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Abstract

Recent advances in next-generation sequencing and computational technologies have

enabled routine analysis of large-scale single-cell ribonucleic acid sequencing (scRNA-seq)

data. However, scRNA-seq technologies have suffered from several technical challenges,

including low mean expression levels in most genes and higher frequencies of missing data

than bulk population sequencing technologies. Identifying functional gene sets and their reg-

ulatory networks that link specific cell types to human diseases and therapeutics from

scRNA-seq profiles are daunting tasks. In this study, we developed a Component Overlap-

ping Attribute Clustering (COAC) algorithm to perform the localized (cell subpopulation)

gene co-expression network analysis from large-scale scRNA-seq profiles. Gene subnet-

works that represent specific gene co-expression patterns are inferred from the components

of a decomposed matrix of scRNA-seq profiles. We showed that single-cell gene subnet-

works identified by COAC from multiple time points within cell phases can be used for cell

type identification with high accuracy (83%). In addition, COAC-inferred subnetworks from

melanoma patients’ scRNA-seq profiles are highly correlated with survival rate from The

Cancer Genome Atlas (TCGA). Moreover, the localized gene subnetworks identified by

COAC from individual patients’ scRNA-seq data can be used as pharmacogenomics bio-

markers to predict drug responses (The area under the receiver operating characteristic

curves ranges from 0.728 to 0.783) in cancer cell lines from the Genomics of Drug Sensitiv-

ity in Cancer (GDSC) database. In summary, COAC offers a powerful tool to identify poten-

tial network-based diagnostic and pharmacogenomics biomarkers from large-scale scRNA-

seq profiles. COAC is freely available at https://github.com/ChengF-Lab/COAC.
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Author summary

Single-cell RNA sequencing (scRNA-seq) can reveal complex and rare cell populations,

uncover gene regulatory relationships, track the trajectories of distinct cell lineages in

development, and identify cell-cell variabilities in human diseases and therapeutics.

Although experimental methods for scRNA-seq are increasingly accessible, computational

approaches to infer gene regulatory networks from raw data remain limited. From a sin-

gle-cell perspective, the stochastic features of a single cell must be properly embedded into

gene regulatory networks. However, it is difficult to identify technical noise (e.g., low

mean expression levels and missing data) and cell-cell variabilities remain poorly under-

stood. In this study, we introduced a network-based approach, termed Component Over-

lapping Attribute Clustering (COAC), to infer novel gene-gene subnetworks in individual

components (subsets of whole components) representing multiple cell types and phases of

scRNA-seq data. We showed that COAC can reduce batch effects and identify specific cell

types in two large-scale human scRNA-seq datasets. Importantly, we demonstrated that

gene subnetworks identified by COAC from scRNA-seq profiles highly correlated with

patients’s survival and drug responses in cancer, offering a novel computational tool for

advancing precision medicine.

Introduction

Single cell ribonucleic acid sequencing (scRNA-seq) offers advantages for characterization of

cell types and cell-cell heterogeneities by accounting for dynamic gene expression of each cell

across biomedical disciplines, such as immunology and cancer research [1, 2]. Recent rapid

technological advances have expanded considerably the single cell analysis community, such

as The Human Cell Atlas (THCA) [3]. The single cell sequencing technology offers high-reso-

lution cell-specific gene expression for potentially unraveling of the mechanism of individual

cells. The THCA project aims to describe each human cell by the expression level of approxi-

mately 20,000 human protein-coding genes; however, the representation of each cell is high

dimensional, and the human body has trillions of cells. Furthermore, scRNA-seq technologies

have suffered from several limitations, including low mean expression levels in most genes and

higher frequencies of missing data than bulk sequencing technology [4]. Development of

novel computational technologies for routine analysis of scRNA-seq data are urgently needed

for advancing precision medicine [5].

Inferring gene-gene relationships (e.g., regulatory networks) from large-scale scRNA-seq

profiles is limited. Traditional approaches to gene co-expression network analysis are not suit-

able for scRNA-seq data due to a high degree of cell-cell variabilities. For example, LEAP (Lag-

based Expression Association for Pseudotime-series) is an R package for constructing gene co-

expression networks using different time points at the single cell level [6]. The Partial informa-

tion decomposition (PID) algorithm aims to predict gene-gene regulatory relationships [7].

Although these computational approaches are designed to infer gene co-expression networks

from scRNA-seq data, they suffer from low resolution at the single-cell or single-gene levels.

In this study, we introduced a network-based approach, termed Component Overlapping

Attribute Clustering (COAC), to infer novel gene-gene subnetwork in individual components

(the subset of whole components) representing multiple cell types and cell phases of scRNA-

seq data. Each gene co-expression subnetwork represents the co-expressed relationship occur-

ring in certain cells. The scoring function identifies co-expression networks by quantifying
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uncoordinated gene expression changes across the population of single cells. We showed that

gene subnetworks identified by COAC from scRNA-seq profiles were highly correlated with

the survival rate of melanoma patients and drug responses in cancer cell lines, indicating a

potential pathobiological application of COAC. If broadly applied, COAC can offer a powerful

tool for identifying gene-gene networks from large-scale scRNA-seq profiles in multiple dis-

eases in the on-going development of precision medicine.

Results

Overview of Component Overlapping Attribute Clustering (COAC)

In this study, we present a novel algorithm for inferring gene-gene networks from scRNA-seq

data. Specifically, a gene-gene network represents the co-expression relationship of certain

components (genes), which indicates the localized (cell subpopulation) co-expression from

large-scale scRNA-seq profiles (Fig 1). Specifically, each gene subnetwork is represented by

one or multiple feature vectors, which are learned from the scRNA-seq profile of the training

set. For the test set, each gene expression profile can be transformed to a feature value by one

or several feature vectors which measure the degree of coordination of gene co-expression.

