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Transcription factors (TFs) are master gene products that regulate gene expression in response to a variety of
stimuli. They interact with DNA in a sequence-specific manner using a variety of DNA-binding domain (DBD)
modules. This allows to properly position their second domain, called “effector domain”, to directly or indirectly
recruit positively or negatively acting co-regulators including chromatinmodifiers, thusmodulating preinitiation
complex formation as well as transcription elongation. At variance with the DBDs, which are comprised of
well-defined and easily recognizable DNA binding motifs, effector domains are usually much less conserved
and thus considerably more difficult to predict. Also not so easy to identify are the DNA-binding sites of TFs,
especially on a genome-wide basis and in the case of overlapping binding regions. Another emerging issue,
with many potential regulatory implications, is that of so-called “moonlighting” transcription factors,
i.e., proteins with an annotated function unrelated to transcription and lacking any recognizable DBD or effector
domain, that play a role in gene regulation as their second job. Starting from bioinformatic and experimental
high-throughput tools for an unbiased, genome-wide identification and functional characterization of TFs
(especially transcriptional activators), we describe both established (and usually well affordable) as well as
newly developed platforms for DNA-binding site identification. Selected combinations of these search tools,
some of which rely on next-generation sequencing approaches, allow delineating the entire repertoire of TFs
and unconventional regulators encoded by the any sequenced genome.
© 2016 Levati et al. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Transcription factors (TFs) coordinate many important biological
processes ranging from cell cycle progression, cellular differentiation
and development to intracellular metabolism and environmental
adaptation [1–4]. Several human diseases, including cancer, are caused
by alteration of regulatory programs and TFs are overrepresented
among oncogene products [5]. About one-third of human developmen-
tal disorders is attributed to dysfunctional TFs [6] and programmed
variations in the activity and/or specificity of TFs have also been
documented as amajor source of phenotypic diversity and evolutionary
adaptation in various organisms [7–9]. Indeed, an increased complexity
of TF-dependent regulatory networks is considered as a major driver of
the emergence of metazoan life [10–13].
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A distinguishing feature of typical (“conventional”) TFs, compared to
other transcriptional regulatory proteins, is their ability to interact with
DNA in a sequence-specific manner. In the vast majority of cases, DNA-
binding is achieved by one, sometimes more, DNA-binding domains
(DBDs) and TFs are classified into superclasses and families according
to the structural relatedness of their DBDs [14]. This DBD-based classifica-
tion allows grouping different TFs on a structural basis. However, since
the different structural motifs associated to the DNA-binding domains
likely arose independently, this DBD-based structural classification does
not necessarily mirror phylogenetic classification. In some cases, the
DNA-binding domain provides clues on TF function. For example,
homeo-domain containing TFs are often associated with developmental
processes, while interferon regulatory factor family DBDs (helix-turn-
helix motif) are functionally linked with the immune response [15], and
fungal GATA factors are typically involved in nitrogen metabolism [16].
There are also proteins that display sequence-specific DNA-binding
activity without any recognizable (“standard”) DBD [17–19] and many
orphan DBD types are likely to be still discovered and structurally
classified. In addition to the DBD itself, other regions can contribute to,
and influence, DNA-binding activity; for example, DBD-flanking regions
directly involved in TF dimerization and function (e.g. [20]).
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So-called “effector domains” are the other essential components of
TFs. They mediate gene activation or repression by promoting the for-
mation of active or repressed chromatin states, by directly or indirectly
recruiting positively or negatively acting co-regulators (co-activators
and co-repressors), or by modulating preinitiation complex formation
or productive transcription elongation. At variance with the DBDs,
effector domains are much less conserved and thus considerably more
difficult to identify simply on a sequence similarity basis.

As a prototypical characteristics of TFs, sequence-specific DNA-
binding is the main and first feature that is commonly addressed
while trying to characterize (or discover) a new TF. The DNA-binding
specificity of a TF, i.e., its ability to discriminate between different
sequence motifs, is only one of several factors that can contribute to de-
termine the sites it actually binds in the genome. In fact, DNA-binding
site occupancy can also be influenced by site accessibility in a chromatin
context, by cooperation or competition with other sequence-specific
DNA-binding proteins, and by interaction with histones and other
architectural proteins and chromatin modifiers as well. Circumstantial
evidence in favor of this added layer of complexity is represented by
the fact thatmost eukaryotic TFs tend to recognize short and degenerate
DNA sequence motifs, as opposed to the larger motifs preferred by
prokaryotic TFs [21].

Characterization of intrinsic sequence binding preference (i.e., the
one referring to a simplified and restricted TF-DNA interaction) ideally
requires either in vitro or heterologous assay systems allowing over-
coming potential confounding effects caused by other modulating or
competing TFs. Recent technological advances have greatly increased
the speed and reliability with which (semi)quantitative estimates of
DNA-binding ability and specificity can be obtained. These include a
range of methods — e.g., microarray-based approaches [19,22–29] as
well as high-throughput (HT) sequencing-based approaches [30–35],
microfluidics-based technologies [36] and cell-based selection systems,
also coupled with HT sequencing [37–40] aimed at increasing the num-
ber of DNA sequences that can be interrogated in parallel (outlined in
Table 1).

Another emerging issue is that of so-called “moonlighting”
transcription factors, i.e., proteins with an official function unrelated to
transcription that play a role in gene regulation as either activators or
repressors, as their second job. Cases of moonlighting (“unconvention-
al”) TFs, which are usually impossible to predict and particularly
difficult to identify, have been documented in a variety of organisms
ranging from bacteria to humans. For example, metabolic enzymes
that moonlight as transcription factors, specifically designated as
“trigger enzymes” or “metabolism-related transcription factors”,
Table 1
Outline of in vitro and in vivo heterologous high-throughput DNA-binding assaysa.

