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How alpha-helical membrane proteins fold correctly in the highly hydro-
phobic membrane interior is not well understood. Their folding is known
to be highly influenced by the lipids within the surrounding bilayer, but
the majority of folding studies have focused on detergent-solubilized protein
rather than protein in a lipid environment. There are different ways to study
folding in lipid bilayers, and each method has its own advantages and dis-
advantages. This review will discuss folding methods which can be used to
study alpha-helical membrane proteins in bicelles, liposomes, nanodiscs or
native membranes. These folding methods include in vitro folding methods
in liposomes such as denaturant unfolding studies, and single-molecule
force spectroscopy studies in bicelles, liposomes and native membranes.
This review will also discuss recent advances in co-translational folding
studies, which use cell-free expression with liposomes or nanodiscs or are
performed in vivo with native membranes.
1. Introduction
Membrane proteins are ubiquitous macromolecules that reside within dynamic,
highly multifaceted cellular membranes. They have two main structural classes,
beta-barrel and alpha-helical. This review will focus on alpha-helical membrane
proteins, which have hydrophobic alpha-helices that span the lipid bilayer and
polar regions which reside outside the membrane. Understanding of the folding
of this helical class is advancing and now ranges from in vitro studies on
artificially denatured proteins and detergent mixtures, through lipid bilayers
to co-translational work probing folding events as the protein is made on
the ribosome. Diseases caused by misfolded membrane proteins include retini-
tis pigmentosa, in which misfolding of rhodopsin causes blindness [1], and
cystic fibrosis which is associated with mistrafficking and misfolding of the
chloride channel CFTR [2,3].

In vivo the majority of alpha-helical membrane proteins are integrated into the
bilayer co-translationally via SecYEG/Sec61 or via YidC-like insertases [4–7]. The
SRP (Signal Recognition Particle) and FtsY mediate the targeting of ribosomes
translating integral membrane proteins to the SecYEG translocon for membrane
integration [8–10]. Folding of the nascent chain occurs co-translationally, during
synthesis by the ribosome and insertion into the membrane, with early folding
contacts formed before translation is complete [5,11,12].

In vitro studies on alpha-helical membrane proteins began by focusing on
protein that had been overexpressed and purified from cells and solubilized
in detergents [13–16]. While useful, detergents are unable to replicate the
highly complex membrane environment. The lipid composition of the cell
membrane is known to affect protein folding [17–22]. Different lipids have
different individual properties, such as headgroup charge, chain saturation,
chain length and in bilayers give rise to different lateral pressure profiles
and phase behaviour [23,24] (figure 1). Most in vitro folding studies have
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Figure 1. Different lipids form bilayers with different properties. Lipids can be bilayer-forming (e.g. DMPC, DOPC, DOPG) or non-bilayer forming (e.g. DOPE). They
can have different headgroups which can be charged or neutral, and can have different chains which can be saturated or unsaturated, or branched. Mixing together
different types of lipids produces bilayers with different chemical and physical properties.
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used mixtures of synthetic lipids to produce bilayers of
varying overall properties, with common lipids including
DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), a neutral
bilayer-forming lipid, DOPG (1,2-dioleoyl-sn-glycero-3-phos-
pho-(1’-rac-glycerol)) which also forms a fluid bilayer but has
a negatively charged headgroup, and DOPE (1,2-dioleoyl-sn-
glycero-3-phosphoethanolamine). DOPE is a non-bilayer
forming lipid, which by itself forms inverted hexagonal
phases when dissolved in aqueous solutions, but can be
added as a component of a mixed lipid bilayer up to approxi-
mately 0.7 mole fraction. This addition increases the stored
curvature elastic stress of the membrane, increases the lateral
chain pressure and correspondingly decreases the lateral
pressure in the headgroup region of the bilayer [25]. DMPC
(1,2-dimyristoyl-sn-glycero-3-phosphocholine), which is a
bilayer forming lipid with shorter saturated chains than
DOPC, is also common but forms gel phases at room temp-
erature rather than a fluid bilayer.