Since the feature vectors are learned from the relative expression of each gene, batch effects

can be eliminated by normalization of relatively co-expressed genes (see Methods). In addition

to showing that COAC can be used for batch effect elimination, we further validated COAC by

illustrating three potential pathobiological applications: (1) cell type identification in two

large-scale human scRNA-seq datasets (43,099 and 43,745 cells respectively, see Methods); (2)

gene subnetworks identified from melanoma patients-derived scRNA-seq data showing high

correlation with survival of melanoma patients from The Cancer Genome Atlas (TCGA); (3)

gene subnetworks identified from scRNA-seq profiles which can be used to predict drug sensi-

tivity/resistance in cancer cell lines.

Batch effect elimination

We collected scRNA-seq data generated from 10x scRNA-seq protocol [7,8]. In total, 14,032

cells extracted from peripheral blood mononuclear cells (PBMC) in systemic lupus erythema-

tosus (SLE) patients were used as the case group and 29,067 cells were used as the control

group (see Methods). For the case group, we used 12,277 cells for the training set and the

remaining 1,755 cells for the validation set. For the control group, we used 25,433 cells for the

training set and 3,634 for the validation set. After filtering with average correlation and average
component ratio thresholds (see Methods), we obtained 93,951 co-expression subnetworks

(gene clusters with components) by COAC. We transformed these co-expression gene clusters

to feature vectors. Features whose variance distribution was significantly different in the case

group versus the control group were kept (see Methods). Using a t-SNE algorithm imple-

mented in the R package-tsne [9], we found that the single cells (from the case group) which

were retrieved directly from the patients can be more robustly separated from the control

group cells (Fig 2B), comparing to the original data (Fig 2A) without applying COAC. Thus,

the t-SNE analysis reveals that batch effects can be significantly reduced by COAC (Fig 2).

Cell type identification

We next turned to examine whether COAC can be used for cell type identification. We col-

lected a scRNA-seq dataset of 14,448 single cells in an IFN-β stimulated group and 14,621 sin-

gle cells in the control group [8]. To remove factors caused by the stimulation conditions or

experimental batch effects, we selected 13,003 cells in the IFN-β stimulated group and 13,158
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cells in the control group as the training set to obtain homogeneous feature vectors for each

cell. The remaining scRNA-seq data are used as the validation set. We generated the gene sub-

networks by COAC and transformed the subnetworks into feature vectors for individual cells

(see Methods). We found that cells from IFN-β stimulated and control groups were separated

significantly (Fig 3A) by t-SNE [9]. However, without applying COAC cells from the IFN-β

Fig 1. Diagram illustrating a Components Overlapping Attribute Clustering (COAC) algorithm for inferring gene-gene relationships from

scRNA-seq data. (A) The whole gene co-expression network is decomposed into gene clusters (subnetworks). Each subnetwork is used to evaluate

which degree of genes in the co-expression matrix derived from scRNA-seq data. If several genes express abnormally, the value of the subnetwork

which contains those genes will change significantly. (B) The scRNA-seq data was decomposed into individual gene expression profile with specific

components. After gene selection from each gene expression profile, the largest connected component was obtained as the subnetwork (see Methods).

https://doi.org/10.1371/journal.pcbi.1006772.g001

Fig 2. Batch effect elimination by COAC evaluated by a t-SNE algorithm [9]. (A) A significant batch effect

elimination (Cells distribute separately in different groups) based on the COAC-inferred subnetworks. (B) A

significant batch effect (Cells distribute uniformly between case and control groups) was observed based on the

original scRNA-seq data from a previous study [37], without applying COAC.

https://doi.org/10.1371/journal.pcbi.1006772.g002
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stimulated and control groups are uniformly distributed in the whole space (Fig 3B), suggest-

ing that components which separate IFN-β stimulated cells from control cells were eliminated

from the feature vector identified by COAC.

We further collected a scRNA-seq dataset including a total of 43,745 cells with well-defined

cell types from a previous study [10]. We built a training set (21,873 cells) and a validation set

(21,872 cells) with approximately equivalent size. In the training set, we generated co-expres-

sion subnetworks as the feature vector by COAC. For the validation set, we grouped the total

cells into five main categories as described previously [10]. Fig 3C shows that COAC-inferred

subnetworks can be used to distinguish five different cell types with high accuracy (cell types

for 83.05% cells have been identified correctly) in the t-SNE analysis, indicating that COAC

can identify cell types from heterogeneous scRNA-seq profiles. We next inspected potential

pathobiological applications of COAC in identifying possible prognostic biomarkers or phar-

macogenomics biomarkers in cancer.

Fig 3. Accurate cell type identification by COAC. (A) The IFN-β stimulated and control groups are separated based on the subnetworks identified by COAC.

(B) Cells from IFN-β stimulated and control groups are uniformly distributed in the whole space without applying COAC. (C) Five different cell types are

identified with high accuracy based on gene subnetworks identified by COAC. Cell types for 83.05% cells have been identified correctly based on well-defined

cell types from experimental data. Cell types are visualized by a t-SNE algorithm [9]. Endo: endothelial cells, PT: proximal tubule cells, DCT: distal convoluted

tubule cells, CD: collecting duct principal cells, lymph: lymphocyte cells.

https://doi.org/10.1371/journal.pcbi.1006772.g003
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Network-based identification of prognostic biomarkers in melanoma

We next turned to inspect whether COAC-inferred gene co-expression subnetworks can be

used as potential prognostic biomarkers in clinical samples. We identified gene subnetworks

from scRNA-seq data of melanoma patients [11]. Using a feature selection pipeline, we filtered

the original subnetworks according to the difference of means and variances between two dif-

ferent groups (e.g., malignant cells versus control cells) to prioritize top gene co-expression

subnetworks (S1A Fig). We collected the bulk gene expression data and clinical data for 458

melanoma patients from the TCGA website [12]. Applying COAC, we identified two gene co-

expression subnetworks with the highest co-expression correlation in malignant cells com-

pared to control cells (S1B Fig). For each subnetwork, we then calculated the co-expression

correlation in bulk RNA-seq profiles of melanoma patients. Using the rank of co-expression

values of melanoma patients, the top 32 patients were selected as group 1 and the tail 32

patients were selected as group 2. Log rank test was employed to compare the survival rate of

two groups [13]. We found that gene subnetworks identified by COAC from melanoma

patients-derived scRNA-seq data can predict patient survival rate (Fig 4A and Fig 4B). KRAS,

is an oncogene in multiple cancer types [14], including menaloma [15]. Herein we found a co-

expression among KRAS, HADHB, and PSTPIP1, can predict significantly patient survival rate

(P-value = 4.09×10−5, log rank test, Fig 4B). Thus, regulation of KRAS-HADHB-PSTPIP1 may

offer new a pathobiological pathway and potential biomarkers for predicting patient’s survival

in menaloma.

