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Chromatin structure predicts 
survival in glioma patients
Matthew C. Garrett 1,8*, Rebecca Albano1,8, Troy Carnwath2, Sanjit Shah1, Daniel Woo3, 
Michael Lamba4, David R. Plas5, Aditi Paranjpe6, Krishna Roskin6, Chuntao Zhao7 & 
Richard Lu7

The pathological changes in epigenetics and gene regulation that accompany the progression of 
low-grade to high-grade gliomas are under-studied. The authors use a large set of paired atac-seq 
and RNA-seq data from surgically resected glioma specimens to infer gene regulatory relationships 
in glioma. Thirty-eight glioma patient samples underwent atac-seq sequencing and 16 samples 
underwent additional RNA-seq analysis. Using an atac-seq/RNA-seq correlation matrix, atac-seq 
peaks were paired with genes based on high correlation values (|r2| > 0.6). Samples clustered by IDH1 
status but not by grade. Surprisingly there was a trend for IDH1 mutant samples to have more peaks. 
The majority of peaks are positively correlated with survival and positively correlated with gene 
expression. Constructing a model of the top six atac-seq peaks created a highly accurate survival 
prediction model  (r2 = 0.68). Four of these peaks were still significant after controlling for age, grade, 
pathology, IDH1 status and gender. Grade II, III, and IV (primary) samples have similar transcription 
factors and gene modules. However, grade IV (recurrent) samples have strikingly few peaks. Patient-
derived glioma cultures showed decreased peak counts following radiation indicating that this may be 
radiation-induced. This study supports the notion that IDH1 mutant and IDH1 wildtype gliomas have 
different epigenetic landscapes and that accessible chromatin sites mapped by atac-seq peaks tend 
to be positively correlated with expression. The data in this study leads to a new model of treatment 
response wherein glioma cells respond to radiation therapy by closing open regions of DNA.

Gliomas are the most common primary brain tumor and result in over 15,000 deaths a year in the United States 
 alone1. These tumors are often initially discovered as slow-growing low-grade gliomas (Grade II gliomas)2,3. 
However, inevitably these tumors undergo a transformation into faster growing more aggressive higher-grade 
tumors (Grade III and Grade IV gliomas). Following diagnosis, standard clinical management includes maximal 
safe resection and adjuvant treatment (chemotherapy and radiation)1,3–5. This often leads to a period of clinical 
stability where there is no visible tumor on serial MRI scans. However, the tumors inevitably recur. While primary 
grade IV gliomas (i.e. glioblastomas) can have periods of stability following resection and adjuvant therapy, once 
they recur, recurrent glioblastomas are typically treatment resistant and clinical stability is  rare6,7. Whether this is 
due to a natural progression of the tumor or as a response to typically used DNA-damaging therapies (radiation 
and chemotherapy) is being  investigated8.

The transformation from a normal cell to a low-grade glioma and eventually a high-grade glioma involves 
the dysregulation of many gene pathways and cellular  processes9,10. Much attention has been paid to deletions 
(e.g. PTEN11,12, p5313, 1p/19q14,15) and amplifications (EGFR16, MYC17) of specific gene regions that are frequently 
encountered in these tumors. However, there is a similar and equally important pathology in the epigenetic 
dysregulation of these gene pathways that has received less attention. A thorough exploration of the epigenetic 
landscape of these tumors may lead to the discovery of additional important biomarkers.

The discovery of the IDH1 mutation (frequently found in low-grade gliomas and secondary high-grade 
gliomas) has brought additional focus and attention to the problem of epigenetic dysregulation in gliomas. The 
presumed mechanism of the IDH1 mutation is to methylate cytosine nucleotides in DNA and induce a more 
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closed inaccessible DNA chromatin with subsequent gene down-regulation18–20 however atac-seq data on IDH1 
mutant glioma samples is limited.