Lipids can have an effect on protein insertion into the
membrane [9,18,26–28], the folding rate [27,29,30] and trans-
membrane (TM) helix topology [18,31–35], and on protein
structural stability. Such lipid effects on integral membrane
proteins can be linked to protein–lipid interactions, whereby
a specific lipid is required for a certain protein conformation
or function or can be linked to non-specific interactions that
are elicited by the bulk properties of the lipid bilayer
described above. Investigating integral membrane protein
insertion and folding is affected by the types of synthetic
lipid environment used and it is therefore preferential that
folding is done in lipid environments rather than detergents.
Lipids can be provided in experiments as liposomes, nano-
discs or bicelles (figure 2). The physical properties of the
bilayers are slightly different in each of these systems, and
different again to the native membrane which has addition-
ally an environment crowded with other proteins. The
bilayers in liposomes are relatively unconstrained (very
small liposomes will have some imposed curvature stresses)
whereas in nanodiscs lipids are encapsulated either by a
protein or a polymer ring. Small changes in the absolute
value and a broadening of the transition temperature and
changes to bilayer rigidity in nanodiscs have been measured
compared to the same synthetic lipid mixes in vesicles
[36,37]. The size of nanodiscs and bicelles can also vary the
bilayer properties. Each has its own advantages and disad-
vantages, and is amenable to different techniques, which
will be discussed further in this review.
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Figure 2. Membrane mimics for membrane protein folding studies. Different membrane mimetics can be used during folding studies. More straightforward systems
include detergents or mixed micelles of detergents and lipids. To study folding in lipids, bicelles or membrane scaffold protein (MSP)-based nanodiscs can be used
which contain small lipid bilayer sections, with a short-chain detergent around the edges in bicelles, or MSP around the edges in nanodiscs. More advanced folding
studies use liposomes, as either small (SUV), large (LUV) or giant (GUV) unilamellar vesicles which contain an inner compartment. This compartmentalization means
that liposomes can be used to assess protein topology and for functional assays such as transport assays. The most native lipid system for folding studies is a native
lipid extract, or alternatively a novel co-polymer nanodisc can be used which extracts a patch of native lipids from the membrane.
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There are different ways to approach folding studies in
membranes. Classic in vitro folding studies use full-length pur-
ified protein, so give information on the post-translational
folding steps that occur in the lipid bilayer. These in vitro
studies can investigate TM topology and reconstitution effi-
ciency in different lipids [18], or can unfold and refold a
protein by adding and removing a denaturant and measuring
the resulting changes in structure [14,17,38–40]. High-detail
kinetic and thermodynamic information can be gained from
these in vitro folding systems [41]. These classic in vitro studies
lay the groundwork formore advanced folding studies such as
single-molecule force-profile studies using either native mem-
branes or protein reconstituted into bilayers composed of
synthetic lipids [42–46]. Other progressive methods measure
folding during translation by the ribosome, providing infor-
mation on co-translational insertion into the membrane and
subsequent folding [9,26,47]. Co-translational folding studies
often use cell-free expression systems with synthetic lipids.
All types of folding study have merit depending on what
information is needed, and ideally different methods should
be applied to each protein to fully understand folding. This
review will focus on folding methods which have used
bicelles, liposomes, nanodiscs and native membranes, and
will first talk about post-translational in vitro folding methods
before moving onto co-translational folding studies in vivo.
What is involved in the different methods and what are the
advantages and disadvantages of each?
2. Protein folding into liposomes
A big advantage of liposomes is that they can easily be made
using different lipids, meaning that protein folding into
liposomes can be measured in different lipid compositions.
There are however technical difficulties that can arise from
using liposomes such as scattering artifacts in spectroscopy
measurements [48] so they must be used with care. Measuring
the reconstitution efficiency, function and stability of the
protein in different lipids compositions can give valuable
information on the best lipid environment for correct folding.
Membrane proteins reconstituted into liposomes can also be
unfolded with a denaturant such as urea, and removal of the
denaturant can lead to refolding of the protein to its native
state (figure 3) [17]. The structure change for each step can
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Figure 3. Denaturant folding studies in liposomes. Reversible unfolding of membrane proteins in denaturant can give information on unfolding kinetics and ther-
modynamics [17]. A fully folded protein is reconstituted into liposomes and a denaturant such as urea is added to partially unfold the protein. Removal of the
denaturant can allow the protein to refold. Unfolding and refolding are observed using a variety of techniques, such as by measuring the change in secondary
structure by circular dichroism, fluorescence (either intrinsic or via a fluorescent label), or by a protease protection assay. Free energies of unfolding (ΔGU) and
refolding (ΔGF) can be calculated from the equilibrium constant of the fraction of unfolded/folded proteins.
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then be measured, for example by fluorescence or circular
dichroism (CD) spectroscopy. Often this unfolding with dena-
turant is irreversible, but it is possible to get reversible folding
which gives valuable thermodynamic information.