We next focused on gene co-expression subnetworks in several known melanoma-related

pathways, such as the MAPK, cell-cycle, DNA damage response, and cell death pathways [16]

by comparing the differences in means and variances between T cell and other cells using

COAC (see Methods). For each gene co-expression subnetwork identified by COAC, we

selected 32 patients who had enriched co-expression correlation and 32 patients who had lost

a co-expression pattern. We found that multiple COAC-inferred gene subnetworks predicted

significantly menaloma patient survival rate (Fig 4C–4F). For example, we found that BRAF-

PSMB3-SNRPD2 predict significant survival (P-value = 0.0058, log rank test. Fig 4C), reveal-

ing new potential disease pathways for BRAF melanoma. CDKN2A, encoding cyclin-depen-

dent kinase Inhibitor 2A, plays important roles in melanoma [17]. Herein we found a

potential regulatory subnetwork, RBM6-CDKN2A-MRPL10-MARCKSL, which is highly cor-

related with melanoma patients’ survival rate (P-value = 0.019, log rank test. Fig 4F). We iden-

tified several new potential regulatory subnetworks for TP53 as well, which is highly correlated

with patient’s survival rate as well (Fig 4D and 4E). Multiple novel COAC-inferred gene co-

expression subnetworks that are significantly associated with patient’s survival rate are pro-

vided in S2 Fig.

Altogether, gene regulatory subnetworks identified by COAC can shed light on new disease

mechanisms uncovering possible functional consequences of known melanoma genes and

offer potential prognostic biomarkers in melanoma. COAC-inferred prognostic subnetworks

should be further validated in multiple independent cohorts before clinical application.

Network-based identification of new pharmacogenomics biomarkers in

cancer

To examine the potential pharmacogenomics application of COAC, we collected robust multi-

array (RMA) gene expression profiles and drug response data (IC50 [The half maximal inhibi-

tory concentration]) across 1,065 cell lines from the Genomics of Drug Sensitivity in Cancer

(GDSC) database [18]. We selected six drugs in this study based on two criteria: (i) the highest

variances of IC50 among over 1,000 cell lines, and (ii) drug targets across diverse pathways:

Inferring gene-gene networks from single cell RNA-seq data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006772 February 19, 2019 7 / 17

https://doi.org/10.1371/journal.pcbi.1006772


Inferring gene-gene networks from single cell RNA-seq data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006772 February 19, 2019 8 / 17

https://doi.org/10.1371/journal.pcbi.1006772


SNX-2112 (a selective Hsp90 inhibitor), BX-912 (a PDK1 inhibitor), Bleomycin (induction of

DNA strand breaks), PHA-793887 (a pan-CDK inhibitor), PI-103 (a PI3K and mTOR inhibi-

tor), and WZ3105 (also named GSK-2126458 and Omipalisib, a PI3K inhibitor). We first iden-

tified gene co-expression subnetworks from melanoma patients’ scRNA-seq data [11] by

COAC. The COAC-inferred subnetworks with RMA gene expression profiles of bulk cancer

cell lines were then transformed to a matrix: each column of this matrix represents a feature

vector and each row represents a cancer cell line from the GDSC database [18]. We then

trained an SVM regression model using the LIBSVM [19] R package with default parameters

and linear kernel (see Methods). We defined cell lines whose IC50 were higher than 10 μM as

drug-resistant cell lines (or non-antitumor effects), and the rest as drug sensitive cell lines (or

potential antitumor effects). As shown in Fig 5A–5F, the area under the receiver operating

characteristic curves (AUC) ranges from 0.728 to 0.783 across 6 drugs during 10-fold cross-

validation, revealing high accuracy for prediction of drug responses by COAC-inferred gene

subnetworks.

To illustrate the underlying drug resistance mechanisms, we showed two subnetworks iden-

tified by COAC for SNX-2112 (Fig 5G) and BX-912 (Fig 5H) respectively. SNX-2112, a selec-

tive Hsp90 (encoded by HSP90B1) inhibitors, has been reported to have potential antitumor

effects in preclinical studies, including melanoma [20, 21]. We found that several HSP90B1 co-

expressed genes (such as CDC123, LPXN, and GPX1) in scRNA-seq data may be involved in

SNX-2112’s resistance pathways (Fig 5G). GPX1 [22] and LPXN [23] have been reported to

play crucial roles in multiple cancer types, including melanoma. BX-912, a PDK1 inhibitor,

has been shown to suppress tumor growth in vitro and in vivo [24]. Fig 5H shows that several

PDK1 co-expressed genes (such as TEX264, NCOA5, ANP32B, and RWDD3) may mediate the

underlying mechanisms of BX-912’s responses in cancer cells. NCOA5 [25] and ANP32B [26]

were reported previously in various cancer types. Collectively, COAC-inferred gene co-expres-

sion subnetworks from individual patients’ scRNA-seq data offer the potential underlying

mechanisms and new biomarkers for assessment of drug responses in cancer cells.