Atac-seq is a relatively new sequencing technology that identifies open accessible DNA regions (e.g. “peaks”) 
with very little cellular input enabling the analysis of surgically resected samples. Its low-cost and relative ease 
has led to wide-spread use across multiple cell types. However, when atac-seq data is used in isolation without 
additional lines of supporting evidence, it has been difficult to determine how best to interpret the biological 
significance of these open regions (measured as “peaks” from aligned sequencing reads). Data sets involving 
multiple modalities (atac-seq and RNA-seq) on the same samples would be useful in supporting or refuting these 
assumptions. To address these short-comings this study combines a large set of atac-seq and RNA-seq data from 
surgically removed glioma specimens to create an atac-seq/RNA-seq matrix to identify highly correlated peaks 
and genes. By correlating these data sets with demographic and survival data we have identified open DNA 
regions that have prognostic and thereby likely biological significance.

Methods
Generation of clinical database. The University of Cincinnati maintains an IRB-approved biorepository 
of surgically resected specimens with associated clinical and demographic information including medical record 
number, diagnosis, name, gender, age, date of collection and survival. A collection of 38 specimens were chosen 
from the bio-repository with a goal to obtain a heterogenous mixture of low-grade and high-grade specimens 
as well as those with long and short survival. Specimens were between 2 and 9 years old prior to selection to 
allow for adequate follow-up for survival analysis. All specimens denoted as “Grade II,” “Grade III,” or “Grade 
IV primary” are taken from the patient’s initial surgery and have not been exposed to any chemotherapy or 
radiation treatment. All grades were assigned based on the WHO guidelines of that time. Since then, grading 
guidelines have changed to include more molecular markers (e.g. IDH1, p53, 1p/19q)21. Following the initial 
surgery all patients underwent standard therapy including temozolomide and radiation. Survival was calculated 
as time between surgical resection and death. The presence of the IDH1 mutation was determined via either 
immunostaining or by direct sequencing.

Protocol for generating Atac-seq libraries. Nuclei were isolated from patient tumor tissue as described 
by Habib et al.22, with slight modifications. Briefly, frozen tissue samples (< 0.5 cm) were incubated on ice in 1 mL 
of Nuclei EZ Lysis Buffer (Sigma, #Nuc-101). The tissue was then homogenized using a glass tissue grinder. 1 mL 
of additional EZ Lysis Buffer was added, the tissue was incubated on ice for 5 min, and then filtered through a 
70 μm cell strainer. Nuclei were collected by centrifugation and resuspended in 1 mL ATAC-resuspension buffer 
(10 mM Tris–HCl (pH 7.4), 10 mM NaCl, 3 mM  MgCl2, and 0.1% Tween-20) and filtered through a 40 μm cell 
strainer. 1 mL of ATAC-resuspension buffer was then added and the nuclei were filtered through a 5 μm cell 
strainer. ATAC-seq library preparation was performed as previously  described23.

RNA-seq library creation. Frozen patient tumor tissue (< 0.5 cm) was placed into pre-chilled RNA-ice 
later (Invitrogen, #AM7030) for at least 24 h at − 20 °C. The tissue was then homogenized with Lysis/Binding 
Buffer (Invitrogen, #00671513) in lysing matrix D tubes (MP, #116913050-CF) for 40 s at 6 m/s, using the MP 
FastPrep-24 5G Instrument (MP, #116005500). RNA (≥ 200 nucleotides) was then purified using the Quick-
RNA MiniPrep Plus Kit (Zymo Research, #R1057).

Processing of ATAC-seq data. ATAC-seq reads in FASTQ format were first subjected to quality control 
to assess the need for trimming of adapter sequences or bad quality segments. The programs used in these steps 
were FastQC v0.11.7, Trim Galore! v0.4.2 and cutadapt v1.9.1. The trimmed reads were aligned to the refer-
ence human genome version GRCh38/hg38 with the program HISAT2 v2.0.5. Aligned reads were stripped of 
duplicate reads with the program sambamba v0.6.8. Peaks were called using the program MACS v2.1.2 using 
the broad peaks mode.

