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Objective: The differences between type 1 and type 2 diabetes mellitus (T1DM and T2DM) in terms of their adverse effects on male reproduc-
tive parameters have never been elucidated. This study aimed to distinguish between the effects of the DM types in mice treated with multiple 
low doses of streptozotocin (STZ) to mimic human T1DM and coadministered a high-fat diet (HFD) to mimic human T2DM. 
Methods: The T1DM mice were intraperitoneally injected with STZ (40 mg/kg body weight) for 5 days. The T2DM mice received an HFD for 14 
days prior to STZ injection (85 mg/kg body weight), followed by continuous feeding of an HFD. Male reproductive parameters were evaluated.
Results: The reproductive organs of the DM mice weighed significantly less than those of controls, and the seminal vesicles plus prostates of 
the T1DM mice weighed less than those of the T2DM mice. Increased sperm abnormalities and incomplete DNA packaging were observed in 
the DM groups. Sperm concentration and the proportion of normal sperm were significantly lower in the T1DM group. The seminiferous histo-
pathology of DM mice was classified into seven types. The penises of the DM mice were smaller than those of the controls; however, tunica al-
buginea thickness and the amount of penile collagen fibers were increased in these mice. Round germ cells were abundant in the epididymal 
lumens of the mice with DM.
Conclusion: T1DM adversely affected reproductive parameters to a greater extent than T2DM.
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Introduction

The worldwide prevalence of both type 1 and type 2 diabetes mel-
litus (T1DM and T2DM, respectively) is rapidly increasing [1,2]. Vari-
ous disorders can result from T1DM and T2DM, including male repro-

ductive dysfunction [3-8]. Diabetes mellitus has also been found to 
alter glucose metabolism in Sertoli cells, decrease spermatogenesis, 
damage testicular structure, and reduce testosterone levels [8-13]. 
However, the adverse effects of T1DM and T2DM on reproductive pa-
rameters have never been compared. The acrosome reaction is a 
specialized exocytotic process involved in the fusion and fenestration 
of sperm plasma and the outer acrosomal membrane after binding 
to the zona pellucida, resulting in an explosion of hydrolytic enzymes 
[14]. A precocious acrosome reaction in the epididymis and female 
reproductive tract is a cause of male infertility. Sperm parameters in-
dicative of male fertility include concentration, viability, and motility 
[15]. Abnormal sperm morphology (either head or tail) has a direct 
effect on natural fertilization [15,16]. Additionally, the lysine-rich his-
tones are replaced by testis-specific nuclear proteins before trans-
forming into protamines to compact sperm chromatin [17]. There-
fore, the decondensation and incomplete DNA packaging of mature 
sperm are potential indicators of sperm damage [17,18].
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Several studies have induced DM in animal models to investigate 
the mechanisms of DM-related male infertility [19-23]. For T1DM, ad-
ministration of multiple low doses of streptozotocin (STZ) has been 
used to induce subtoxic effects on β-cells, resulting in autoimmune 
insulitis [19,23-25]. For T2DM, STZ induction combined with a high-
fat diet (HFD) is commonly used to mimic human T2DM [20,21,26,27]. 
Although several studies have compared the effects of each DM type 
on male fertility, such an investigation has yet to be conducted along 
with the examination of essential parameters. The respective effects 
of each DM type on representative histological and physiological pa-
rameters in sperm, such as acrosome status and chromatin structure, 
have never been compared. This study thus compared T1DM and 
T2DM mice with regard to sperm quality and the histopathology of 
the testis, epididymis, and penis.

Methods

This experiment was approved by the Animal Ethics Committee of 
Khon Kaen University based on the Ethics of Animal Experimentation 
as determined by the National Research Council of Thailand (No. 
0514.1.75/90 with record No. AEKKU-NELAC 71/2559).