Discussion

In this study, we proposed a network-based approach to infer gene-gene relationships from

large-scale scRNA-seq data. Specifically, COAC identified novel gene-gene co-expression in

individual certain components (the subset of whole components) representing multiple cell

types and cell phases, which can overcome a high degree of cell-cell variabilities from scRNA-

seq data. We found that COAC reduced batch effects (Fig 2) and identified specific cell types

with high accuracy (83%, Fig 3C) in two large-scale human scRNA-seq datasets. More impor-

tantly, we showed that gene co-expression subnetworks identified by COAC from scRNA-seq

data were highly corrected with patients’ survival rate from TCGA data and drug responses in

cancer cell lines. In summary, COAC offers a powerful computational tool for identification of

gene-gene regulatory networks from scRNA-seq data, suggesting potential applications for the

development of precision medicine.

There are several improvements in COAC compared to traditional gene co-expression net-

work analysis approaches from RNA-seq data of bulk populations. Gene co-expression

Fig 4. Survival analysis for COAC-inferred gene co-expression subnetworks in melanoma. (A and B) Survival analysis for COAC-inferred gene co-

expression subnetworks from scRNA-seq data [11] by comparing malignant cells versus control cells from individual melanoma patients (see Methods). (C to

F) Survival analysis for COAC-predicted gene subnetworks from scRNA-seq data by comparing T cells versus controls cells extracted from individual

melanoma patients [11]. The top significantly selected subnetwork for each survival analysis was highlighted in each subfigure. The bulk RNA-seq data and

clinical profiles for each melanoma patients were collected from TCGA website [13]. Survival analysis was conducted for these two groups using the R survival

package [36] (see Methods).

https://doi.org/10.1371/journal.pcbi.1006772.g004

Inferring gene-gene networks from single cell RNA-seq data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006772 February 19, 2019 9 / 17

https://doi.org/10.1371/journal.pcbi.1006772.g004
https://doi.org/10.1371/journal.pcbi.1006772


subnetwork identification by COAC is nearly unsupervised, and only a few parameters need to

be determined. Since gene overlap among co-expression subnetworks is allowed, the number

of co-expression subnetworks has a higher order of magnitude than the number of genes.

Gene co-expression subnetworks identified by COAC can capture the underlying information

of cell states or cell types. In addition, gene subnetworks identified by COAC shed light on

underlying disease pathways (Fig 4) and offer potential pharmacogenomics biomarkers with

well-defined molecular mechanisms (Fig 5).

Fig 5. Cancer pharmacogenomics validation for COAC-predicted gene subnetworks. (A to F) The receiver operating characteristic (ROC) curves for six

selected drugs: SNX-2112 (a selective Hsp90 inhibitor), BX-912 (a PDK1 inhibitor), Bleomycin (induction of DNA strand breaks), PHA-793887 (a pan-CDK

inhibitor), PI-103 (a PI3K and mTOR inhibitor), and WZ3105 (also named GSK-2126458 or Omipalisib, a PI3K inhibitor). Drug IC50 values were predicted

based on SVM regression models built by utilizing the COAC-inferred gene subnetworks as feature vectors (see Methods). The area under ROC curves (AUC)

during 10-fold cross-validations were shown. In each ROC plot, the cutoff values at the corresponding curve positions are represented by the color keys. (G and

H) Two COAC-inferred gene co-expression subnetworks for two selected drug targets on SNX-2112 (G) and BX-912 (H). The color key of each node indicates

the weight of the genes in each subnetwork.

https://doi.org/10.1371/journal.pcbi.1006772.g005
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We acknowledged several potential limitations in the current study. First, the number of

predicted gene co-expression subnetworks is huge. It remains a daunting task to select a few

biologically relevant subnetworks from a large number of COAC-predicted gene subnetworks.

Second, as COAC is a gene co-expression network analysis approach, subnetworks identified

by COAC are not entirely independent. Thus, the features used for computing similarities

among cells are not strictly orthogonal. In the future, we may improve the accuracy of COAC

by integrating the human protein-protein interactome networks and additional, already

known, gene-gene networks, such as pathway information [27–29]. In addition, we could

improve COAC further by applying deep learning approaches [30] for large-scale scRNA-seq

data analysis.

In summary, we reported a novel network-based tool, COAC, for gene-gene network iden-

tification from large-scale scRNA-seq data. COAC identifies accurately the cell types and offers

potential diagnostic and pharmacogenomic biomarkers in cancer. If broadly applied, COAC

would offer a powerful tool for identifying gene-gene regulatory networks from scRNA-seq

data in immunology and human diseases in the development of precision medicine.

Methods and materials

Pipeline of COAC

In COAC, a subnetwork is represented by the eigenvectors of its adjacency correlation matrix.

In practice, the gene regulatory relationships represented by each subnetwork are not always

unique. Those that occur in each subnetwork represent a superposition of two or several regu-

latory relationships, where each has a weight in gene subnetworks shown in S3A Fig. We

thereby used multi-components (i.e., top eigenvectors with large eigenvalues) to represent the

co-expression subnetworks. As shown in S3B Fig, a regulatory relationship between two genes

can be captured in different co-expression subnetworks. Herein, we integrated matrix factori-

zation [31] into the workflow of closed frequent pattern mining [32]. Specifically, the set of

closed frequent patterns contains the complete itemset information regarding these corre-

sponding frequent patterns [32]. Here, closed frequent pattern is defined that if two item sets

appear in the same samples, only the super one is kept.

For a general gene expression matrix, to obtain a sparse distribution of genes in each latent var-

iable, a matrix factorization method such as sparse principal component analysis (PCA) [33] can

be chosen. In this study, because the scRNA-seq data matrix is highly sparse, singular value

decomposition (SVD) is chosen for matrix factorization (i.e., the SVD of A is given by UσV�).

The robust rank r is defined in the S1 Text. Components that are greater than rank r are selected

and then each attribute is treated as the linearly weighted sum of components (Di = wi1 P1 + wi2

P2 + wi3 P3 . . .wir Pr). The projection of gene distribution i over principal component j can be

expressed as
Di

tPj
kDikkPjk

, where kPjk = 1. Then, D i; jð Þ ¼ Di
tPj

kDikkPjk
¼

Di
tPj
kDik
¼

wij
kDik

and � 1 <
Di

tPj
kDik

< 1.