To obtain the consensus set of unique peaks, called peaks from all samples are merged at 50% overlap using 
BEDtools v2.27.0. The consensus peaks, originally in BED format were converted to a Gene Transfer Format 
(GTF) to enable fast counting of reads under the peaks with the program featureCounts v1.6.2. Each feature in 
the GTF file has the value “peak” on the second column. Peaks located on chromosomes X, Y and mitochon-
drial DNA are excluded from further analysis. Raw read counts are normalized with respect to library size and 
transformed to log2 scale using rlog() function in R package DESeq2 v1.26.0.

Random forest regression model. Log-transformed data were filtered to remove low variance peaks 
using the VarianceThreshold function from scikit-learn v0.24.1 using a threshold of 0.45. The resulting 8439 
features were used to build a random forest regression model using RandomForestRegressor from the ensemble 
module of scikit-learn. The options used was n_estimators: 1000, max_samples = 0.9, oob_score = True. Permu-
tation importance was used to rank the peaks. The out-of-bag  R2 value for the regression was 0.31.

Elastic-net regularized generalized linear models. We selected the top 20 peaks with highest mean 
feature importance value from 8439 peaks. To assess the survival predictive power of clinical metadata and top 
20 ATAC-seq peaks, we trained elastic-net regularized generalized linear models using ‘glmnet’ package in R. 
We tested the performance of three different models that are built using following features (1) top 20 ATAC-seq 
peaks (2) clinical metadata only; (3) clinical metadata + top 20 ATAC-seq peaks. Leave one out cross validation 
imputation was applied and alpha parameter was explored between 0 and 1 with incrementing step size of 0.1. 
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Out of 36 samples, IDH mutation information of 4 samples was not available. These 4 samples were excluded 
from models which include clinical metadata as features. Prediction accuracy of models was assessed by com-
puting  R2 value.

Processing of RNA-seq data. The quality control check on RNA-seq reads was performed with FastQC 
v0.11.7. Adapter sequences and bad quality segments were trimmed using Trim Galore! v0.4.2 and cutadapt 
v1.9.1. The trimmed reads were aligned to the reference human genome version GRCh38/hg38 with the program 
STAR v2.6.1e. Duplicate aligned reads were removed using the program sambamba v0.6.8. Gene-level expres-
sion was assessed by counting features for each gene, as defined in the NCBI’s RefSeq database. Read counting 
was done with the program featureCounts v1.6.2 from the Rsubread package. Raw counts were normalized with 
respect to library size and transformed to log2 scale using rlog() function in R package DESeq2 v1.26.0.

ATAC-seq and RNA-seq correlation analysis. Sixteen samples have atac-seq chromatin accessibility as 
well as RNA-seq gene expression data which is used for correlation analysis. To compare the chromatin acces-
sibility and gene expression, we identified the peak-gene pairs which are located within same topologically asso-
ciating domain (TAD). Peaks having at least 90% overlap with TAD are selected for further analysis. Out of 8439 
peaks, 8419 peaks show ≥ 90% overlap with TAD region and 8416 peaks have at least 1 gene within the overlap-
ping TAD. Pearson correlation coefficient was calculated for each peak-gene pair.

Analysis of differential chromatin accessibility. The significant changes of chromatin accessibility in 
each subgroup (Grade II, Grade III, Grade IV Primary and Grade IV Recurrent) were assessed with the R pack-
age DESeq2 v1.26.0. The 8439 most important peaks from the random forest regression model are selected for 
the differential analysis. Samples from a specific subgroup (e.g. Grade II) are compared against remaining sam-
ples from the dataset. Differential peaks with  log2FoldChange ≥ 0.3 and FDR ≤ 0.05 are selected for motif enrich-
ment analysis using HOMER v4.10. Remaining peaks from initial set of 8439 peaks are used as background data 
set in HOMER analysis. Only known human motifs from CIS-BP 2.0 are considered.