1. Animals and induction of diabetes
Fifty-six male C57BL/6 mice were purchased from Nomura Siam In-

ternational Co., Ltd., Bangkok, Thailand. All mice were housed within 
ventilated cages in a specific pathogen-free room at a constant tem-
perature (23° ± 2°C) under a 12-hour light-dark cycle at the Northeast 
Laboratory Animal Center of Khon Kaen University in Khon Kaen, 
Thailand. The animals were divided into four groups: (1) control for 
T1DM, (2) T1DM (multiple low doses of STZ [MLD-STZ]), (3) control 
for T2DM, and (4) T2DM (HFD cotreated with STZ [HFD-STZ]), with 14 
for each group. Before the experiment, the mice were starved for 16 
hours. The control mice for the T1DM group were intraperitoneally 
injected with 0.1 M citrate buffer (pH 4.5) for 5 consecutive days, 
whereas the T1DM mice were induced with STZ (Sigma-Aldrich, St. 
Louis, MO, USA) at a dose of 40 mg/kg body weight (BW) for 5 con-
secutive days [19]. The control mice of the T2DM group received a 
normal diet (10 kcal% fat, D12450J; Research Diets, New Brunswick, 
NJ, USA) for 14 consecutive days before they were starved and then 
injected with citrate buffer. The T2DM mice received an HFD (60 
kcal% fat, D12492, Research Diet) for 14 consecutive days and were 
then induced with a single dose of STZ of 85 mg/kg BW [20,21] fol-
lowed by continuous feeding with an HFD as previously described 
[26-28]. On days 3, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, and 72, the 
mice in both DM groups were assessed for actual DM induction us-
ing a blood glucose oxidase reaction monitoring system with blood 
from a tail prick. Mice were considered to have DM when their blood 

glucose levels were greater than 250 mg/dL. All animals were treated 
for 36 or 72 days (one or two spermatogenesis cycles, [29]).

2. Morphological studies
After euthanasia, the testes, epididymis plus vas deferens, seminal 

vesicle plus prostate glands, and penis were collected. The fat pads 
surrounding these organs were removed before weighing. The gross 
morphology of the organs was observed and captured using a digi-
tal camera. The penis, right testis, and epididymis were fixed with 
Bouin solution for 48 hours before routine paraffin embedding. The 
paraffinized tissue blocks were sectioned at 5–7 µm (ERM 3100 Semi-
Automatic Microtome, Heston, Australia). All sections were stained 
with hematoxylin and eosin (H&E) or Masson trichrome (No. HT15, 
Sigma-Aldrich) to observe and quantify the histopathological chang-
es and collagen fibers. The diameters and epithelial heights of the 
seminiferous tubules, thickness of the tunica albuginea, cross-sec-
tional area, and amount of collagen fibers of the penis were mea-
sured and quantified using the ImageJ program (ver. 1.50i; National 
Institutes of Health, Bethesda, MD, USA). The histopathology of the 
seminiferous tubules was classified as previously described [23]. In 
the epididymides, the density of sperm masses and abnormal cells 
on sections of the caput, corpus, and caudal parts was observed.

3. Sperm concentration and assessment of sperm head and tail 
abnormality

Sperm fluid was collected from the left caudal epididymis and vas 
deferens and resuspended into 1 mL of phosphate-buffered saline 
(PBS; 37°C, pH 7.4). The sperm suspension was subsequently centri-
fuged at 8,000 ×g for 5 minutes at 25°C. Then, the sperm pellets were 
collected and resuspended in fresh PBS to be diluted (1:10) before 
counting the number of sperm using a Neubauer hemocytometer 
under light microscopy. To examine sperm head and tail abnormali-
ties, the sperm suspension (20 µL) was smeared on a glass slide in 
triplicate and air-dried. The dried sperm were then fixed with methyl 
alcohol and stained with H&E. Six hundred spermatozoa were exam-
ined for the presence of abnormal heads and tails, as described in the 
study conducted by Ward [30]. Types of abnormal sperm heads in-
cluded thin-elongated head (H1), club-shaped head (H2), and mild 
head defects (H3). The classification of tail abnormalities included tail-
bent head (T1), looping midpiece (T2), folded midpiece and principal 
piece (T3), and incorrect head-neck connection (T4), respectively. The 
numbers of abnormal sperm heads and tails were calculated as per-
centages.

4. Analysis of sperm acrosome reaction
The sperm pellets were fixed with 4% paraformaldehyde (w/v) in 

PBS (pH 7.4) for 15 minutes on ice. The samples were then washed 
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and resuspended with PBS. The fixed sperm were smeared on gela-
tin-coated slides (Unifrost Microscope Slide, Catalogue No. EM-
S200Wþ; Azer Scientific, Morgantown, PA, USA) using a wooden 
stick. The dried sperm were stained with 0.22% Coomassie blue 
G-250 (50% methanol, 10% glacial acetic, 40% water) for 2 minutes 
and were then washed three times with PBS before mounting with a 
glycerol solution (Sigma-Aldrich). Six hundred sperm from each ani-
mal were examined under a light microscope. Acrosome-intact 
sperm were identified by staining of their acrosomes with Coomassie 
blue, whereas acrosome-reacted (AR) sperm did not show staining 
[31,32].