Acronym Name Throughput Probe

HT-SELEX High throughput systematic evolution of ligand by
exponential enrichment

1015 Oligo

Bind-n-Seq Bind and sequence 1013 Oligo
HiTS-FLIP High throughput sequencing-fluorescent ligand

interaction profiling
109 Oligo

Illum
B1H Bacterial one-hybrid 108 Oligo

PBM Protein-binding microarray 106 Micro
CSI Cognate site identifier 106 Micro
EMSA-seq EMSA followed by high throughput sequencing 105–106 Oligo
MEGAshift Microarray evaluation of genomic aptamers by shift 103 Oligo
MITOMI Mechanically induced trapping of molecular

interactions
102–103 Oligo

HT-SPR High throughput surface plasmon resonance 102 Micro
TIRF-PBM Total internal reflectance fluorescence PBM 102 Micro

a High-throughput, TF binding site discovery approaches ordered by throughput, i.e. the app
erences); probe type refers to the specific format of the DNA probe oligomer utilized by each m

b Qualitative: only binding sites with the highest affinity are likely to be obtained; Quantitat
ficities and kinetic constants can be calculated.
which include enzymes directly or indirectly involved in gene expres-
sion regulation, with different documented or purported roles such as
DNA/RNA binding, modulatory interaction with selected transcription
machinery components, co-activator/repressor function and chromatin
remodeling [18,19,41–43].

Here we present a general overview of the approaches, including
both well-established as well as newly developed high-tech strategies,
currently utilized for the functional analysis of TFs, highlighting their
advantages and potential limitations. Particular emphasis is placed on
genome-scale experimental methods that are accessible even to non-
highly specialized molecular biology laboratories. Untargeted methods,
also suitable for the large-scale identification of unconventional
transcription factors, i.e., putative TFs lacking any recognizable DBD,
are also discussed.

2. Delineating the transcription factor repertoire at the genomic
level

Following genome sequencing, thefirst step in the identification and
functional characterization of the transcription factor repertoire of a
newly sequenced organism is the classification of the entire TF catalog
based on the presence of conserved DBDs. The potential involvement
of individual TFs in specific cellular processes can also be investigated
based on sequence similarity with previously characterized transcrip-
tion factors. TF functional validation can be then pursued with the use
of a genome-wide approach such as the transcriptional activator trap
(TAT) assay, which relies on the heterologous expression of cDNA
libraries or specific TF subsets in the yeast Saccharomyces cerevisiae.
This method allows the rapid characterization of the transcriptional
activation capabilities of predicted TFs. Because of its untargeted nature,
the TAT assay also allows the identification of new putative unconven-
tional activators lacking any recognizable DBD, which escape detection
by search methods strictly based on sequence similarity.

2.1. TF identification and classification

Sequence-specific TFs are thought to comprise between 0.5 and 8%
of the eukaryotic gene content and can be classified into superclasses
and classes according to the structure of their DBDs [14,44]. DBDs
display a wide range of structural motifs encompassing a diverse array
of protein folds, each representing a different solution to the problem
of sequence-specific DNA recognition. More than 80 and 60 different
DBD types have been recognized to-date in eukaryotes and prokaryotes,
respectively, with very few DBD types shared between these two
type Resolutionb References

library Qualitative (SELEX)
Quantitative (HT-SELEX)

[30,32,34,104]

library Quantitative [35]
library (clusters on
ina flow cell)

Kinetics [31]

library (in plasmid) Qualitative (B1H)
Quantitative (B1H followed
by HT-seq)

[37,39,84,87]

array Quantitative [22,24–27,90,91,101,107]
array Quantitative [29,92,108]
library Quantitative [33]
library Quantitative [28]
library Kinetics [36,93,94,109]

array Kinetics [110,111]
array Kinetics [23,112]

roximate number of DNA sequences interrogated in parallel (as reported in the cited ref-
ethod.
ive: binding models (e.g. PWM) can be determined; kinetics: equilibrium binding speci-
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lineages and a few apparently lineage-specific DBD types. Several
databases of experimentally and computationally identified transcrip-
tion factors are available. Most of them are dedicated to specific
phylogenetic groups such as the FlyTF [45], the Fungal FTFD [46], the
mouse and human TFCat [17], and the bacterial RegulonDB [47]
databases, while the “DNA-Binding Domain Database” includes more
than 1000 completely sequenced genomes from multiple organisms
[48] (see also [49] for a recent methodological review).