2.1. In vitro folding in liposomes
It is well established that the Major Facilitator Superfamily
(MFS) transporter lactose permease (LacY) topology is depen-
dent on the lipid environment. LacY has two domains and
when there are no PE lipids in the bilayer, for example, the
N domain of LacY flips in the membrane impairing transport
function [35,49]. Much of this LacY topology work was done
in vivo in E. coli genetically modified to have different lipids
in their inner membrane [33–35,50]. Recent in vitro folding
work expanded on this by reconstituting LacY into synthetic
liposomes composed of tri-component mixtures of DOPC,
DOPE and DOPG, showing that a correct and functional top-
ology of LacY was maintained in DOPC/DOPE mixtures, but
the presence of the charged lipid DOPG above a molar frac-
tion of 0.4 resulted in an inverted topology [18].

Proteoliposomes comprised different lipid compositions
have been used to investigate whether the reconstitution, fold-
ing and function of LacY can be tuned using only the
properties of its surrounding bilayer environment [18]. Lipo-
somes made of DOPC, DOPG and DOPE were used to
determine the effect of changing global bilayer properties by
increasing overall negative surface charge (with a higher
fraction of DOPG) and/or increased lateral chain pressure
(addition of non-bilayer forming DOPE). Different lipid com-
positions favoured different properties of the protein, with
high lateral chain pressure favouring fast rates of transport
and good protein stability but showing poor yield when
reconstituting from detergent, and during folding and inser-
tion from denaturant. High surface charge resulted in
excellent yields of protein but activity was compromised,
only supporting facilitated diffusion down a concentration
gradient rather than active uphill transport. This folding
work showed that there is a region of lipid composition
within this tri-component mix where all of the LacY properties
studied are more favourable than not, where the protein is
fully functional and with a balance between yield and
stability. The related MFS protein GalP showed a similar
dependence on DOPE presence as seen for LacY [14]. Exces-
sive DOPE content also hindered the folding yield of GalP,
as was observed for LacY. While these experiments show
that the conditions can be tuned to make function and folding
favourable, a simple tri-component mixture is far removed
from the chemical complexity of native E. colimembranes [51].

Recent work has shown that alpha-helical membrane
proteins reconstituted into liposomes can be unfolded
reversibly in denaturant, enabling measurements on the
thermodynamics of folding. The bacterial leucine transporter
(LeuT) is an SLC6 neurotransmitter transport orthologue that
is responsible for the transport of leucine in the hyperthermo-
philic bacteria Aquifex aeolicus [52]. To date, it is the only
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alpha-helical membrane protein to have its thermodynamic
stability measured in a bilayer [17]. The reversible unfolding
from the native state of this protein is a fascinating case as this
protein also contains multiple molecular knots [17,53,54].
Urea was used as a chemical denaturant to reversibly
unfold LeuT both in detergent micelles and in liposomes.
By changing the lipid composition of the liposomes, the
effects of bilayer properties such as charge and lateral pack-
ing pressure on the stability of LeuT could be investigated.
Successful refolding was indicated by recovery of at least
95% of the original helical structure, as determined from
CD spectroscopy and the recovery of LeuT transport activity.
The stability of LeuT could be modulated by the properties of
its surrounding bilayer where DOPE or DOPG were found to
increase its thermodynamic stability in liposomes [17].