Radiation treatment. Three previously characterized patient-derived cultures  (HK29624,  HK35724, 
 TS60325) underwent a radiation dose of 9 Gy in three fractions in a XenX (X-Strahl, Suwanee, GA) pre-clinical 
cabinet irradiator, with output calibrated using NIST-traceable instruments. The instrument parameters were: 
220 kVp, 0.67 mm Cu HVL, dose rate ~ 6 cGy/s, delivered using a 100 mm × 100 mm collimator with 2 cm 
backscatter below the cell plates.

Sequencing database. The human database is publicly available from “basespace” login.illumina.com. 
All experimental protocols were approved by the University of Cincinnati IRB committee. This study was used 
de-identified patient specimens and was designated “Not human research” 19-02-25-02 (5/3/2019). Consent is 
not applicable.

Human database. The creation of the human database followed all methods in accordance with relevant 
guidelines and regulations. This study was used de-identified patient specimens and was designated “Not human 
research” 19-02-25-02 (5/3/2019). Consent is not applicable.

Consent to participate. This study does not involve human subjects.

Results
Atac-seq/RNA-seq correlation matrix creates chromatin maps with candidate target 
genes. This study includes thirty-eight glioma specimens spanning all grades (Grade II-7 specimens, Grade 
III-9 specimens, Grade IV primary-9 specimens, Grade IV recurrent-13 specimens). Seventeen specimens were 
determined to have an IDH1 mutation, 17 specimens were determined to be IDH1 wildtype. In four specimens, 
the IDH1 mutant status could not be determined. The collection includes three paired specimens in which 
a single patient underwent two surgeries (MG 18/MG19, MG20/MG21, MG27/28). Sixteen samples were of 
sufficient quality to allow RNA-sequencing analysis. The demographic and clinical information is shown in 
Table 1. Restricting analysis to those peaks with a univariate correlation of |r2| ≥ 0.6 revealed that the majority of 
peaks were positively correlated with survival (Fig. 1A) and positively correlated with gene expression (Fig. 1B). 
Gene ontology enrichment analysis of the identified correlated genes (peak-survival correlation |r2| ≥ 0.6 and 
peak-gene correlation |r2| ≥ 0.6) identified “Nervous System Development” as the most enriched gene module 
(Fig. 1C). Clustering using Uniform Manifold Approximation and Projection (UMAP) identified two clusters 
that segregated by IDH1 mutant status (Fig. 1D,E). While it is widely presumed that the IDH1 mutation induces 
DNA methylation and a closed  conformation18–20, there was a non-significant trend (p = 0.1) towards IDH1 
mutant samples having more peaks (Fig. 1F).

Prognostic model predicts identifies atac-seq peaks associated with grade/survival. Restrict-
ing the focus to only those genes with the most prognostic value, a random forest model identified 8439 peaks 
that were predictive of survival. The majority of these peaks mapped to intergenic regions. Using the atac-seq/
RNA-seq correlation matrix, 29,679 genes were correlated with the identified 8439 peaks (gene-peak correlation 
|r2| ≥ 0.6). Contrary to the hypothesis that peaks target the “nearest gene”, only 1863 (2.5%) of these correlations 
were between a peak and its “nearest gene”. Linear regression models identified six peaks that predicted survival 
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with a high degree of accuracy  (R2 = 0.6845). The six most closely correlated target gene regions are shown in 
Fig. 2A. Four of the annotated genes have reported roles in cancer. GUCY1B326,27 and IMPAD128,29 are reported 
oncogenes while GRIA230 and LZTS131 are reported tumor suppressors. This peak linear regression model was 
compared against a model using established predictive clinical variables (age, gender, grade, pathology and 
IDH1 status) which yielded a higher degree of accuracy  (R2 = 0.7271 Fig. 2B). Combining the atac-seq peaks and 
clinical variables created the most accurate model  (R2 = 0.8164 Fig. 2C) indicating that four of the atac-seq peaks 
have predictive value independent of traditionally used clinical variables.