Putative TF-coding genes can be determined by computational
approaches, the most sensitive and reliable of which is based on the
genome-wide search of DBD-containing gene products using profile-
based methods. Publicly available bioinformatic resources such as
InterPro, Pfam, and SUPERFAMILY provide curated Hidden Markov
Models (HMM) describing the amino acid sequences of groups of
conserved polypeptide regions and domains. The “DNA-Binding
Domain Database” provides, instead, a list of all Pfam and
SUPERFAMILY DBD accession numbers. Conserved domain searches
against known motifs can be comprehensively performed with the
Blast2GO software [50], which allows scanning any deduced proteome
against various databases available at the InterPro resource provided
by the European Bioinformatics Institute (EBI) (http://www.ebi.ac.uk/
Tools/InterProScan/) [51]. A genome-wide HMM search will return a
set of genes coding for potential DBD-containing TFs. Some DBDs and
their sequence models, however, may be promiscuous and produce
false-positive hits to non-TF proteins that nonetheless bindDNA. For ex-
ample, protein constituents of the core initiation complex,which should
be removed, even if containing a DBD. Special attention should be paid
to Cys2-His2 zinc-finger domains, which are not exclusively present in
sequence-specific TFs, as well as to other proteins such as chromatin
modifier proteins containing MYB/SANT, ARID, and HMG domains,
which often lack intrinsic DNA-binding specificity [52–54]. Removal of
inappropriate (“false-positive”) hits is aided by the Blast2GO software,
thanks to the information it provides on the specific function of the
proteins encoded by similar sequences (BLAST-based approach) [50].
Proteins containing structural features indicative of a non-nuclear
localization, such as transmembrane domains, have to be removed
as well.

This filtration step strongly depends on the specific content of the
reference database and the ability of the search algorithms to detect
the above domains. The final outcome of this search step, is a catalog
of TFs classified according to their DBDs.
2.2. TF search based on sequence similarity

When possible, the results of the HMM search are integrated with
the information derived from experimentally verified TFs. This step is
important for at least two reasons. On one hand, even though the fea-
tures of the DNA-binding domain may occasionally hint at the involve-
ment in a specific process, the best way to infer TF function is based on
sequence similarity. The other reason is that a HMM search may miss
TFs bearing a DBD with a score below the significance threshold as
well as TFs lacking a conventional DBD [18,19]. Therefore, known non-
standard TFs should also be included in this similarity search. A list of
functionally-verified TFs can be retrieved from model organism-
specific TF databases and/or from a dedicated literature search. A com-
mon method is to use pair-wise local sequence-alignment algorithms
such as BLAST [55] to identify homologs of known TFs. Proteins sharing
a high sequence similarity also extended to extra-DBD regions are likely
to share the same function. Due to the structural properties of TFs,
orthologous relationship among these proteins should be carefully
verified by molecular phylogenetic inference, and not merely rely on a
“best bidirectional hit” criterion. In fact, at variance with BLAST-based
TF searches, whichmay be strongly biased by the presence of the highly
conserved DBD, phylogenetic analyses are based on alignment of the
entire sequence. A possible alternative to this quite laborious
phylogenetic approach is to use a “best bidirectional hit” approach
starting from TF sequences whose DBD has been masked [56].

Another word of caution regards the fact that not all TF homologs
necessarily retain a similar function. In fact, TFs are among the most
duplicated genes, and their function relies on different types of
interactions, including protein-DNA interactions with specific genomic
regulatory elements but also protein–protein interactions with other
TFs and co-regulators. Moreover, TF-coding genes display a high degree
of plasticity and tend to be under a stronger positive evolutionary
selection compared to other genes (e.g., genes coding for metabolic
enzymes as well as transport proteins and translation factors) [7,8].
The only exception is the usually high conservation displayed by
development-related TFs [9]. The initial outcome of gene duplication
is the formation of two identical paralogs, which subsequently diverge
through mutation, with a loss or gain of biomolecular interactions. By
comparing the rates atwhich protein–protein and protein-DNA interac-
tions are rewired, Reece-Hoyes et al. found that upstream regulatory re-
gions are highly plastic and rapidly diverge, while the DNA sequence
specificities of TFs are more stable over evolutionary time [57]. Further
support to the notion that the DNA sequence specificity of TFs is gener-
allymore stable over evolutionary timewas provided byWeirauch et al.
[58]. By analyzing the DNA-binding preferences of over 1000 TFs from
131 different eukaryotes, these authors found that closely related
DBDs (encompassing more than 50 different classes) always display
similar DNA sequence preferences, thus paving the way to the identifi-
cation of a TF/DBD “recognition code” [58].

2.3. Functional validation of TFs

At variance with the DNA-binding sites, which have been extensive-
ly investigated both functionally and structurally, the TF activation
domains (AD) are poorly characterized from a structural point of view
and much more difficult to predict. Pioneering work identified peculiar
sequence features of eukaryotic ADs in the form of acidic regions bear-
ing very few or no positively charged amino acids and displaying a net
negative charge ranging from one to ten. An additional feature identi-
fied by these authors is the presence of small-sized hydrophobic
amino acid patches interspersed with hydrophilic residues, leading to
a predicted structure made by acidic residues-bearing β-turns and
hydrophobic α-helices [59].

Given the lack of a reliable in silico method for AD prediction, a rel-
atively high-throughput functional analysis was developed in order to
streamline, corroborate and extend TF-AD prediction. This untargeted
search procedure leverages on the distinct and independent functions
played by the two TF domains. It relies on a modified version of the
yeast two-hybrid system, named transcriptional activator trap (TAT)
assay, in which selected open reading frames or an entire cDNA library
representative of the proteome of the organism of interest are fused to
the DBD of the yeast TF Gal4 (Fig. 1a). The resulting fusion proteins
are expressed in yeast and if the query sequence(s) code(s) for a tran-
scriptional activator, the expression of Gal4-dependent reporter genes
is activated and readily detected [60].