2.2. Folding by steric trapping
In addition to reversible denaturant folding for studying the
thermodynamic and kinetic properties of membrane protein
folding, other methods have been developed using more
mechanical forces to study folding. A steric trapping technique
can allow the probing of thermodynamic stability, compact-
ness of unfolded state and the unfolding cooperativity of a
protein in a near-native environment. Trapping uses a trans-
membrane protein with added biotin-binding motifs at
positions close in space, but distant in linear sequence. On
addition of monomeric streptavidin (mSA), which binds
biotin, TM helices separate as the protein unfolds. Often, the
second mSA is prevented binding by steric overlap and only
once the protein unfolds can the second mSA bind [55]. Equi-
librium unfolding is therefore controlled by mSA affinity and
concentration allowing the protein thermodynamic properties
to be assayed across many conditions without the need for
additional denaturants. Excess biotin can be introduced to
remove the mSA and ensuring reversibility again providing
the necessary reaction coordinate for extrapolations of
folding energetics. Proteins can also be fluorescently labelled
using pyrene-biotin to determine the degree of protein unfold-
ing by observing the increase of fluorescence as pyrene
quenching is released as the protein unfolds [55,56].

Bacteriorhodopsin (bR) unfolding using the steric trap
was able to accurately probe unfolding in the low SDS con-
centration region and it was shown that this measured ΔGU
is not linear with SDS concentration. bR was therefore
shown to have unusually high stability in DMPC/CHAPS
bicelles, though lower than previous studies using SDS dena-
turation [41]. For GlpG a similar trapping method was tested
in detergent micelles and the fluorescence change of a
pyrene/DABCYL FRET pair during steric trapping were
extrapolated and calculated to be 4.7–5.8 kcal mol−1, which
was significantly lower than the SDS denaturation ΔGU in
DDM micelles, which was calculated to be 8.4–8.7 kcal mol−1

[57]. In further work, double mSA bound and denatured
GlpG was reconstituted from micelles into both bicelles com-
posed of a 3 : 1 mix of DMPC and the negative charged
DMPG (1,2-dimyristoyl-sn-glycero-3-phospho-(10-rac-gly-
cerol)) lipids plus the detergent 3-[(3-cholamidopropyl)
dimethylammonio]-1-propanesulfonate (CHAPS), and lipo-
somes of E. coli phospholipids [58]. The sterically trapped
GlpG remained denatured in both bilayer environments,
though could refold to an active conformation on the removal
of the mSA. The denatured state in a lipid environment could
then be probed using various techniques including proteol-
ysis and double electron-electron resonance spectroscopy. A
more or less expanded denatured state was observed depend-
ing on the lipid composition.

The CFTR protein TMs 3/4 have been reconstituted into
POPC vesicles and have been shown to be amenable to steric
trapping methods, this method in lipid bilayers would be a
welcome addition to the membrane protein study toolbox
[59]. In addition to extending the techniques to bilayers, glyco-
phorin A TM dimerization has also been studied. GpATM
reveals dimers that are 4–5 kcal mol–1 more stable in 1-palmi-
toyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) vesicles
than in DM detergent, mutations in dimer interfaces appear
to have a greater effect on stability suggesting that the
dimers are more organized in a bilayer environment [56].

