droplet-associated factors identified as DEGs. Differential expression analysis of lipid droplet-
associated genes was performed on the GEPIA platform. The statistical data of 39 DEGs between pancreatic cancer versus normal
pancreatic tissues are shown

Gene Symbol Gene ID Median (Tumor) Median (Normal) Log2(Fold Change) Adj. P-value

ACSL3 ENSG00000123983.13 38.869 6.610 2.389 9.39e-76

ACSL4 ENSG00000068366.19 17.629 2.540 2.396 4.33e-66

AGPAT2 ENSG00000169692.12 100.071 46.240 1.097 6.24e-17

BSCL2 ENSG00000168000.14 77.772 23.070 1.710 9.80e-44

CAV1 ENSG00000105974.11 42.261 5.060 2.836 6.07e-52

CAV2 ENSG00000105971.14 51.282 9.600 2.302 2.89e-39

CAVIN1 ENSG00000177469.12 95.510 9.460 3.879 1.89e-40

CES1 ENSG00000198848.12 28.929 3.970 2.590 4.39e-31

CIDEC ENSG00000187288.10 5.060 0.490 2.024 1.74e-20

DGAT1 ENSG00000185000.9 45.730 13.480 1.690 3.74e-42

DGAT2 ENSG00000062282.14 6.230 0.710 2.080 5.63e-36

FAF2 ENSG00000113194.12 19.030 6.270 1.462 1.49e-59

FITM1 ENSG00000139914.6 0.640 4.620 −1.777 7.21e-56

G0S2 ENSG00000123689.5 25.751 5.000 2.157 9.55e-22

HILPDA ENSG00000135245.9 11.370 3.420 1.485 8.02e-28

HSD17B11 ENSG00000198189.10 67.930 24.891 1.413 7.59e-32

ICE2 ENSG00000128915.11 13.590 6.080 1.043 5.07e-38

LDAH ENSG00000118961.14 6.480 2.310 1.176 2.26e-45

LIPE ENSG00000079435.9 5.960 1.870 1.278 2.58e-21

LPCAT1 ENSG00000153395.9 21.251 4.670 1.972 4.51e-53

LPCAT2 ENSG00000087253.11 10.760 1.330 2.335 5.24e-57

LPIN1 ENSG00000134324.11 10.770 4.790 1.024 1.04e-23

MGLL ENSG00000074416.13 65.639 2.700 4.171 6.12e-80

NAPA ENSG00000105402.7 108.774 45.581 1.237 7.56e-36

NCEH1 ENSG00000144959.9 11.570 1.480 2.342 3.75e-57

PCYT1A ENSG00000161217.11 18.930 7.370 1.252 9.92e-42

PLIN2 ENSG00000147872.9 37.980 8.970 1.967 2.64e-29

PLIN3 ENSG00000105355.8 58.351 6.890 2.911 1.13e-74

PLIN4 ENSG00000167676.4 0.900 6.180 −1.918 5.30e-13

PLIN5 ENSG00000214456.8 1.340 46.610 −4.347 3.06e-86

RAB5A ENSG00000144566.10 30.130 8.570 1.702 1.41e-58

RAB7A ENSG00000075785.12 148.024 31.851 2.182 1.25e-66

RAB8A ENSG00000167461.11 35.579 7.510 2.104 3.17e-70

RAB18 ENSG00000099246.16 34.750 11.450 1.522 4.92e-49

SNAP23 ENSG00000092531.9 33.981 12.280 1.397 1.09e-34

SQLE ENSG00000104549.11 28.019 3.220 2.782 4.34e-62

VAPA ENSG00000101558.13 128.952 48.600 1.390 1.38e-39

VCP ENSG00000165280.15 128.470 39.180 1.688 1.08e-50

VMP1 ENSG00000062716.10 136.901 34.789 1.946 7.73e-33
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identified as DEGs, but only CAV2 was a prognostic
DEG associated with shorter OS in pancreatic cancer
patients.
CIDEC (also known as fat-specific protein of 27 kDa,

FSP27) has been suggested to mediate LD-LD contact
for promoting LD fusion [6, 10]. CIDE proteins are
enriched at LD-LD contact sites and physically chaining
the adjacent organelles [10]. So far it has been demon-
strated that CIDEC promotes development of hepatic

steatosis and steatohepatitis [45, 46]. In our study, only
CIDEC but not CIDEA or CIDEB was identified as a
prognostic DEG. The precise and specific role of CIDEC
in cancer needs to be clarified.
In various cancer cells including renal cell carcinoma,

ovarian clear cell carcinoma, colorectal adenoma and
carcinoma, upregulation of HILPDA has been observed
[47–49]. Hypoxia-inducible factor 1 (HIF1) regulates the
expression of HILPDA [11]. HILPDA preferentially

Fig. 2 Prognostic gene expression profiling. The dot plots profiling of 9 prognostic gene expression (BSCL2, CAV2, CIDEC, FITM1, HILPDA,
HSD17B11, NCEH1, RAB5A, and SQLE) were generated across pancreatic cancer and paired pancreas samples. Each dot represents an independent
cancer or normal samples
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Fig. 3 Analysis of 9 genes at pancreatic cancer overall survival. a. Overall survival analyses of 9 prognostic genes (BSCL2, CAV2, CIDEC, FITM1, HILP
DA, HSD17B11, NCEH1, RAB5A, and SQLE) at pancreatic cancer based on the GEPIA database. b. Univariate Cox regression analysis of nine
prognostic genes. c. Multivariate Cox regression analysis of nine prognostic genes
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accumulates in LDs undergoing remodeling (e.g. expan-
sion). HILPDA has been shown to co-localize with the
lipogenic enzymes DGAT1 and DGAT2 [11], which
were both identified as DEGs in our study (Table 2).
DGATs catalyze the final rate-limiting step in the for-
mation of triglycerides. In line with this, HILPDA has
been shown to promote intracellular lipid accumula-
tion by enhancing triglyceride synthesis [11]. Overex-
pression of HILPDA, but not DGAT1/2, is associated
with shorter overall survival in pancreatic cancer pa-
tients (Fig. 3a), suggesting that additional roles of