In its original application, the TAT assay was used to systematically
test 6000 yeast proteins for transcriptional activator capacity and led
to the identification of 451 transcriptional activators. Many of these ac-
tivators were well-characterized transcriptional regulators or nuclear
proteins but some of them corresponded to proteins without a prior re-
cord of transcriptional activation function [60]. The TAT-screen can also
be employed as a high-throughput TF search approach using yeast as a
heterologous system for identifying TFs encoded by a different, less
experimentally tractable organism. For example, it was successfully
employed for the identification of plant cDNAs coding for true transcrip-
tion factors and previously unknown proteins endowed with the same
activity [61]. It also allowed the validation of about one-fifth of the in
silico predicted TFs from the mycorrhizal fungus Tuber melanosporum
as well as the de novo identification of novel “putative unconventional

http://www.ebi.ac.uk/Tools/InterProScan/
http://www.ebi.ac.uk/Tools/InterProScan/


Fig. 1. Identification and functional validation of TFs and unconventional activators. a. Schematic representation of the transcriptional activator trap (TAT) approach, as applied to the
identification and functional validation of AD-containing, conventional and unconventional transcriptional activators. Reporter gene expression (HIS3, URA3 and LacZ) is activated if the
query TF (a selected subset or a whole cDNA library; green) fused to the Gal4-DBD (blue) behaves as a transcriptional activator — i.e., it is capable of recruiting RNA Pol II transcription
machinery (red). UAS: upstreamactivating sequence (Gal4DNA-binding site); TATA: TATAbox. b. Nuclear transportation trap (NTT) assayused to test the autonomous nuclear localization
capacity of putative unconventional activators. A chimeric protein (NLS-less TF, blue) comprising a modified bacterial DBD (LexA), a portion of the E. colimaltose binding protein and the
yeast Gal4 AD, but lacking a nuclear localization signal (NLS), is fused to a candidate unconventional activator (UA, green). If the latter contains a NLS (either recognizable in silico or cryp-
tic), it will direct the chimeric protein to the nucleus, thus leading to reporter gene (HIS3, LacZ) activation. The transcriptional machinery is in red. LBS: LexA binding site; TATA: TATA box.
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activators” lacking a recognizable DBD and without any prior record of
TF activity [56].

To investigate the gene transactivation capacity of plant ERF tran-
scription factors under homologous conditions, a TAT assay was devel-
oped also for plant cells [62]. A chimeric construct in which the TF of
interest is fused to a heterologous DNA-binding domain, such as the
Gal4-DBD, was created and inserted into an expression (“effector”)
vector, which was then used to transfect tobacco protoplasts along
with a reporter gene plasmid bearing a luciferase geneunder the control
of Gal4-dependent upstream activating sequence (UAS) [62,63]. By
coupling a Gal4-UAS (bound by the chimeric transcriptional activator)
with a plant repressor DNA-binding site, this systemalso allowed study-
ing the effect of plant transcriptional repressors (ERFs) on reporter gene
expression. As expected, reporter gene expression, and associated
luminescence signal, decreased in protoplasts expressing both a tran-
scriptional activator and a ERF repressor [62].

A TAT assay was also developed in mammalian cells, using a cDNA
library cloned into a retroviral expression vector, in frame with a
sequence coding for the yeast Gal4-DBD. The resulting library was
packaged into retroviral particles, which were then delivered to a
murine cell line harboring a Gal4-UAS-dependent, enhanced green fluo-
rescent protein (EGFP) reporter gene, followed by FACS-assisted sorting
of EGFP-positive cells. In this way, both known TFs as well as proteins
whose TF activity had not been described before were isolated and
functionally validated [64].

Despite the effectiveness and high-throughput potential of the
heterologous yeast-TAT assay, both false-negative and false-positive
results can be expected. As pointed out by Titz et al. [60], there is, in
fact, an estimated false-negative rate of approximately 60%, due to the
possibility that some proteins annotated as transcriptional activators
do not behave as such in this assay. Possible reasons are the require-
ment for cofactors or specific nuclear conditions not available in
S. cerevisiae and possible inhibition/alteration of the transcriptional
activator function caused by the DBD fusion. Both may be solved, with
some loss in throughput and ease of experimental manipulation, by
switching to a homologous host. False-positive, instead, mainly results
from the forced nuclear internalization of otherwise cytoplasmic
proteins, imposed by the nuclear localization signal (NLS) associated
with the Gal4-DBD. It should be noted, however, that many instances
of apparently cytoplasmic proteins and/or DBD-lacking proteins capable
of autonomously entering the nucleus and activating transcription
(here designated as “unconventional activators”) are being increasingly
reported. For example, variousmetabolic enzymes and other proteins as
well, without a recognizable DBD have been found to be capable of en-
tering the nucleus and activating reporter gene transcription [18,19,65].
Therefore, it is important that any comprehensive, genome-wide TF
study extends beyond the predefined range of easily predictable
DNA-binding proteins in order to provide new (and unbiased) insights
for regulatory network analysis.

Given the NLS bias of the TAT assay it is essential to verify the auton-
omous nuclear entry ability of newly identified unconventional activa-
tors. In addition to various NLS search programs (e.g., cNLS Mapper
[66], NLStradamus [67]), a specific yeast selection system, named “nu-
clear transportation trap” (NTT), has been developed for this purpose
[68]. In the NTT, an artificial, NLS-lacking transcription factor, is fused
to the query protein of interest. If the latter protein contains a functional
NLS, it will redirect the chimeric TF to the nucleus, thus enabling tran-
scriptional activation of reporter genes. The specificity of the NTT
assay has subsequently been improved with the use of a single-copy,
centromeric yeast vector and by fusing a portion of the Escherichia coli
maltose binding protein to the chimeric TF, to avoid passive diffusion
into the nucleus [69](Fig. 1b). Since the nuclear import apparatus is con-
served between yeast and higher eukaryotes, theNTT assay can allow to
functionally detect the presence of canonical aswell as “cryptic”NLSs in
any protein of interest regardless of its origin. For example, anNTT anal-
ysis revealed the presence of a canonical monopartite NLS and two un-
conventional (“cryptic”) NLSs in the viral transcriptional activator E1A
from all six human adenovirus types [70].