2.3. Advantages and disadvantages
While these in vitro measurements are far removed from what
happens in the cell, they do allow researchers to attain key ther-
modynamic parameters. There is also a highdegree of flexibility
in the types of lipids that can be used, and they can be altered to
be optimum for the protein of interest or to mimic the protein’s
native environment. A notable disadvantage is that these types
of folding studies measure an ensemble of states, possibly
masking potential important folding intermediates. These
types of folding studies do however set a baseline from which
other, more complex, studies can be based.
3. Single molecule force spectroscopy
Single-molecule biophysical techniques allow for the mech-
anical manipulation of individual membrane proteins [60].
These techniques are capable of resolving the molecular het-
erogeneity present in a biochemical system, at high temporal
and spatial resolutions, and have the significant advantage
that they are able to probe folding in membrane environ-
ments. Single-molecule mechanical approaches have been
employed to probe the stability of individual membrane pro-
teins in bicelles, liposomes, solid supported membranes, and
even in native membranes. The main types of instrument
used to characterize the mechanical properties of membrane
proteins are the atomic force microscope (AFM) and magnetic
tweezers (figure 4) [61]. Mechanical folding techniques are
collectively known as single-molecule force spectroscopy
(SMFS). In these experiments, mechanical forces are used
instead of chaotropes as the denaturing agent, and the
unfolding pathway of a single protein can be followed
using forces applied to it through an AFM cantilever or func-
tionalized bead. The following section will highlight some
significant advances made in the mechanical characterization
of membrane proteins in lipids.

3.1. Mechanical folding with magnetic tweezers
Magnetic tweezers (MT) experiments have been used to
investigate the mechanical properties of many globular pro-
teins and have been paramount in probing mechanical
unfolding kinetics and elucidating many mechanobiological
mechanisms [62–65]. In a typical protein MT SMFS exper-
iment, the molecule of interest is tethered between a
superparamagnetic bead and the surface of a glass flow cell
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(figure 4). Forces are applied to the magnetic bead via a pair
of permanent magnets positioned vertically above the flow
cell. The excellent force sensitivity and stability of this instru-
ment allows for long term, stable measurements and superb
low force resolution (less than 2 pN), provided an appropri-
ate tethering strategy for the molecule of interest is used
[62,66]. MT experiments have the advantage that membrane
proteins in bicelles or liposomes can be unfolded laterally,
with the N- and C- termini separated by the external force
(figure 4), disrupting the tertiary contacts between TM helices
but not unfolding secondary structure.

There have been recent efforts to employ MT to mechani-
cally unfold two different alpha-helical integral membrane
proteins in DMPC/CHAPSO bicelles with DNA nanotethers
bound to a magnetic bead and substrate [42,43,60,66]. The
ClC chloride transporter of E. coli was mechanically unfolded
with MT, showing that this protein could be separated into
two stable halves that unfolded independently when pulled
in DMPC/CHAPSO bicelles [42]. This agreed with the pre-
viously suggested hypothesis that the inverted topology of
the two domains likely evolved from an ancient genome
duplication where the domains folded separately and later
fused [42,67,68]. More recently this tweezer system was
used to observe the folding the human-β2-adrenergic recep-
tor, which was observed to fold in a strict N-to-C terminal
fashion in DMPG/DMPC/CHAPSO bicelles.

The six TM rhomboid protease GlpG has been extensively
characterized using a new adaptation of a magnetic tweezer
set-up, where the membrane protein was reconstituted into
DMPC bicelles and attached to beads using covalently
linked DNA handles at the N- and C-terminal. GlpG was
shown to unfold in a cooperative manner at high pull
forces (25pN), and could be refolded by lowering the force
to a few pN [43]. The bilayer environment provided by the
bicelle was important for the stability and folding, and
switching to detergent micelles or even aqueous buffer
alone substantially reduced the unfolding force necessary.
Introducing a 0.3 mole fraction of a negatively charged
lipid, DMPG, into the lipid fraction of the bicelle did not
alter the folding pathway but did substantially increase
the probability of refolding. Notably, GlpG has also been
unfolded using the same MT technique but in 70 : 30
DMPC : DMPG liposomes. This study found that unfolding
in liposomes was similar to that observed in bicelles of
the equivalent lipid composition, but refolding was less effi-
cient, dropping to around 15% success [69]. This is the first
MT study in a liposome, and the first comparison between
different membrane mimetics using MT.

3.2. Mechanical unfolding with atomic force microscopy
SMFS investigations of membrane proteins have been
dominated by the AFM because of its versatility, allowing
researchers to image bilayers, individual proteins, and
mechanically unfold individual membrane proteins in both
synthetic bilayers and native membranes [70–72]. This
means it has more studies in a more native-like bilayers
and liposomes than magnetic tweezers, to date.