5. Evaluation of incomplete sperm DNA structure and 
packaging

Toluidine blue (TB) is a metachromatic dye commonly used to eval-
uate sperm nuclear chromatin condensation and DNA fragmenta-
tion via binding of the phosphate groups of DNA strands [33]. 
Smeared sperm were fixed with 96% ethanol-acetone (1:1) at 4°C for 
30 minutes and then hydrolyzed in 0.1 N hydrochloric acid at 4°C for 
5 minutes. The slides were rinsed twice in distilled water for 2 min-
utes and stained with 0.05% TB in 50% McIlvaine citrate-phosphate 
buffer (pH 3.5) for 10 minutes at room temperature. On each slide, 
200 sperm were observed by counting the metachromatic sperm 
heads under light microscopy (ECLIPSE E200; Nikon, Tokyo, Japan). 
The unstained or pale TB-stained (negative) sperm were judged as 
normal-chromatin sperm, while sperm displaying intense TB staining 
(positive) were classified as abnormal-chromatin sperm [34].

6. Assessment of visualization of sperm chromatin 
condensation

Aniline blue (AB) selectively binds to lysine-rich histones and is 
used for staining to demonstrate abnormalities of sperm chromatin 
condensation [35]. Smeared sperm was air-dried and fixed in 2.5% 
glutaraldehyde buffer for 30 minutes at room temperature. Each 
smear was stained with 5% aqueous AB solution in 4% acetic acid 
(pH 3.5) for 5 minutes. Two hundred sperm were counted under light 
microscopy. Unstained or pale AB-stained (negative) sperm were 
considered to be sperm that had undergone normal chromatin con-
densation, while sperm displaying intense AB staining (positive) 
were classified as sperm with abnormal chromatin [18,34].

7. Statistical analysis
To compare the differences among groups, all data were first sub-

jected to the Shapiro-Wilk test (W-test) to confirm a normal distribu-
tion and equality of variance. One-way analysis of variance was used 
to compare mean values for normally-distributed data using IBM 
SPSS ver. 19.0 (IBM Corp., Armonk, NY, USA). The p-values less than 
0.05 were considered to indicate statistical significance. All data were 
expressed as the mean ± standard deviation.

Results

1. Reproductive organ weight
The reproductive organs in both DM groups (at both 36 and 72 ex-

perimental days) were clearly smaller than those of the controls (Figure 
1). The weight of the testes was also significantly lower in the DM mice 
(p< 0.05) (Table 1), as was that of the epididymides plus vasa deferen-
tia in the T1DM group at 36 days and in both DM groups at 72 days 
(p< 0.05). At 72 days, the weights of these organs were significantly 
lower in the T1DM group than in the T2DM group (p< 0.05) (Table 1). 

Figure 1. Representative morphological photographs of the mouse testis, epididymis plus vas deferens, seminal vesicle plus prostate gland, 
and penis compared among type 1 diabetes mellitus control (C-T1DM), type 1 DM (T1DM), type 2 DM control (C-T2DM), and type 2 DM (T2DM) 
mice on experimental days 36 and 72. Scale bar, 1 cm.
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The weight of the seminal vesicles plus prostate glands in the DM 
groups was also significantly lower than in the control groups 
(p< 0.05) (Table 1), but did not differ significantly between DM groups.
2. Blood glucose levels

Blood glucose levels in both DM groups were significantly higher 
than in the controls at both 36 and 72 days (p< 0.05) (Tables 2 and 3).

3. Sperm parameter analysis
The sperm concentrations in both DM groups were significantly 

lower than those of controls at both 36 and 72 experimental days 
(p< 0.05) (Figure 2A). In addition, the percentages of AR sperm and 
incomplete DNA packaging in both DM groups were significantly 
higher than those of the controls (p< 0.05) (Figure 2B and C). There 
was a statistically significant difference in chromatin condensation 
among the four groups, as shown by AB staining (Figure 2D). Sperm 
concentrations in the T1DM group were significantly lower than in 

the T2DM group, but the percentage of AR sperm was higher in the 
T1DM group (p< 0.05) (Figure 2A and B). 