Proper combination of the TAT and the NTT assays can thus repre-
sent an extremely informative first step toward the discovery and fur-
ther characterization of proteins that, despite lacking any recognizable
DBD, are capable of entering the nucleus and activating gene transcrip-
tion (Levati et al. [65] describes an example of unconventional
activators identified using this strategy).
3. Transcription factor DNA-binding site identification

Since DNA-binding is a key mechanistic feature of most (especially
conventional) transcription factors, including general TFs and many ac-
tivators, it is important to map the corresponding binding sites on the
DNA (e.g., basal promoter-related sequences, distal activation se-
quences and enhancers). This is even more true, if one considers the
steadily growing list of available wholly sequenced genomes and the
vast amounts of associated gene expression data. Even though a general
recognition “code” relating DBD amino-acid sequence to DNA-binding
site specificity of TFs has not been worked out yet, many efforts are
being made toward this goal [58]. Promoter and other cis-acting se-
quences can be inferred frommultiple sequence alignments of regulato-
ry sequences of ortholog genes and/or from the identification of
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conserved regulatory elements of genes sharing similar expression
profiles and thus likely involved in similar biological processes [71].

Other, more direct, in vivo and in vitro approaches to study DNA-
protein interaction and TF DNA-binding specificity are available and
are briefly discussed below. Perhaps the most popular approach for
in vivo TF DNA-binding site analysis is chromatin immunoprecipitation
(ChIP) and related methods such as ChIP-chip and ChIP-seq [72–74]. It
should be noted, however, that the DNA-binding sites retrieved from
these assays, whose first step is performed in intact whole nuclei, may
include the unpredictable contribution of specific co-regulators, local
chromatin structure and other complex context effects [75–78]. More
focused information on intrinsic DNA-binding specificity can perhaps
be derived from in vitro and heterologous high-throughput approaches
(also reviewed in [79–81]). These can be paralleled and made more in-
sightful by computational models such as position weight matrices
(PWMs) that are employed to describe the DNA sequence specificity
of a TF and to scan DNA sequences for the identification of potential
DNA-binding sites.

3.1. DNA-centered approaches

Following the discovery of a regulatory region, it is important to
identify the TFs that bind to it. Regulatory elements can be simple and
relatively short sequences that can be analyzed in either a single-copy
or a tandemly repeated form in order to increase the number of avail-
able binding sites. In other cases, more complex regulatory elements
(e.g., an entire promoter region) can be analyzed in order to define
the full repertoire of interacting TFs, so to attain a comprehensive
view of the regulation of a gene of interest. The two most common
DNA-centered approaches are perhaps the yeast one hybrid (Y1H)
and the protein arrays.

In the Y1H, a selected DNA sequence “bait” is cloned upstream of
reporter genes, while the “prey” vector allows for the expression of a
chimeric protein comprising a strong AD, usually the Gal4-AD, fused
to either a TF of interest, a specific TF library or an entire cDNA library.
TFs bearing a DBD capable of interacting with the bait sequence activate
reporter gene expression [82] (Fig. 2a). Although relatively old-
fashioned, the Y1H allows to identify protein-DNA interactions in vivo,
thus overcoming the technical difficulties associated with recombinant
TF expression/purification for in vitro assays, and to test a large number
of proteins in parallel against a specific DNA element. The main disad-
vantages are perhaps the time-consuming step of bait-strain construc-
tion and the limit imposed by yeast transformation efficiency on the
complexity of the library that can be screened (usually no more than
106–107 clones). Despite these limitations, a streamlined version of
the Y1H interrogating 14 different bait-sequences against 988 human
Fig. 2.Heterologous in vivo approaches for TFDNAbinding site identification. a. The yeast one-h
DNA element. The DNA sequence to be interrogated (“DNA bait”) is cloned into a selectable yea
into amutatedmarker locus within the yeast genome. A TF of interest (either a selected one or a
(Gal4 AD, shown in blue). Positive hits (i.e., TFs bearing a DBD capable of interacting with the
TATA: TATA box. b. The bacterial one-hybrid (B1H) is a TF-centered approach used to identify t
domized region (rainbowed) upstream of two reporter genes (HIS3 and URA3) is used as a “pre
green) fused to theω subunit (blue) of bacterial RNA polymerase (orange). The yeast URA3 gene
DNA elements; the yeast HIS3 gene is used as a positive selection marker to identify the DNA e
TF prey clones and 236 clones coding for unconventional DNA-binding
proteins has allowed to identify a total of 175 DNA-protein interactions
involving 13 DNA sequences and 100 TFs, including 95 transcription
factors (~10% of the tested TFs) and five unconventional DNA-binding
proteins (~2% of the tested proteins) [83].

Another large-scale approach for DNA-centered TF mapping relies
on protein arrays. This approach was pioneered by Hu et al. who
expressed, purified, arrayed and interrogated more than 4000 human
proteins, and identified a number of DNA-binding proteins otherwise
difficult to predict [19]. Despite their undisputable discovery potential,
protein arrays remain extremely labor-intensive to produce and have
not yet been integrated with advanced detection tools.