Table 1.  Demographic and clinical information for 38 glioma specimens spanning all grades (Grade II-7 
specimens, Grade III-9 specimens, Grade IV prary-9 specimens, Grade IV recurrent-13 specimens). Seventeen 
specimens were determined to have an IDH1 mutation, 17 specimens were determined to be IDH1 wildtype. 
In four specimens, the IDH1 mutant status could not be determined. The collection includes three paired 
specimens in which a single patient underwent two surgeries (MG 18/MG19, MG20/MG21, MG27/28). 
Sixteen samples were of sufficient quality to allow RNA-sequencing analysis.

Sample number Age Gender Pathology Grade Primary/recurrent IDH1 Survival (months) RNA-seq

MG1 63 Female Glioblastoma IV Recurrent WT 5 Yes

MG2 77 Male Glioblastoma IV Recurrent WT 9 Yes

MG3 67 Female Glioblastoma IV Primary WT 51 Yes

MG4 30 Female Anaplastic astrocytoma III Primary WT 44 Yes

MG5 69 Male Glioblastoma IV Primary WT 3.5 Yes

MG6 49 Male Glioblastoma IV Recurrent WT 5.5 Yes

MG7 63 Male Oligodendroglioma II Primary Mut 69 Yes

MG8 76 Male Glioblastoma IV Primary WT 14 No

MG9 25 Male Anaplastic oligoden-
droglioma III Primary Mut 66 Yes

MG10 38 Female Oligodendroglioma II Primary Mut 65 Yes

MG11 46 Male Anaplastic oligoden-
droglioma III Primary Mut 64 Yes

MG12 54 Female Glioblastoma IV Recurrent WT 8 Yes

MG13 30 Female Anaplastic oligoden-
droglioma III Primary Mut 50 Yes

MG14 63 Female Anaplastic oligoden-
droglioma III Primary Mut 25 Yes

MG15 49 Female Glioblastoma IV Primary WT 4 Yes

MG16 48 Male Oligodendroglioma II Primary Mut 21 Yes

MG17 33 Female Oligodendroglioma II Primary Mut 14 Yes

MG18 40 Female Anaplastic astrocytoma III Primary – 34 No

MG19 43 Female Glioblastoma IV Recurrent – 4 No

MG20 44 Female Glioblastoma IV Primary Mut 53 No

MG21 48 Female Glioblastoma IV Recurrent Mut 7 No

MG22 64 Male Glioblastoma IV Primary WT 5 No

MG23 32 Female Glioblastoma IV Recurrent – 41 No

MG24 55 Male Anaplastic oligoden-
droglioma III Primary Mut 97 No

MG25 47 Male Astrocytoma II Primary Mut 88 No

MG26 31 Male Anaplastic astrocytoma III Primary Mut 89 No

MG27 58 Female Glioblastoma IV Primary WT 16 No

MG28 58 Female Glioblastoma IV Recurrent WT 13 No

MG29 63 Male Glioblastoma IV Recurrent – 4 No

MG30 49 Male Glioblastoma IV Recurrent WT 14 No

MG31 55 Male Oligodendroglioma II Primary Mut 58 No

MG32 32 Male Astrocytoma II Primary Mut 57 No

MG33 49 Female Glioblastoma IV Primary WT 16 No

MG34 21 Female Glioblastoma IV Recurrent WT 5 No

MG35 50 Male Glioblastoma IV Recurrent Mut 5 No

MG36 69 Female Glioblastoma IV Primary WT 12 No

MG37 37 Female Glioblastoma IV Recurrent Mut 39 No

MG38 66 Male Anaplastic oligoden-
droglioma III Primary WT 18 No
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Figure 1.  (A) Univariate correlations between peaks and survival are plotted above for |r2| > 0.5, |r2| > 0.6, 
and |r2| > 0.7. The vast majority of the correlations between peaks and survival are positively correlated. (B) 
Univariate correlations between peaks and genes are plotted above for |r2| > 0.5, |r2| > 0.6, and |r2| > 0.7. The vast 
majority of the correlations between peaks and genes are positively correlated. (C) Peak-gene correlations of 
|r2| > 0.6 were subjected to gene ontology analysis. Significantly enriched gene modules are shown above. (D,E) 