A significant increase in total sperm abnormalities was observed in 
the DM groups (p< 0.05) (Figure 3). As shown in Figure 4A, the per-
centage of sperm head abnormalities (H1 or H2) at 36 and 72 days 
was significantly higher in both DM groups than in the controls (with 
the exception of H2 in the T1DM group at 36 days). The percentage of 
tail abnormalities (T1, T2, and T3) was also higher in both groups (ex-
cept T1 and T3 in the T2DM group at 36 days and 72 days, respective-
ly) (Figure 4B). However, no significant difference was found in the 
percentage of T4 abnormalities among groups (Figure 4B).

Table 1. Comparison of male reproductive organ weight among C-T1DM, T1DM, C-T2DM, and T2DM mice	

Parameter
36 Day 72 Day

C-T1DM T1DM C-T2DM T2DM C-T1DM T1DM C-T2DM T2DM

Testis
   Absolute weight (g) 0.096 ± 0.003 0.083 ± 0.007a) 0.103 ± 0.004 0.084 ± 0.012a) 0.110 ± 0.004 0.084 ± 0.005a) 0.108 ± 0.003 0.091 ± 0.005a)

   Relative weight (g/100g) 0.395 ± 0.012 0.442 ± 0.037 0.399 ± 0.017 0.410 ± 0.060 0.349 ± 0.013 0.422 ± 0.026 0.322 ± 0.007 0.338 ± 0.017
Epididymis plus vas deferens 
   Absolute weight (g) 0.043 ± 0.003 0.031 ± 0.004a) 0.050 ± 0.008 0.039 ± 0.009 0.051 ± 0.004 0.031 ± 0.005a,b) 0.049 ± 0.001 0.046 ± 0.005a,b)

   Relative weight (g/100g) 0.177 ± 0.012 0.163 ± 0.023 0.194 ± 0.029 0.188 ± 0.042 0.162 ± 0.012 0.158 ± 0.023 0.145 ± 0.004 0.170 ± 0.019
Seminal vesicle plus prostate 
  gland
   Absolute weight (g) 0.274 ± 0.032 0.106 ± 0.023a) 0.318 ± 0.002 0.167 ± 0.044a) 0.375 ± 0.017 0.083 ± 0.026a,b) 0.354 ± 0.035 0.266 ± 0.011a,c)

   Relative weight (g/100g) 1.125 ± 0.131 0.565 ± 0.120a) 1.229 ± 0.009 0.814 ± 0.215a) 1.185 ± 0.055 0.419 ± 0.131a,b) 1.052 ± 0.104 0.991 ± 0.039c)

Values are presented as mean ± standard deviation (n = 7).								      
C-T1DM, type 1 diabetes mellitus control; T1DM, type 1 DM; C-T2DM, type 2 DM control; T2DM, type 2 DM.			 
Statistically significant compared to a)the controls (p< 0.05); b)the T2DM group (p< 0.05); c)the T1DM group (p< 0.05).

Table 2. Blood glucose levels at experimental day 36 compared 
among C-T1DM, T1DM, C-T2DM, and T2DM mice 

Day
Blood glucose levels (mg/dL)

C-T1DM T1DM C-T2DM T2DM

3  119.3 ± 10.6 367.5 ± 92.9a)  169.8 ± 29.2 472.2 ± 68.3a)

6 133.8 ± 7.3  367.8 ± 125.0a)  157.8 ± 36.0 482.1 ± 59.1a)

12  140.5 ± 13.0 385.2 ± 70.8a)  141.4 ± 23.7 412.2 ± 50.0a)

18  133.0 ± 22.2  343.0 ± 101.5a)  154.2 ± 11.9 433.1 ± 47.5a)

24  126.3 ± 23.5 383.0 ± 68.0a)  169.2 ± 15.7 387.6 ± 40.2a)

30  139.3 ± 27.5 426.2 ± 93.8a) 162.4 ± 7.4 431.2 ± 54.9a)

36  114.5 ± 16.1 380.2 ± 51.9a) 151.6 ± 11.7 418.6 ± 64.3a)

Values are presented as mean ± standard deviation (n = 7). 
C-T1DM, type 1 diabetes mellitus control; T1DM, type 1 DM; C-T2DM, type 2 
DM control; T2DM, type 2 DM.	
a)Statistically significant compared to the controls (p< 0.05).	