3.2. TF-centered approaches

Identifying the specific sequences bound by individual transcription
factors can help to predict cis-acting regulatory modules that regulate
gene expression and to elucidate gene regulatory network functioning
within cells. Several well-described, and somehow standard in vitro
methods can be used for determining the DNA-binding specificity of a
particular transcription factor (see below). These have been recently
backed up by a high-throughput heterologous method, the bacterial
one-hybrid (B1H) system, whose potential advantages and pitfalls are
described below.

3.2.1. Bacterial one-hybrid assay
The B1H method, developed by Meng et al. [38,84] and only requir-

ing standard laboratory equipment, is in principle applicable to any TF
that can be cloned and expressed in E. coli, with the advantage (similar
to the Y1H) that the TF(s) of interest does not need to be expressed/pu-
rified in recombinant form (Fig. 2b and Table 1). A one-step selection is
performed in bacterial cells and the size of the DNA sequence library
used for TF interrogation is only limited by transformation efficiency
(corresponding to 108–109 independent sites, i.e., 10 to 1000-fold
higher than in yeast cells), which is enough to accommodate all possible
combinations of 12-bp-long DNA sequences. The B1H system is built on
three components: (i) a “bait” vector for the expression of the TF of in-
terest fused to the non-essential ω-subunit of bacterial RNA polymer-
ase, so that TF binding to a particular DNA sequence recruits RNA
polymerase, thus increasing promoter activity and reporter gene
expression; (ii) a “prey” vector containing a 18–28 bp randomized
collection of DNA-binding sites cloned downstream to aweak promoter
that drives the expression of easily selectable genes such as the heterol-
ogous yeast HIS3 and URA3 genes; (iii) a bacterial selection strain
(US0ΔhisBΔpyrFΔrpoZ) deleted in both the hisB and pyrF genes (the
bacterial homologs of HIS3 and URA3) and in the gene coding for the
ybrid (Y1H) is a DNA-centered approach used to identify TFs capable of binding to a specific
st plasmid, upstream of reporter genes such as HIS3 and LacZ, and subsequently integrated
whole cDNA library; green) is expressed as a fusionwith the yeast Gal4 activation domain
bait sequence) activate reporter gene expression. The transcriptional machinery is in red.
he DNA element bound by a (putative) TF or activator. A bi-cistronic vector bearing a ran-
y” to identify the DNA elements bound by the “bait” TF (or putative activator) (shown in
is used as negative selectionmarker (5-FOA counter-selection) to eliminate self-activating
lements bound by the bait TF.
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ω-subunit of RNA polymerase. The URA3 reporter is used for a first
counter-selection step, exploiting the conversion of 5-fluoro-orotic
acid (5-FOA) into the toxic base precursor 5-fluoro-uracil (5-FU) by
the URA3-encoded, orotidine 5′-phosphate decarboxylase enzyme,
which allows eliminating from the library DNA elements that drive
gene reporters expression even in the absence of the heterologous TF
that is being tested (“self-activating sequences”). The HIS3 reporter is
then employed to positively select bacterial cells harboring a binding
site for the TF of interest bymonitoring cell growth onminimalmedium
containing the competitive His3 inhibitor 3-amino-triazole (3-AT). Se-
lection stringency can be varied by changing the 3-AT concentration,
thus allowing the recovery of DNA-binding sites with different affinities
[38,39,84].

B1H allowed the characterization of 84 homeodomain TFs and 35
members of theDrosophila melanogaster segmentation network, includ-
ing Cys2His2 zinc finger, homeodomain, bHLH, bZIP, winged helix and
other DNA-binding motif-containing transcription factors [39,85].
More recently, a combination of B1H selection with HT-sequence anal-
ysis was used to determine the DNA-binding specificity of TFs. This lat-
ter approach was successfully applied to Cys2His2 zinc finger TFs
encoded by the D. melanogaster genome and generated 94 recognition
motifs spanning a total of 70 genes, plus 23 additional, alternately
spliced isoforms with varied specificities [37]. In yet another B1H ap-
proach, Persikov et al. screened a large randomized Cys2His2-zinc finger
library and recovered vast pools of Cys2His2 zinc fingers capable of
binding a randomized DNA-binding site covering each of 64 possible
3 bp targets in two different positional contexts [86].

The main limitation of the B1H system, in addition to an as yet not
proven universal performance with all eukaryotic DNA-binding motifs,
is probably related to the difficulty of achieving adequately high
bacterial expression levels for some eukaryotic TFs, due, for example,
to differences in codon usage as well as to heterologous cellular context
protein folding and toxicity problems. Accordingly, expression of only
the DBD of the TF of interest has been recommended [87].

3.2.2. Protein binding microarrays
Protein binding microarrays (PBMs) are a well-established, relative-

ly fast and high-throughput microarray-based techniques for studying
the binding of proteins to DNA in vitro (see also Table 1). In a typical
PBM experiment, the tagged version of a known or suspected DNA-
binding protein of interest is recombinantly expressed, purified and ap-
plied to a double stranded (ds) DNAmicroarray. This is followed by the
addition of a fluorophore-conjugated anti-tag antibody to detect and
quantify the amount of the protein bound to a particular DNA spot.
PBMs can be built with synthetic or genome sequence-derived DNA.
At present, the universal PBM is the most widely used version and is
made of over 44,000 ds-oligonucleotide spots containing all possible
10 bp-long DNA-binding sites represented at least once on the array,
which means that every 8 bp sequence is present on average 32 times
taking into account both orientations. High-density, multi-chambered
microarray platforms can test the DNA-binding ability of multiple
proteins in parallel, thus allowing the HT acquisition of large data sets,
e.g., for the comparative analysis of the DNA-binding specificities of
related TFs. PBM analysis is highly sensitive and dynamic, allowing to
resolve DNA-binding affinities that differ by less than 1.5-fold and to
measure protein–DNA interactions spanning several orders of
magnitude in affinity [22,88]. By comparing the DNA-binding profiles
of homologous or isoform TFs, orwild-type andmutant versions of indi-
vidual TFs, it is possible to relate protein structure/sequence differences
with DNA-binding specificity and/or affinity differences, thus gaining
insights on the evolutionary variation of TFs and the effect of specific
TF mutations in gene (dys)regulation [89].