HILPDA, other than regulating triacylglyceride (TAG)
synthesis, may influence the outcome of pancreatic
cancer patients. Indeed, HILPDA inhibits the rate-
limiting enzyme of TAG hydrolysis PNPLA2 (ATGL),
leading to inhibition of lipolysis, attenuated fatty acid
oxidation and ROS production [11].
HSD17B11 is known to convert 5α-androstan-3α, 17β-

diol (3α-diol) to androsterone [50]. HSD17B11 regulates
size of LDs, LD distribution and TAG content [51]. The
role of HSD17B11 in pancreatic cancer has not been elu-
cidated. It has been shown that HSD17B13 variants are

Fig. 4 Representative immunohistochemistry of nine lipid droplet-associated genes between pancreatic cancer and normal pancreas tissues in
the Human Protein Atlas database
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associated with nonalcoholic fatty liver disease (NAFLD)
and HSD17B13 expression is elevated in nonalcoholic
steatohepatitis (NASH) patients, or with risk of cirrhosis
and hepatocellular carcinoma (HCC), while a HSD17B13
variant has been demonstrated to protect from HCC de-
velopment [52–54]. In our study, HSD17B13 was not
identified as DEG. Regarding NCEH1, which hydrolyzes
2-acetyl monoalkylglycerol in the metabolism of ether
lipids, it has been suggested as a prognostic marker for
pancreatic cancer [55], supporting our analysis.
Rab family protein RAB5A belongs to the Ras family

of G-proteins, which regulate membrane vesicle traffick-
ing. In our study, several Rab family members namely
RAB5A, RAB7A, RAB8A, and RAB18 were identified as
DEGs (Table 2). Among these four genes, expression of
RAB5A was associated with shorter OS of pancreatic
cancer patients. Expression of RAB5A correlated with
pancreatic tumor progression in another study of 111
patients as well [56]. Increased expression of RAB5A
predicts metastasis and shorter OS in colorectal cancer
patients [57]. It has been suggested that RAB5A regu-
lates Wnt signaling, proliferation, invasion and 5-FU
drug resistance [56]. Further, RAB5A activates IRS1, Akt
and mTOR signaling [58], suggesting that LD-associated
factors are also involved in regulating signaling path-
ways. SQLE is a key enzyme in the cholesterol synthesis
pathway and converts squalene to 2,3-epoxysqualene
[59]. SQLE increase epigenetic silencing of PTEN, lead-
ing to activation of the Akt-mTOR pathway and NAFL
D-induced HCC growth. High expression of SQLE was
associated with shorter OS of HCC patients [60]. On the
other hand, it has been demonstrated that reduction of
SQLE mRNA and protein expression is associated with
shortened survival of colorectal cancer patients. SQLE
reduction aggravates colorectal cancer progression via
the activation of the β-catenin pathway and deactivation
of p53 pathway [61]. In our study with pancreatic cancer
patient databases, SQLE was identified as a DEG and
higher expression of SQLE was associated with shorter
OS of pancreatic cancer patients. The precise and cancer
type-specific role of SQLE has to be further clarified.

Study strengths and limitations
Bioinformatics analysis revealed that expression of LD-
associated factors is associated with overall survival in
pancreatic cancer patients. Although aberrant lipid syn-
thesis and reprogrammed lipid metabolism are both as-
sociated with the development and progression of
pancreatic cancer, LD and LD-associated factors have
not been considered in this disease. In the current study,
we identified 65 factors as LD-associated factors. We
identified 39 DEGs with 36 up-regulated and 3 down-
regulated genes. Among 39 DEGs, 7 up-regulated genes
and 2 down-regulated genes were significantly associated

with overall survival of pancreatic cancer patients. Cox
regression analysis further validated 8 factors as prog-
nostic factors.
There are also several limitations of the study.

Cofounding factors such as body-mass index (BMI) and
others could not be considered, since the data of normal
tissue from the GTEx database do not include these in-
formation. Furthermore, findings were not validated on
the protein level. Further studies must include functional
analysis using knockout animal model of the prognostic
candidate genes to analyze whether deletion/ inhibition
of the lipid droplet-associated factors can change the
metabolic profile of the cells, proliferation, and the abil-
ity to metastasize. It would also be of interest to clarify
whether lipid droplets can be detected in liquid biopsies
(blood), and whether deletion/ inhibition of LD-
associated factors reduce lipid droplet contents in the
blood.

Conclusions
LDs are ubiquitous cellular organelles, involved not only
in lipid metabolism but also in diverse biological func-
tions such as regulating signaling pathways. LDs mediate
proliferation, invasion, metastasis, as well as chemother-
apy resistance in several types of cancer. LD-associated
proteins play an important role in dynamics of LD and it
is now evident that expression of several LD-associated
genes are associated with overall survival in pancreatic
cancer patients. The current study identified prognostic
LD-associated factors at the transcriptome level, provid-
ing clues for future proteomics and downstream func-
tional and pathway analysis. It is important to increase
our understanding of cancer type-specific roles of LD-
associated factors, which may help to develop more spe-
cific and personalized therapies for pancreatic cancer pa-
tients in the future.
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