Table 3. Blood glucose levels at experimental day 72 compared 
among C-T1DM, T1DM, C-T2DM, and T2DM mice	

Day
Blood glucose levels (mg/dL)

C-T1DM T1DM C-T2DM T2DM

3 117.0 ± 17.4 390.1 ± 66.6a) 133.5 ± 7.2 480.7 ± 66.5a)

6 130.8 ± 10.4 428.3 ± 36.2a)  167.0 ± 15.6 479.4 ± 50.3a)

12 163.8 ± 22.9 447.0 ± 73.1a) 127.5 ± 9.7 403.9 ± 38.9a)

18 168.8 ± 36.1 390.9 ± 75.9a)  153.8 ± 44.7 399.9 ± 43.3a)

24 136.3 ± 17.7 416.8 ± 86.3a)  131.8 ± 34.0 424.3 ± 62.9a)

30 139.5 ± 16.2 447.2 ± 93.0a)  132.8 ± 46.6 460.0 ± 68.0a)

36 147.3 ± 11.0 429.8 ± 94.0a)  132.8 ± 20.5 440.9 ± 83.9a)

42 106.3 ± 23.4 409.4 ± 99.8a)  145.3 ± 38.0 501.7 ± 88.3a)

48 111.8 ± 32.1  386.1 ± 100.3a)  117.8 ± 26.9 447.0 ± 24.8a)

54 143.3 ± 24.4 462.8 ± 73.3a)  174.5 ± 43.1 526.3 ± 64.1a)

60 143.3 ± 13.6  434.7 ± 104.8a)  122.5 ± 32.4 481.7 ± 35.1a)

66 143.5 ± 8.9 428.9 ± 83.5a)  164.5 ± 48.1 582.0 ± 25.5a)

72 120.3 ± 31.0 449.6 ± 75.2a)  102.3 ± 13.3 521.7 ± 42.4a)

Values are presented as mean ± standard deviation (n = 7).	
C-T1DM, type 1 diabetes mellitus control; T1DM, type 1 DM; C-T2DM, type 2 
DM control; T2DM, type 2 DM.		
a)Statistically significant compared to the controls (p< 0.05).	
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4. Testicular histopathology
The percentage of total seminiferous histopathology in the DM 

groups was significantly higher than in the control groups (p< 0.05) 

Figure 2. Comparisons among type 1 diabetes mellitus control (C-T1DM), type 1 DM (T1DM), type 2 DM control (C-T2DM), and type 2 DM 
(T2DM) mice on experimental days 36 and 72. (A) Sperm concentration. (B) Acrosome reaction. Top right: representative photographs of acro-
some-intact (AI) sperm stained with 0.22% Coomassie blue G-250 and acrosome-reacted (AR) sperm without staining. (C) Incomplete sperm 
DNA structure and packaging. Top right: toluidine blue-reacted (TB+) sperm indicating sperm with abnormal chromatin versus sperm with nor-
mal chromatin (TB–). (D) Visualization of sperm chromatin condensation. Top right: aniline blue-reacted (AB+) sperm indicating chromatin de-
fects of sperm nuclei versus normal sperm (AB–). Values are presented as mean ± standard deviation. Scale bar, 1 μm. a)p< 0.05 compared with 
control; b)p< 0.05 compared with T2DM; c)p< 0.05 compared with T1DM.
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(Figure 5) but did not differ significantly between the DM groups. 
Seminiferous histopathology was classified into seven types and 
compared among groups (Figure 6A). As shown in Figure 6Aa, the 
seminiferous epithelium was well-organized in all groups. By con-
trast, the DM groups displayed a significantly greater amount of 
sloughing of deciduous spermatogenic cells into the lumen com-
pared to the controls (Figure 6Bb). The number of seminiferous epi-
thelial cells with large nuclei was also significantly higher in the DM 
groups than in the controls and in the T1DM group than in the T2DM 
group on both days 36 and 72 (Figure 6Bc). The DM groups also dis-
played a significantly higher number of small-nucleus cells with vac-
uolization (Figure 6Bd), fewer layers of spermatogenic cells, and 
greater sloughing of germ cell elements into the seminiferous lumen 
(Figure 6Be) than the controls. There were greater numbers of cells of 
both histopathological types in the MLD-STZ group than in the HFD-
STZ group at 36 days, but there were conversions between the 2 
types within 72 days (Figure 6Bd and e). The T2DM group also dis-

played more vacuolization in Sertoli cells without spermatids than 
the controls (Figure 6Bf). Moreover, atrophic tubular cells with germ 
cell degeneration and vacuolization were observed (Figure 6Ag). Re-
duction of the germinal epithelium (Figure 6Bh) was also significant-
ly more prevalent in the T2DM group than in the controls. All the his-
topathological findings observed in the T2DM group were signifi-
cantly more pronounced than in the T1DM group (p< 0.05) (Figure 
6Bg and h).