Themain limitation of the PBM approach, in addition to the need for
purification of each tagged TF and the in vitro nature of the assay that
may complicate a reliable extrapolation to the in vivo situation, is the
inability to identify long DNA-binding sites bound by TFs with long
DNA-binding motifs and/or relying on an extensive (multiprotein)
network of protein–DNA interactions. In addition, someTFsmay require
particular post-translational modifications or protein interaction
partners in order to achieve an adequate DNA-binding affinity or
specificity.

Nevertheless, the PBM platform has been instrumental to a number
of insightful, large-scale DNA-binding studies and to the characteriza-
tion of large groups of TFs. For example, a PBM representing all the
intergenic regions of the S. cerevisiae genome was used to map the
DNA-binding sites of a large number of structurally diverse yeast TFs
[27]. More recently, the PBM approach has been used to define the
DNA-binding sites of 129 transcription factors representative of the
major canonical TF families in Caenorhabditis elegans, thus allowing to
infer the DNA-binding specificities for approximately 40% of the pre-
dicted C. elegans transcription factors [90]. The Universal PBM Resource
for Oligonucleotide Binding Evaluation (UniPROBE) database (http://
thebrain.bwh.harvard.edu/uniprobe) is a useful resource for universal
PBM data sets derived from a range of species. This database also pro-
vides appropriate curation, easy searching and an informative display
interface for universal PBM data [91].

Another microarray-based method, named Cognate Site Identifier
(CSI), relies on a HT platform consisting of a ds-DNA array that displays
the entire sequence space represented by 8 up to 10 variable base pair
positions. The duplex DNA sequences spotted on the CSI array are self-
complementary palindromes interrupted at the center by a TCCT
sequence in order to facilitate hairpin DNA formation. Protein binding
detection relies on chemical labeling of the TFs that are applied to the
microarray, which are visualized directly (i.e., without the use of a
labeled antibody). CSI array analysis was initially employed to perform
a comprehensive, mutational DNA-binding site analysis in a single ex-
periment, which provided information on the contribution of individual
nucleotide residues to TF-DNA recognition [29]. An improved version of
this procedure, named CSI-Fluorescence Intercalation Displacement
(CSI–FID), is a plate-based technique that measures the displacement
of a fluorescent dye intercalated into the DNA hairpin by an unlabeled
TF in order to determine its sequence preference. By combining these
technologies, it is possible to interrogate the entire sequence space of
at least 10 bp-long DNA-binding sites with a high dynamic range,
under label-free conditions [92].

An additional, readout-improved, variation of the PBMmethod is the
so-called total internal reflectance fluorescence-PBM (TIRF-PBM), in
which TIRF is coupled to a microarray to enable real-time detection of
dye-labeled TFs binding across a microarray of immobilized DNA in
hydrogels [23]. With this approach it is possible to determine both
equilibrium binding specificities and kinetic rates for multiple TF:DNA
interactions in a single experiment. Moreover it allows to study multi-
protein complex:DNA interactions using proteins labeled with different
dyes. Themajor drawback of this approach is its relative low throughout
(limited to only ~100 DNA sequences at a time).

3.2.3. Other HT DNA-binding site identification technologies
Besides to B1H and microarray-based techniques, many newly de-

veloped HT technologies have revolutionized the ability to characterize
protein–DNAbinding interactions. These additional technologies (listed
in Table 1) include: Bind-n-seq [35], EMSA-seq [33], HT-SELEX/SELEX-
seq [30,32] and microarray-based investigation of genomic aptamers
by shift (MEGAshift) [28]. Despite their strikingly increased throughput
compared to more basic methods such as electrophoretic mobility shift
assay (EMSA)- and surface plasmon resonance (SPR)-based assays,
most of these techniques do not allow an accurate quantification of
protein-DNA interactions and usually require complicated algorithms
and associated approximations. Perhaps, the best compromise to-date
between accuracy and throughput has been achieved with two tech-
niques namedmechanically induced trapping of molecular interactions
(MITOMI) [36,93,94] and high-throughput sequencing-fluorescent
ligand interaction profiling (HiTS-FLIP) [31], which allow dissociation

http://thebrain.bwh.harvard.edu/uniprobe
http://thebrain.bwh.harvard.edu/uniprobe
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constant determination for several transcription factors against
thousands of DNA sequences (MITOMI) or a single TF against millions
of DNA motifs (HiTS-FLIP).

MITOMI allows the direct, medium throughput determination of the
binding affinities of individual TFs for each of a few hundred different
DNA sites. Synthetic genes coding for His-tag TFs undergoing MITOMI
analysis are flowed into individual chambers of a multi-chamber device
along with the reagents required to support their synthesis through
in vitro transcription/translation, thus avoiding possible problems
associated with TF purification. Each chamber contains anti-His-tag
antibodies linking the fluorescently (BODIPY-Lys) labeled TF to its sur-
face and is seededwith a specific, fluorescently (Cy5) labeled, candidate
DNA-binding sequence at a predetermined concentration. This
multi-chamber assembly can thus accommodate hundreds of different
DNA-binding sequences at single or multiple different concentrations.