UMAP clustering of all 38 samples coded by grade (D) and IDH1 status (E). (F) Total peaks (Transcript per 
million).

Figure 2.  (A) The six most predictive atac-seq peaks were used to create a linear regression model to 
predict survival. The constants associated with this linear equation are shown in column two and the most 
correlated gene in column 3. (B) Six typically used clinical and demographic variables were used to create a 
linear regression model to predict survival. (C) Combining atac-seq peaks and clinical variables into a linear 
regression model yielded the most accurate prediction model.
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Recurrent grade IV gliomas are associated with fewer open chromatin sites. Each grade was 
compared to all others to identity any differentially represented atac-seq peaks (Fig. 3). These grade-specific 
peaks then underwent HOMER motif analysis to determine which likely transcription factors drove gene 
expression in each grade. Finally, peak-associated genes were identified and underwent gene ontology analysis 
to determine candidate target gene pathways for each grade. Grade II (2326 peaks, 3204 genes), grade III (1708 
peaks, 2508 genes), and grade IV (primary) (3058 peaks, 3819 genes) samples had similar and heavily overlap-
ping sets of transcription factor motifs and enriched gene modules (Fig. 3). In contrast, grade IV recurrent (14 
peaks, 37 genes) had relatively few peaks and no significantly enriched gene modules.

To determine if this finding was specific to the identified 8439 peaks or part of a larger trend, the total peak 
count was calculated for each of the grades. Similar to the previous finding, grade IV (recurrent) samples had 
significantly fewer total peaks than grade II samples (p = 0.02) (Fig. 4A,B). This collection contains three “paired” 
samples each of which were grade IV that underwent resection followed by standard adjuvant treatment (temo-
zolomide and radiation) and later a second resection. In each case, the later sample (“recurrent” sample) had 
fewer peaks (Fig. 4C). This invites two possibilities. The first possibility is the decrease in peak count is a selection 
process where only cells with fewer peaks grow back. The second possibility is that the decrease in peak count is a 
consequence of the clinical treatment (e.g. surgery, temozolomide and radiation). In support of the latter induc-
tion hypothesis, MG 30/31 was a patient who had two distinct tumors that were present on initial diagnosis. The 
first (MG 30) was resected and the second tumor (MG31) underwent chemotherapy and radiation followed by 
resection. To provide further evidence for the latter hypothesis, three previously characterized patient-derived 
glioma cultures  (HK29624,  HK35724,  TS60325) underwent atac-seq analysis before and after 9 Gray of radiation 
in three daily fractions. All three cell lines showed a decrease in peak count following radiation (Fig. 4D).

Discussion
Glioblastoma is a currently incurable disease and despite decades of research and hundreds of clinical trials, 
the prognosis remains grim. One frustration encountered by several  trials6 including those investigating the 
roles of  radiation4 is that improvements in progression-free survival do not always translate into improvements 
in overall survival. One possible explanation for this phenomenon is that while certain therapies may initially 