The projection of each attribute distribution over each principal component distribution is illus-

trated in S4A Fig. In practice, single cell data are always sparse. For component j, most elements

in the collection of D(i,j)|j are zero. Several thresholds are determined by F-distribution. For a

component j, the mean and the variance of collection D(i,j)|j is m and s2. Then the F-distribution

with degree of freedom 1, and degree of freedom N-1 (N is the number of attributes) is:

Fð1;N� 1Þ xð Þ ¼
ðx � mÞ2

s2
ð1Þ

The P-value for a element x in collection D(i,j)|j is the extreme upper tail probability of this

F-distribution. The threshold of the collection D(i,j)|j is divided into two groups. In one group,
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the P-value of all element should be below a pre-defined threshold. The detailed process for

obtaining the thresholds is described in the S1 Text. Herein, the cutoff of P-value for F-distri-

bution ranges from 0.01 to 0.05. Subsequently, we defined the mapping rule using these

thresholds.

1 if threshold Pj <
Dx

tPj

kDxk
< 1 ðGainÞ

0 if threshold Nj <
Dx

tPj

kDxk
< threshold Pj ðNon � effectÞ

� 1 if � 1 <
Dx

tPj

kDxk
< threshold Nj ðLossÞ

ð2Þ

8
>>>>>>>><

>>>>>>>>:

The pipeline is shown in S4B and S4C Fig. In the (1/0) sparse matrix, each row represents a

component while each column represents an attribute (gene). The association rule is consisted

of: (i) one is an attribute (gene) collection and (ii) the other is a component collection. The

position in the binary distribution matrix of any pair with the Cartesian product of the two col-

lections is always 1. This position is shown in S4D and S4E Fig.

For each association rule, the attribute collection should have maximal component collec-

tion. For example, for association rules {X Y Z} {M}, {X Y} {M}, {X Y} {M N}, only the maximal

{X Y} {M N} is allowed. And the closed association rule states that if two rules have the same

component collections, only the maximal attribute collection is preserved and kept. For associ-

ation rules {X Y Z} {M N}, {X Y} {M N}, {Y Z} {M N}, and {X Z} {M N}, with the same compo-

nent collection {M, N}, only the maximal {X Y Z} {M N} is kept, whereas the others are

removed. The process of efficient enumeration of all significant association rules (gene subnet-

work) is described in the S1 Text. The subnetwork and gene distribution of selected compo-

nents are obtained directly by applying the association rule, and the gene subnetwork is

treated as the largest connected component (graph) from co-expression networks of scRNA-

seq profiles. Finally, two metrics are introduced for filtering. The average correlation among

genes in each subnetwork is a measure of the homogeneity of genes with selected components.

The average component ratio denotes the average of how much of the whole component space

is occupied by the selected components.

Average Correlation ¼ ð
1

nðn � 1Þ
Þ
P

i;j2fX;Y;Zg;j;i6¼jCorrelationðAi;AjÞjM;N ð3Þ

Component Ratio of Ai ¼
kAik2jselected components

kAik2
ð4Þ

Average Component Ratio ¼
1

N
P
Component Ratio of Ai ð5Þ

(Ai 2 attribute collection of a closed associate rule)

The processes of obtaining the average correlation and the average component ratio are pro-

vided in the S1 Text.

The final largest connected component subnetwork is represented by several eigenvectors

with large eigenvalues, which are calculated from the correlation matrix. These eigenvectors

are used to map each record of the gene expression profile into individual numerical values

(feature vectors).

Feature vector ¼ S Ft=kSk
2
ðkFk

2
¼ 1Þ ð6Þ
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Where S is the gene expression vector for each cell, and F is the first eigenvector of the compo-

nent matrix. If several principal components exist, then the feature value becomes the sum of

components multiplied by the attenuation coefficient.

Feature vector ¼ S Ft
1
=kSk2 þ ðs2=s1ÞS Ft

2
=kSk2 þ ðs3=s1ÞS Ft

3
=kSk2 . . . ðkFt

1
k2 ¼ 1; kFt

2
k2

¼ 1 . . .Þ ð7Þ

Where σ1, σ2, σ3,. . .,σv are the eigenvalues of the gene clustering (subnetwork) correlation

matrix, and Ft
1; F

t
2; . . . are the eigenvectors of gene clustering correlation matrix.

Cell type alignment by COAC

The purpose of cell type alignment was to label cell types of each cell under different conditions.

Cell types with the same labels under each condition were then clustered. Subsequently, differen-

tial expression analyses were performed for various conditions of each cell type. Finally, surrogate

variable analyses [34] were performed to remove the batch effects. We used the limma [35]

method (S5B Fig) for the differential expression analysis of the differently conditioned cell types.

The scRNA-seq data (GEO accession ID: GSE96583) that was used to test the batch effect

elimination was collected from PBMC peripheral blood mononuclear cells of SLE patients

[7,8]. In total, 14,032 cells with 13 aligned PBMC subpopulations under resting and interferon

β (IFN-β)-stimulated conditions were collected [8]. In addition, we also collected 29,067 cells

from two controls as the control group [7]. For the training dataset, the variances of the feature

vectors (COAC-identified subnetworks) between the case group and the control group were

calculated and was regarded as differential variances. The variances of the feature vectors of

the merged group of the case group and the control group were regarded as background vari-

ances. For each feature, the ratio of the differential variance and background variance was

defined as F-score, which measured how much this feature can distinguish cells in a case

group versus a control group. The F-score distribution for 93,951 features is described in S6

Fig. Using a critical point of 2.4 as a threshold (S6 Fig), 8,331 features with F-score higher than

the threshold were kept. For comparison, we used 2,657 genes which were used as biomarkers

previously as the feature vector [8].