5. Histology of the epididymis
The lumens of the caput, corpus, and caudal epididymides con-

tained a greater percentage of round cells in both DM groups than in 
the control groups (Figure 7). The numbers of round germ cells at 72 
days were higher than at 36 days (Figure 7). The density of sperm 
mass in the epididymal lumen of the T1DM and T2DM groups were 
lower than those controls (Figure 7), which corroborated with the 
significant decrease in sperm concentration shown in Figure 2A.

Figure 5. Seminiferous histopathology of the testis (%) compared among type 1 diabetes mellitus control (C-T1DM), type 1 DM (T1DM), type 2 
DM control (C-T2DM), and type 2 DM (T2DM) mice on experimental days 36 and 72. Values are presented as mean ± standard deviation. a)p< 0.05 
compared with controls.
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head defects; T1, bent head; T2, looping midpiece; T3, folded midpiece and principal piece; T4, incorrect head-neck connection. a)p< 0.05 compared 
with controls.
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6. Histomorphometry of seminiferous tubules
The diameter and epithelial height of seminiferous tubules were 

significantly lower in the DM groups than in the controls (p< 0.05) 
(Figure 8). Furthermore, the thickness of the tunica albuginea was 
significantly greater at day 36 and had increased to a greater extent 
at day 72 in the DM groups than in the controls (p< 0.05) (Figure 9). 

7. Penile histomorphometry
The percentage of the penile cross-sectional area in the T1DM and 

T2DM groups was significantly lower at 36 days and were slightly 
lower at 72 days compared to the controls (p< 0.05) (Figure 10). As 
shown in Figure 11A, the amount of collagen fibers of the penis was 
greater in both DM groups than in the controls. Similarly, the per-

centage of penile collagen fibers was significantly higher in the DM 
groups than in the controls (p< 0.05) (Figure 11B).

Discussion

Recent studies have found decreases in the weights of male reproduc-
tive organs of animals with DM [5,36-38]. Chronic DM may induce oxida-
tive stress, leading to damage to male reproductive structures and func-
tions [39-41]. Although the seminiferous histopathology of T1DM mice 
has been described elsewhere [23], this study is the first to compare 
these histopathological parameters by DM type. In T1DM mice, the prev-
alence of histopathology by type at 36 days was e > c > d > b > g > h, and 
the prevalence was types c > b > e > d > g > h at 72 days. In T2DM mice, 
the prevalence was types h > g > d > f > b > c = e at 36 days, and it was 

Figure 6. (A) Representative photomicrographs showing normal histology and histopathology. (a) Control group; normal arrangement of sper-
matogenic and Sertoli cells. (b-h) Histopathological findings of the seminiferous tubules found in the type 1 and type 2 diabetes mellitus (T1DM 
and T2DM) groups. (b) Sloughing of deciduous and spermatogenic cells (arrows) into the tubular lumen. (c) Cell with large nuclei (arrow) in the 
seminiferous epithelium. (d) Cell with small nuclei and vacuolization (arrow) in the seminiferous epithelium. (e) Few spermatogenic cell layers of 
artifactual sloughing (arrow) of germ cell elements into the lumen. (f) Vacuolization (arrows) of Sertoli cells and absence of spermatids. (g) Atro-
phy with germ cell degeneration and small vacuolization between spermatogonia and Sertoli cells. (h) Hypospermatogenesis with all germ lay-
ers diminished. (B) Seven histopathology types by percentage. Values are presented as mean ± standard deviation. C-T1DM, type 1 diabetes 
mellitus control; C-T2DM, type 2 DM control. a)p< 0.05 compared with controls; b)p< 0.05 compared with T2DM; c)p< 0.05 compared with T1DM.
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types b > h > e > f > g > c > d at 72 days. The decreases in diameter and 
epithelial height of the seminiferous tubules of T1DM and T2DM mice in 
our study were similar to those found in previous reports [23,38,42-
44]. Our study also found a positive correlation between seminifer-
ous tubule diameter and spermatogenesis along with decreased 
sperm concentration in the T1DM and T2DM mice. The abundance of 
round cells found in the epididymal lumens of DM mice was also 