Figure 3.  Each of the 8349 peaks was assigned to one of the four grades (Grade II, Grade III, Grade IV 
primary, Grade IV recurrent) based on representation in that group. These peaks underwent HOMER analysis 
to determine enriched transcription factor motifs and gene ontology based on the associated genes. Grade IV 
recurrent samples had very few peaks and no significantly enriched gene modules.
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impede tumor growth those cells that survive may take on additional attributes that make them more destructive 
and refractory to treatment. The data from this study provides an intriguing new model for this transition. The 
majority of atac-seq peaks identified in this study were correlated with better survival and tended to positively 
correlate with genes of nervous system differentiation. There was a non-significant trend for total peak count 
to decrease as the grade increased with the most significant decrease seen in the recurrent grade IV samples. 
It may be the case, that the closing of DNA regions responsible for driving neural differentiation induces more 
malignant behavior and that this process can be accelerated by radiation. If this were true, it may be beneficial 
to pair radiation therapy with other compounds that could potentially minimize this unwanted side effect.

With advancements in the availability and cost of sequencing, traditional histological classifications have 
been replaced with more sophisticated genetic markers. Despite the wealth of glioma expression data, attempts 
to identify patterns of gene expression that predict survival have been  underwhelming32,33. In contrast, epigenetic 
data such as DNA methylation (e.g. G-CIMP) seems to have a high degree of prognostic  value18,32,34. Supporting 
this observation, this study created an accurate prognostic survival model with only six atac-seq peaks, four of 
which remained significant when controlling for grade, age and IDH1 status.

The discovery of the  IDH135 and  H3K27M36,37 mutations has revealed the importance of epigenetic dys-
function in the early stages of cancer development. The presumed mechanism of the IDH1 mutation is to favor 
DNA methylation by inhibiting DNA demethylase enzymes (e.g. Tet family)18,19. This is hypothesized to induce 
decreased DNA accessibility with subsequent gene down-regulation20. In the current study, UMAP clustering 
divided samples by IDH1 status although several IDH1 mutant samples clustered with the IDH1 wildtype group. 
Running counter to the hypothesis that the IDH1 mutation leads to hyper-methylation and decreased DNA acces-
sibility, there was a trend for IDH1 mutant samples to have more total peaks. This implies that the relationship 
between DNA methylation and DNA accessibility may be more complicated than previously assumed.

The relative ease and low input requirement of atac-seq technology has led to wide-spread use on a variety of 
tissue  types38–40. However, while the data is easy to obtain it is challenging to interpret without additional sources 
of supporting evidence. In the absence of this supporting evidence several assumptions have become common 
in the literature namely that a given peak positively regulates the nearest gene. In the current study, the authors 
assembled a sufficiently large dataset to create a correlation matrix to make some rational assumptions about 

Figure 4.  (A) The total peaks (transcripts per million > 10) were calculated for each sample and tabulated by 
grade. Grade II samples had significantly more peaks than Grade IV recurrent samples (ANOVA). (B) The total 
peak counts for three paired samples are shown. (C) Samples were divided by IDH1 status and by primary vs. 
recurrent status. (D) Three patient derived glioblastoma cell lines were subjected to atac-seq analysis before and 
after 9 grey radiation in three fractions.
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the relationships of peaks and target genes. Using relatively strict cut-offs, the data showed that most peaks were 
correlated with one or at most a few genes. The majority of peaks correlated positively with target gene expression. 
However, there was no correlation between peaks and the nearest genes. On the contrary, peaks and correlated 
genes were frequently separated by long distances and including many intervening genes. It should be noted that 
while this study provides some evidence of specific intergenic regions regulating specific target genes, the data 
is correlational and indirect and needs to be strengthened by alternative methods such as genetic manipulation 
(CRISPR) or chromosome conformation capture-based methods.

In conclusion, this study uses an innovative peak:gene correlation matrix to create an epigenetic gene regula-
tory map of gliomas and then uses this matrix to both identify specific gene regulatory regions of interest as well 
as introduce a possible mechanism of epigenetic malignant progression.

Data availability
All sequencing data will be made publicly available.

Received: 5 January 2022; Accepted: 15 March 2022
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