Cell type identification by COAC

The scRNA-seq data of mouse kidney with well-annotated cell types were collected from a pre-

vious study [10]. By stringent quality controls described previously [10], a total of 43,745 cells

selected from the original 57,979 cells were used in this study. The entire dataset was randomly

divided into the training set (21,873 cells) and the test set (21,872 cells). The detail of predic-

tion model construction can be found in cell type alignment pipeline (S5 Fig). For the valida-

tion part, cell type was predicted using the training model. For each cell, the scores for cell

types were calculated. Then all cells were plotted by t-SNE algorithm [9]. The results of cell

type prediction were displayed in the confusion matrix.

Identification of new prognostic biomarkers by COAC

We collected the melanoma patients’ scRNA-seq data with well-annotated cell types from a

previous study [11]. The bulk RNA-seq data and clinical profiles for melanoma patients were

collected from the TCGA website [13]. The gene expression values in the scRNA-seq dataset

were transformed as log (TPMij+1), where TPMij refers to transcript-per-million (TPM) of

gene i in cell j. The gene expression value in the bulk RNA-seq dataset was transformed in the

same way.
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The sub-network list was obtained from melanoma scRNA-seq dataset [11] by COAC. Sub-

networks then were transformed to feature vectors. Two top sub-networks with the highest co-

expressed correlation in melanoma cell type and one top sub-network with the highest co-

expressed correlation in T cells were evaluated. The co-expression values were calculated with

RNA-seq gene expression of melanoma patients from TCGA [13]. Survival analysis was con-

ducted using an R survival package [36].

Identification of new pharmacogenomics biomarkers by COAC

We downloaded drug response data (defined by IC50 value) and gene bulk expression profiles

in cancer cell lines from the GDSC database [18]. The component co-expression sub-networks

were identified from the melanoma patients’ scRNA-seq data with well-annotated cell types

from a previous study [11]. For scRNA-seq data, genes that had a ratio of expressed cells less

than 0.03 were removed. Herein, we kept the top 0.1~0.01 percent subnetworks with the high-

est correlation as feature vectors. We predicted each drug’ IC50 value by LIBSVM [19] R pack-

age with default parameters and linear kernel. The ROC curves for the result of drug response

were plotted using the R package.

Supporting information

S1 Text. Supplemental methods.

(PDF)

S1 Fig. Distribution of feature selection between malignant cells and control cells from

scRNA-seq data of individual melanoma patients.

(PDF)

S2 Fig. Survival analysis for top 12 selected significant COAC-inferred gene co-expression

subnetworks from scRNA-seq data in Melanoma.

(PDF)

S3 Fig. A diagram illustrating the process of gene co-expression subnetwork identification

by COAC.

(PDF)

S4 Fig. A diagram illustrating matrix factorization method for gene co-expression subnet-

work identification.

(PDF)

S5 Fig. A diagram illustrating of the pipeline of cell type identification by COAC.

(PDF)

S6 Fig. Distribution of the ratio (F-score) of the differential variance and background vari-

ance.

(PDF)

S7 Fig. A diagram illustrating the processes of binary distribution matrix analysis and

principal components contribution analysis.

(PDF)

Author Contributions

Conceptualization: Feixiong Cheng.

Data curation: Feixiong Cheng.

Inferring gene-gene networks from single cell RNA-seq data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006772 February 19, 2019 14 / 17

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006772.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006772.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006772.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006772.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006772.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006772.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006772.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006772.s008
https://doi.org/10.1371/journal.pcbi.1006772


Formal analysis: Yadi Zhou, Defu Zhang, Feixiong Cheng.

Funding acquisition: Feixiong Cheng.

Investigation: He Peng, Xiangxiang Zeng, Yadi Zhou.

Methodology: He Peng, Xiangxiang Zeng, Feixiong Cheng.

Project administration: Feixiong Cheng.

Resources: Feixiong Cheng.

Software: He Peng.

Supervision: Xiangxiang Zeng, Feixiong Cheng.

Validation: Ruth Nussinov, Feixiong Cheng.

Visualization: He Peng, Xiangxiang Zeng, Yadi Zhou.

Writing – original draft: He Peng, Feixiong Cheng.

Writing – review & editing: Ruth Nussinov, Feixiong Cheng.

References

1. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-transcriptome analy-

sis of a single cell. Nat Methods. 2009; 6(5):377. https://doi.org/10.1038/nmeth.1315 PMID: 19349980

2. Wang Y, Navin NE. Advances and applications of single-cell sequencing technologies. Mol Cell. 2015;

58(4):598–609. https://doi.org/10.1016/j.molcel.2015.05.005 PMID: 26000845

3. Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, et al. The Human Cell Atlas. Elife.

2017; 6: e27041. https://doi.org/10.7554/eLife.27041 PMID: 29206104

4. Ståhlberg A, Rusnakova V, Kubista M. The added value of single-cell gene expression profiling. Briefi

Funct Genomics. 2013; 12(2):81–9. https://doi.org/10.1093/bfgp/elt001 PMID: 23393397

5. Cheng F, Liang H, Butte AJ, Eng C, Nussinov R. Personal mutanomes meet modern oncology drug dis-

covery and precision health. Pharmacol Rev. 2019; 71(1):1–19. https://doi.org/10.1124/pr.118.016253

PMID: 30545954

6. Specht AT, Li J. LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data

using pseudotime ordering. Bioinformatics. 2016; 33(5):764–6. https://doi.org/10.1093/bioinformatics/

btw729 PMID: 27993778

7. Chan TE, Stumpf MP, Babtie AC. Gene regulatory network inference from single-cell data using multi-

variate information measures. Cell Systems. 2017; 5(3):251–67. https://doi.org/10.1016/j.cels.2017.