The basic components of an AFM are shown in figure 4.
Proteoliposomes or native membranes are deposited onto a
flat mica substrate, generating islands of bilayer which are
located by operating the AFM in an imaging mode. The
AFM cantilever can be adsorbed to the N or C terminal end
of the protein, either by non-specific interaction at contact,
or by using protein tags and chemically modified cantilevers.
As the cantilever is retracted away from the surface at
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constant velocity, the peptide backbone experiences a pulling
force that increases until it is large enough disrupt tertiary
and secondary structure. The corresponding force-distance
curve has a characteristic saw-tooth pattern that reveals the
mechanical response of that individual protein under an
external force. By fitting each of the unfolding steps to the
‘worm like chain’ model it is possible to resolve the
number of amino acids released in the unfolding event and
assign it to the structure of the protein [73,74]. Multiple mech-
anical unfolding pathways can coexist, and this single-
molecule technique is ideally suited to directly capture and
quantify this heterogeneity. AFM SMFS has been used to
investigate an array of membrane protein characteristics
such as refolding/insertion both in the absence and presence
of chaperones [44,45,75], the effects of pH and temperature
[76,77], ligand binding [78–80], oligomerization [81], and
the effects of surrounding lipid composition on mechanical
unfolding and topology [46]. Unfolding and refolding exper-
iments have also been done in native membranes [71], and
measurements with folding assisted by the translocon have
been made [45,75].
3.3. Advantages and disadvantages
AFM has proved to be a versatile tool in characterizing
membrane proteins in bilayers. AFM transfers the unfolded
segments of the protein into the surrounding aqueous
environment, relating it to when helices insert into the mem-
brane during translation [60]. By contrast, mechanical
unfolding with molecular tweezers allows for the mechanical
distortion of tertiary structure along the plane of the mem-
brane, relating more closely to the stage of folding in which
TM helices interact with each other. However, molecular
tweezers are currently far behind the versatility of AFM in
the study of more physiologically relevant membrane
mimetics such as native membranes. Mechanical folding
methods offer the advantage that they can get detail on indi-
vidual molecules, so intermediate folding states can be
resolved. They do however require more computational and
technical expertise than other folding methods [82–84].
4. Methods to investigate co-translational
folding

In vitro denaturant and mechanical studies have laid the
groundwork for advancing to co-translational folding
studies. The mechanisms of co-translational folding can be
studied either in vitro using cell-free expression supplied
with a suitable membrane mimetic, or in vivo. These folding
studies have the advantage that they are more akin to folding
in the cell and are denaturant-free, and can be done with syn-
thetic lipids, membrane extracts or in vivo with native
membranes. Studying co-translational folding helps to eluci-
date the role that early N-terminal regions of the protein have
on the folding of later helices and domains. In vivo folding
experiments would help us gain a better understanding of
how proteins are folded within a cell, and provide an insight
into how protein misfolding is implicated in disease [85].
However, increasing the complexity of the environment in
which these proteins are studied also increases the general
complexity of experimentation. The following sections will
describe the current advances in co-translational folding
studies of alpha-helical membrane proteins.

4.1. Co-translational cell-free methods
Cell-free expression (also known as in vitro transcription/
translation, IVTT) of membrane proteins has been used for a
number of years as a method for the expression of toxic and
difficult-to-express proteins [86]. Cell-free expression often
uses a cell lysate, which contains the cell transcription/
translation machinery and can be derived from E. coli
(known as an S30 extract), yeast, wheat germ and rabbit
reticulocytes [12,87–98]. Alternatively a cell-free system
composed of recombinantly expressed and purified transcrip-
tion/translation components (e.g. PURExpress, [99]) can be
used [100–108]. By using cell-free expression, co-translational
folding can be followed, and unnatural amino acids or fluor-
escent probes can be incorporated into the protein as it is
synthesized, or the rate of folding can be altered (figure 5).