HiTS-FLIP relies, instead, on a novel next-generation sequencing
(NGS) application aimed at identifyingDNA sequences bound by specif-
ic, fluorescently labeled TFs, taking advantage of the optics and fluidics
of an Illumina sequencer to detect and score binding [31]. Theprocedure
is conceptually simple, can assay up to 109 protein-DNA interactions in
parallel and is based on the following steps: (i) building and sequencing
~100 million clusters of genomic or random synthetic DNA; (ii)
denature and wash away the second strand in order to rebuild
ds-DNA clusters using unmodified dNTPs; (iii) introduce the fluores-
cently labeled query TFs into the flow cell; (iv) fluorescence-based
quantification of protein binding to each DNA cluster after an optional,
two-minute wash step; (v) mapping and matching the bound clusters
to the corresponding sequences in order to obtain a comprehensive
and quantitative DNA-binding affinity landscape.

Another well-established, TF-binding site searching procedure that
has recently been integrated with a HT-NGS readout is the systematic
evolution of ligands by exponential enrichment (SELEX), which em-
ploys purified TFs (or other query proteins) for the in vitro selection of
high-affinity DNA-binding sites from random libraries [95,96]. The gen-
eral strategy, here, is to create DNA-binding sites libraries, derived from
randomly synthesized oligos or genomic sequence fragments, contain-
ing invariant regions at both ends, to be used as primer binding sites
for PCR (re)amplification after selection cycle. Purified TFs are added
to the library, followed by separation of protein-bound and unbound
sequences by various means such as gel-filtration, filter-binding or
capturing by immobilized antibodies. This selection cycle is usually
repeated 3–5 times in order to increase the fraction of captured
high-affinity binding sites, followed by cloning and sequencing of the
best-hits which are typically less than 100 non-redundant sequences.
By coupling conventional SELEX with an NGS readout (HT-SELEX [34]
or Bind-and-Seq [35]) it is now possible to obtain large-scale and com-
prehensive binding energy profiles. A recent HT-SELEX work [30] using
unfractionated tagged proteins (rather than purified TFs) and a
barcoding system for individual experiments, has further expanded
the discovery potential and throughput of this approach, generating
binding data for 19 different TFs.

An advantage of SELEX coupledwith anNGS readout, in addition to its
high feasibility, is that the final output (i.e., the number of counts/se-
quence) is digital, and thus guarantees an extremely broad dynamic
range. Within a total set of hundreds of thousands or millions of se-
quences there will be many non-specific sites, which, however, usually
occur only once on a statistical basis, whereas high-affinity sites may
occur thousands of times. From millions of reads, even after a single
round of selection, one can thus delineate a binding model (such as a
PWM) and by subsequent refinement obtain the models that best fit
the data [34]. The final outcome can be further improved by including
data from additional rounds of selection, which may provide more accu-
rate DNA-binding energy models even for low-specificity TFs. Another
advantage of SELEX and related approaches is that there is no inherent
limit to the length of the binding sites that can be screened and selected,
even though the size of the librarywill somehow limit the length that can
be covered comprehensively; for example, 1 nmol of DNA, corresponding
to ~1015 non-redundant sequences, can comprise nearly all possible
combinations of 25 bp-long binding sites. This makes it possible to
study TFs with unusually long binding sites, including bacterial TFs,
whose binding-sites are typically longer than 16 bp.

4. Concluding remarks

The focus of this reviewwas on the variety of tools, both dry andwet,
that can be used alone as well as integrated into different modular
platforms for a functional identification and characterization of tran-
scription factors, including the more elusive unconventional activators.
In silico-based approaches represent the first step toward the creation
of a comprehensive TF. Even though TF function depends on many
parameters and their involvement in a specific signaling pathway is
often difficult to predict (especially if only based on sequence similari-
ty), the occurrence or lack of a particular TF can by itself point to the
existence or absence of a particular pathway. Therefore, it is essential
to know and compare the TF repertoires present in different species,
with special reference to missing genes and to duplicated genes that
may hint to a novel function.

The throughput and reliability of TF discovery approaches has great-
ly advanced in recent years thanks to the setting up of new HT plat-
forms, especially microarray-based technologies and next-generation
sequencing. These new approaches have been instrumental to the crea-
tion of large and detailed DNA-binding data compendia, which have fa-
cilitated TF function analysis on a genome-wide scale and also provided
new insights into the molecular mechanisms underlying TF-binding
specificity. This extended search also improved our understanding of
the evolutionary variation of TFs and the role of particular TF mutations
in causing specific gene (dys)regulation events, thus contributing to de-
lineate a sort of TF/DBD “recognition code” [58,89,97–106].

Besides conventional TFs, with their well-defined and in silico recog-
nizable DBDs, there is a growing list of so-called “unconventional” tran-
scriptional activators,which can be conveniently identifiedwith various
functional heterologous and homologous, yeast two-hybrid-derived
screens. The interest for these moonlighting TFs is mainly related to
their possible involvement in the establishment of new regulatory net-
works and potential implication in human diseases. Conventional and
unconventional TF characterization, which heavily relies on ‘omics-
based’ approaches, is thus one of the most important and productive
areas of the post-genomic era.
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