08.014 PMID: 28957658

8. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across

different conditions, technologies, and species. Nat Biotechnol. 2018; 36(5): 411–420. https://doi.org/

10.1038/nbt.4096 PMID: 29608179

9. Lvd Maaten, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008; 9(Nov):2579–605.

10. Park J, Shrestha R, Qiu C, Kondo A, Huang S, Werth M, et al. Single-cell transcriptomics of the mouse

kidney reveals potential cellular targets of kidney disease. Science. 2018; 360(6390):758–763. https://

doi.org/10.1126/science.aar2131 PMID: 29622724

11. Tirosh I, Izar B, Prakadan SM, Wadsworth MH, Treacy D, Trombetta JJ, et al. Dissecting the multicellu-

lar ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016; 352(6282):189–96.

https://doi.org/10.1126/science.aad0501 PMID: 27124452

12. Anaya J. OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Computer Sci-

ence. 2016; 2:e67.

13. Bewick V, Cheek L, Ball J. Statistics review 12: survival analysis. Crit Care. 2004; 8(5):389. https://doi.

org/10.1186/cc2955 PMID: 15469602

14. Nussinov R, Wang G, Tsai CJ, Jang H, Lu S, Banerjee A, et al. Calmodulin and PI3K signaling in KRAS

cancers. Trends Cancer. 2017; 3(3):214–24. https://doi.org/10.1016/j.trecan.2017.01.007 PMID:

28462395

Inferring gene-gene networks from single cell RNA-seq data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006772 February 19, 2019 15 / 17

https://doi.org/10.1038/nmeth.1315
http://www.ncbi.nlm.nih.gov/pubmed/19349980
https://doi.org/10.1016/j.molcel.2015.05.005
http://www.ncbi.nlm.nih.gov/pubmed/26000845
https://doi.org/10.7554/eLife.27041
http://www.ncbi.nlm.nih.gov/pubmed/29206104
https://doi.org/10.1093/bfgp/elt001
http://www.ncbi.nlm.nih.gov/pubmed/23393397
https://doi.org/10.1124/pr.118.016253
http://www.ncbi.nlm.nih.gov/pubmed/30545954
https://doi.org/10.1093/bioinformatics/btw729
https://doi.org/10.1093/bioinformatics/btw729
http://www.ncbi.nlm.nih.gov/pubmed/27993778
https://doi.org/10.1016/j.cels.2017.08.014
https://doi.org/10.1016/j.cels.2017.08.014
http://www.ncbi.nlm.nih.gov/pubmed/28957658
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1038/nbt.4096
http://www.ncbi.nlm.nih.gov/pubmed/29608179
https://doi.org/10.1126/science.aar2131
https://doi.org/10.1126/science.aar2131
http://www.ncbi.nlm.nih.gov/pubmed/29622724
https://doi.org/10.1126/science.aad0501
http://www.ncbi.nlm.nih.gov/pubmed/27124452
https://doi.org/10.1186/cc2955
https://doi.org/10.1186/cc2955
http://www.ncbi.nlm.nih.gov/pubmed/15469602
https://doi.org/10.1016/j.trecan.2017.01.007
http://www.ncbi.nlm.nih.gov/pubmed/28462395
https://doi.org/10.1371/journal.pcbi.1006772


15. Dietrich P, Kuphal S, Spruss T, Hellerbrand C, Bosserhoff AK. Wild-type KRAS is a novel therapeutic

target for melanoma contributing to primary and acquired resistance to BRAF inhibition. Oncogene.

2018; 37(7):897–911. https://doi.org/10.1038/onc.2017.391 PMID: 29059159

16. Akbani R, Akdemir KC, Aksoy BA, Albert M, Ally A, Amin SB, et al. Genomic classification of cutaneous

melanoma. Cell. 2015; 161(7):1681–96. https://doi.org/10.1016/j.cell.2015.05.044 PMID: 26091043

17. Monzon J, Liu L, Brill H, Goldstein AM, Tucker MA, From L, et al. CDKN2A mutations in multiple primary

melanomas. N Engl J Med. 1998; 338(13):879–87. https://doi.org/10.1056/NEJM199803263381305

PMID: 9516223

18. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al. Genomics of Drug Sensitivity

in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res.

2012; 41(D1):D955–D61. https://doi.org/10.1093/nar/gks1111 PMID: 23180760

19. Chang C-C. " LIBSVM: a library for support vector machines," ACM Transactions on Intelligent Systems

and Technology, 2011; 2(3):1–27 https://www.csie.ntu.edu.tw/~cjlin/libsvm/

20. Okawa Y, Hideshima T, Steed P, Vallet S, Hall S, Huang K, et al. SNX-2112, a selective Hsp90 inhibitor,

potently inhibits tumor cell growth, angiogenesis, and osteoclastogenesis in multiple myeloma and

other hematologic tumors by abrogating signaling via Akt and ERK. Blood. 2009; 113(4):846–55.

https://doi.org/10.1182/blood-2008-04-151928 PMID: 18948577

21. Liu KS, Liu H, Qi JH, Liu QY, Liu Z, Xia M, et al. SNX-2112, an Hsp90 inhibitor, induces apoptosis and

autophagy via degradation of Hsp90 client proteins in human melanoma A-375 cells. Cancer Lett. 2012;

318(2):180–8. https://doi.org/10.1016/j.canlet.2011.12.015 PMID: 22182451

22. Schott M, de Jel MM, Engelmann JC, Renner P, Geissler EK, Bosserhoff AK, et al. Selenium-binding

protein 1 is down-regulated in malignant melanoma. Oncotarget. 2018; 9(12):10445–56. https://doi.

org/10.18632/oncotarget.23853 PMID: 29535818

23. Chen PW, Kroog GS. Leupaxin is similar to paxillin in focal adhesion targeting and tyrosine phosphory-

lation but has distinct roles in cell adhesion and spreading. Cell Adh Migr. 2010; 4(4):527–40. https://

doi.org/10.4161/cam.4.4.12399 PMID: 20543562

24. Feldman RI, Wu JM, Polokoff MA, Kochanny MJ, Dinter H, Zhu D, et al. Novel small molecule inhibitors

of 3-phosphoinositide-dependent kinase-1. J Biol Chem. 2005; 280(20):19867–74. https://doi.org/10.