Most co-translational work to date has addressed
insertion of individual TM helices via the translocon, and
the topogenesis of these helices has been investigated via
a combination of different methods including proteolysis,
glycosylation, cysteine accessibility, photocrosslinking and
FRET [109–114]. Where co-translational folding studies excel
however, is in determining the effect of the lipid bilayer com-
position on co-translational folding. Different lipids can be
supplied during cell-free expression, often as liposomes or
nanodiscs. These studies go beyond looking at the insertion
of TM helices by looking at how TM helix folding is affected
by lipids. A trend is beginning to emerge in which bilayers
with headgroup charge (e.g. DOPG) and increased lateral
chain pressure (e.g. addition of DOPE) lead to more success-
ful co-translational insertion and folding. These proteins
include the E. coli rhomboid protease GlpG [9], the β1-adre-
nergic receptor (β1-AR) [87], the pentameric channel MscL
[115,116], and the human GPCR endothelin B (table 1). It is
likely that for these proteins the favourable interaction
between the TM helices in the nascent chain and the lipid
headgroups increases the likelihood that the TMs will insert
across a bilayer. Some in vitro ensemble folding experiments
in liposomes (as summarized above in §2) have also found
a preference for DOPG and DOPE, but in these cases, they
increase protein stability and are required for correct folding
[17,18]. The fact that a correlation has been observed in the
lipid preferences obtained with in vitro liposome folding
and co-translational folding studies suggests that although
the methodologies vary in complexity and in their similarities
to native conditions, the fundamental results and thus con-
clusions we draw from these studies may describe the same
effects. Each method is equally valuable in furthering our
understanding of the fundamentals in protein folding
within a lipid environment.

While there is an apparent trend emerging for a preference
for charged headgroups and lateral chain pressure (table 1), it
is not universal across the proteins studied so far. The E. coli
disulphide bond reducing protein DsbB has been found to
insert best into liposomes composed of 100% DMPC, with a
reduced insertion yield in the other lipids tested [9]. Similarly,
insertion of bacteriorhodopsin (bR) found to be hindered by
addition of DOPE to the bilayer. The optimum lipid for
insertion was found to be DOPC, when compared to
DMPC, DPPC and DSPC, indicating thickness and chain
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Figure 5. Cell-free expression of membrane proteins. Much of the data on membrane protein co-translational folding come from studies which express the protein
cell-free. In vitro transcription/translation (IVTT) machinery is produced recombinantly or extracted from a host cell system and mixed with a membrane mimic and
the gene for the membrane protein of choice (DNA or RNA). Optional extras to follow the folding of the protein can be added into the reaction mixture, such as
radiolabels, fluorescent unnatural amino acids or chaperones. Correctly folded proteins in the membrane mimic can be isolated from the reaction mixture and
aggregate/misfolded protein. A sucrose gradient is often used for this when the protein is expressed into liposomes.
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saturation are important properties for insertion of bR [117].
The mammalian channel connexin-43 has also been found
to prefer bilayers composed of DOPC, and the amount of
protein inserted into bilayers decreased when charged
DOPG or the saturated chains lipid DPPC was added to
DOPC bilayers [118]. It may be that these proteins insert
across the bilayer efficiently enough that increased lateral
chain pressure or headgroup charge become inhibitory.

The variation seen in these systems with differing lipid
compositions may not be purely down to effects of the mem-
brane protein folding alone but also interactions between the
translation machinery and the bilayer. In recombinant sys-
tems only non-specific interactions between the ribosomes
and the bilayer may contribute, but in more complex extract
systems which contain additional soluble chaperones, and in
particular with translocon present, further interactions here
are likely to be part of the explanation. It is also known
that lipids are key modulators of translocase stability and
translocation activity. For example, the E. coli SecYEG translo-
con has been shown to require cardiolipin (CL) to function
optimally in vivo [119]. It has recently been demonstrated
that the insertion yield of the bacterial leucine transporter
(LeuT) expressed in vitro is significantly improved when
both SecYEG and CL are present, but not when either CL
or the translocon are included alone [120]. This study
highlights that particularly when moving towards more
‘native-like’ IVTT systems, the effects of lipid composition
on chaperone function, as well as on insertion and folding,
must be considered.
Studies using biophysical techniques to study co-transla-
tional folding are emerging, often using nanodiscs (figure 2).
Nanodiscs are composed of a small planar phospholipid
bilayer surrounded by Membrane Scaffold Protein (MSP)
[121], and are generally around 10 nm in diameter, depending
on the type ofMSP used [122].Nanodiscs have proved a highly
useful tool for studies of co-translational folding, as they are
amenable to techniques such as mass spectrometry [123,124],
and can be immobilized on a surface.