Figure 7. Representative histology of caput, corpus, and caudal epididymides of type 1 diabetes mellitus control (C-T1DM), type 1 DM (T1DM), 
type 2 DM control (C-T2DM), and type 2 DM (T2DM) mice on experimental days 36 and 72. Arrows indicate the round germ cells in the epididy-
mal lumen (small panels; scale bar, 20 μm).
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consistent with previous reports [23,45] and may result from germ 
cell loss from the seminiferous epithelium [46,47]. The increase of 
collagen fibers in the tunica albuginea of the penis in T1DM and 
T2DM mice found in this study was also similar to previous studies 
[48,49]. Consistent with a previous report [50], the penile cross-sec-
tional area (%) was decreased in DM mice, resulting in atrophy of the 
penis. The increase of collagen fibers in the testis of animals with DM 
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Figure 8. Histomorphometric analysis of seminiferous tubular diameter (A) and epithelial height (B) compared among type 1 diabetes mellitus 
control (C-T1DM), type 1 DM (T1DM), type 2 DM control (C-T2DM), and type 2 DM (T2DM) mice on experimental days 36 and 72. Values are pre-
sented as mean ± standard deviation. a)p< 0.05 compared with controls.
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Figure 9. Representative histology of tunica albuginea stained by H&E (lower panels) and Masson’s trichrome (upper panels; A) and thickness 
(B) compared among type 1 diabetes mellitus control (C-T1DM), type 1 DM (T1DM), type 2 DM control (C-T2DM), and type 2 DM (T2DM) mice 
on experimental days 36 and 72. Values are presented as mean ± standard deviation. a)p< 0.05 compared with controls.
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Figure 10. (A) Representative penile histology as shown by H&E staining and (B) percentage of the penile cross-sectional area compared 
among type 1 diabetes mellitus control (C-T1DM), type 1 DM (T1DM), type 2 DM control (C-T2DM), and type 2 DM (T2DM) mice on experimen-
tal days 36 and 72. Values are presented as mean ± standard deviation. a)p< 0.05 compared with controls.

Figure 11. (A) Penile collagen fibers stained using Masson trichrome and (B) percentage of collagen fiber area compared among type 1 DM 
control (C-T1DM), type 1 DM (T1DM), type 2 DM control (C-T2DM), and type 2 DM (T2DM) mice on experimental days 36 and 72. Values are pre-
sented as mean ± standard deviation. a)p< 0.05 compared with controls.
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may have been caused by increased expression of transforming 
growth factor beta 1 and nitric oxide synthase [51-54].

Similar to our study, previous studies have demonstrated decreases 
of sperm concentration in DM human and animal models [5,6,37, 
42,55-58], which may be due to impaired spermatogenesis 
[5,6,12,57,59-61]. The increase of total abnormal sperm morphology 
in both groups of DM mice in our study was consistent with the find-

ings of previous studies [23,37,42,62-65]. It is possible that DM affects 
the regulation of some proteins involved in the formation of sperm 
structures, such as hook microtubule tethering protein 1 (Hook1) and 
disintegrin and metalloprotease 7 (ADAM7) [60,66-68]. Additionally, 
DM-induced oxidative stress may cause nondisjunction, mitochon-
drial DNA damage, and defective centriole migration in germ cells 
[64,69]. Increased amounts of AR sperm have been found in animals 
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exposed to various induction methods, including HFD, drugs, or 
stressors [23,31,32,70-72]. The significant decrease of testicular nerve 
growth factor levels in DM animals [73,74] implies that the impair-
ment of AR formation by DM affects regulation via the testicular 
nerve growth factor signaling pathway [74,75]. Several studies have 
shown increases of sperm with fragmented nuclear DNA in men with 
DM [10,76,77]. In the present study, the increase in sperm with dam-
aged DNA in mice with DM was greater than in previous studies 
[34,78]. It is possible that chromatin decondensation and sperm DNA 
fragmentation are more sensitive in animal DM models [10,34,71]. 
However, there was no significant difference in the percentage of AB-
positive sperm cells in our study, similarly to previous reports [34,78]. 
Although DM may not affect chromatin packaging, it is correlated 
with sperm morphology [34,79].

This study reported that T1DM and T2DM mice were similar in 
terms of nearly all adverse reproductive parameters, but that the se-
verity of the reduction in sperm concentration and precocious acro-
some exocytosis was greater in those with T1DM.
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