1074/jbc.M501367200 PMID: 15772071

25. Sun K, Wang S, He J, Xie Y, He Y, Wang Z, et al. NCOA5 promotes proliferation, migration and invasion

of colorectal cancer cells via activation of PI3K/AKT pathway. Oncotarget. 2017; 8(64):107932–46.

https://doi.org/10.18632/oncotarget.22429 PMID: 29296214

26. Yang S, Zhou L, Reilly PT, Shen SM, He P, Zhu XN, et al. ANP32B deficiency impairs proliferation and

suppresses tumor progression by regulating AKT phosphorylation. Cell Death Dis. 2016; 7:e2082.

https://doi.org/10.1038/cddis.2016.8 PMID: 26844697

27. Cheng F, Desai RJ, Handy DE, Wang R, Schneeweiss S, Barabasi AL, et al. Network-based approach

to prediction and population-based validation of in silico drug repurposing. Nat Commun. 2018; 9

(1):2691. https://doi.org/10.1038/s41467-018-05116-5 PMID: 30002366

28. Cheng F, Jia P, Wang Q, Lin CC, Li WH, Zhao Z. Studying tumorigenesis through network evolution

and somatic mutational perturbations in the cancer interactome. Mol Biol Evol. 2014; 31(8):2156–69.

https://doi.org/10.1093/molbev/msu167 PMID: 24881052

29. Cheng F, Liu C, Lin CC, Zhao J, Jia P, Li WH, et al. A gene gravity model for the evolution of cancer

genomes: A study of 3,000 cancer genomes across 9 cancer types. PLoS Comput Biol. 2015; 11(9):

e1004497. https://doi.org/10.1371/journal.pcbi.1004497 PMID: 26352260

30. Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative modeling for single-cell transcrip-

tomics. Nat Methods. 2018; 15(12):1053–8. https://doi.org/10.1038/s41592-018-0229-2 PMID:

30504886

31. Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems. Computer.

2009; 42(8): 30–37. https://doi.org/10.1109/MC.2009.263

32. Goethals B. Survey on frequent pattern mining. Univ of Helsinki. 2003; 19:840–52.

33. Zou H, Hastie T, Tibshirani R. Sparse principal component analysis. J. Comput. Graph. Statist. 2006;

15(2):265–86. https://doi.org/10.1198/106186006X113430

34. Parker HS, Leek JT, Favorov AV, Considine M, Xia X, Chavan S, et al. Preserving biological heteroge-

neity with a permuted surrogate variable analysis for genomics batch correction. Bioinformatics. 2014;

30(19):2757–63. https://doi.org/10.1093/bioinformatics/btu375 PMID: 24907368

35. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analy-

ses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43(7):e47–e. https://doi.

org/10.1093/nar/gkv007 PMID: 25605792

Inferring gene-gene networks from single cell RNA-seq data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006772 February 19, 2019 16 / 17

https://doi.org/10.1038/onc.2017.391
http://www.ncbi.nlm.nih.gov/pubmed/29059159
https://doi.org/10.1016/j.cell.2015.05.044
http://www.ncbi.nlm.nih.gov/pubmed/26091043
https://doi.org/10.1056/NEJM199803263381305
http://www.ncbi.nlm.nih.gov/pubmed/9516223
https://doi.org/10.1093/nar/gks1111
http://www.ncbi.nlm.nih.gov/pubmed/23180760
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://doi.org/10.1182/blood-2008-04-151928
http://www.ncbi.nlm.nih.gov/pubmed/18948577
https://doi.org/10.1016/j.canlet.2011.12.015
http://www.ncbi.nlm.nih.gov/pubmed/22182451
https://doi.org/10.18632/oncotarget.23853
https://doi.org/10.18632/oncotarget.23853
http://www.ncbi.nlm.nih.gov/pubmed/29535818
https://doi.org/10.4161/cam.4.4.12399
https://doi.org/10.4161/cam.4.4.12399
http://www.ncbi.nlm.nih.gov/pubmed/20543562
https://doi.org/10.1074/jbc.M501367200
https://doi.org/10.1074/jbc.M501367200
http://www.ncbi.nlm.nih.gov/pubmed/15772071
https://doi.org/10.18632/oncotarget.22429
http://www.ncbi.nlm.nih.gov/pubmed/29296214
https://doi.org/10.1038/cddis.2016.8
http://www.ncbi.nlm.nih.gov/pubmed/26844697
https://doi.org/10.1038/s41467-018-05116-5
http://www.ncbi.nlm.nih.gov/pubmed/30002366
https://doi.org/10.1093/molbev/msu167
http://www.ncbi.nlm.nih.gov/pubmed/24881052
https://doi.org/10.1371/journal.pcbi.1004497
http://www.ncbi.nlm.nih.gov/pubmed/26352260
https://doi.org/10.1038/s41592-018-0229-2
http://www.ncbi.nlm.nih.gov/pubmed/30504886
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1198/106186006X113430
https://doi.org/10.1093/bioinformatics/btu375
http://www.ncbi.nlm.nih.gov/pubmed/24907368
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkv007
http://www.ncbi.nlm.nih.gov/pubmed/25605792
https://doi.org/10.1371/journal.pcbi.1006772


36. Therneau T, Lumley T. Survival: Survival analysis, including penalised likelihood. R package version

2.35–7. R foundation for Statistical Computing2011. https://cran.r-project.org/

37. Kang HM, Subramaniam M, Targ S, Nguyen M, Maliskova L, McCarthy E, et al. Multiplexed droplet sin-

gle-cell RNA-sequencing using natural genetic variation. Nature biotechnology. 2018; 36(1):89. https://

doi.org/10.1038/nbt.4042 PMID: 29227470

Inferring gene-gene networks from single cell RNA-seq data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006772 February 19, 2019 17 / 17

https://cran.r-project.org/
https://doi.org/10.1038/nbt.4042
https://doi.org/10.1038/nbt.4042
http://www.ncbi.nlm.nih.gov/pubmed/29227470
https://doi.org/10.1371/journal.pcbi.1006772