A valuable technique to study the formation of secondary
and tertiary structure during co-translational folding
is Surface-Enhanced Infrared Spectroscopy (SEIRAS). In
SEIRAS, a thin gold layer is deposited onto a silicon prism
creating an approximately 10 nm enhancement region in the
infrared (IR) signal. Nanodiscs can be tethered to the gold sur-
face, and cell-free expression is initiated on top of the nanodisc
layer. The expression, folding and insertion of proteins into the
nanodisc bilayer can then be measured using IR spectroscopy
[9,47]. SEIRAS has been used to follow the co-translational for-
mation of secondary and tertiary structure of the proteins bR
[47], GlpG, and DsbB in DMPC nanodiscs [9]. The folding of
all three of these proteins has been characterizedwith denatur-
ant studies in detergent (GlpG [16], DsbB [125]) and bicelles
(bR, [41,126]), and the results of these studies were used to
complement and interpret the results from the SEIRAS studies
and elucidate the co-translational folding pathway of each
protein. SEIRAS represents a powerful new technique for the
study of folding as it occurs, and can be used to follow struc-
ture formation of different proteins in different bilayers.



Table 1. Summary of optimum lipids for co-translational insertion and folding which have been found from cell-free folding studies.

protein
CF method and
membrane mimetic results from study ref.

BS-MraY

Bacillus subtilis

10 TM

dimeric enzyme for cell

wall synthesis

S30 IVTT with

nanodiscs

no preference for DMPC or DMPG [112]

DsbB

E. coli

4 TM

disulphide bond reducing

enzyme

PURExpress IVTT with

liposomes

prefers low lateral chain pressure and

neutral headgroups – DMPC

[9]

bacteriorhodopsin

Halobacterium

salinarum

7 TM

light driven proton pump

S30 IVTT with

liposomes

prefers DOPC to DMPC, DPPC, DSPC –

bilayer thickness and chain saturation

important, DOPE inhibits

[110]

Connexin-43

Rattus norvegicus

4 TM

hexameric small molecule

channel

PURE system IVTT

and liposomes

prefers DOPC, insertion decreases when

DPPC or DOPG added

[111]

EC-MraY

E. coli

10 TM

dimeric enzyme for cell

wall synthesis

S30 IVTT with

nanodiscs

prefers DMPG to DMPC, needs 50% PG to

function and form dimers

[113]

β1-AR

Meleagris

gallopavo (turkey)

7 TM

GPCR

S30 IVTT with

nanodiscs

prefers high lateral chain pressure and

charge – PS or PG with unsaturated

trans chains

[80]

endothelin B

Homo sapiens

7 TM

GPCR

S30 IVTT with

nanodiscs

prefers high lateral chain pressure and

charge – PS or PG with unsaturated

trans chains

[81]

GlpG

E. coli

6 TM

rhomboid protease

PURExpress IVTT with

liposomes

prefers high lateral chain pressure and

charge – DOPG and DOPE

[9]

Opi3

Saccharomyces

cerevisiae

4 TMa

phospholipid

methyltransferase

S30 IVTT with

nanodiscs

preferred DOPG/DMPG to DMPG alone,

DMPC not favoured

[114]

MscL

E. coli

2 TM

pentameric

mechanosensitive

channel

S30 IVTT with

liposomes

prefers high lateral chain pressure and

charge – DOPG and DOPE

[108,109]

LacY

E. coli

12 TM

MFS secondary

transporter

PURExpress IVTT with

liposomes

prefers high lateral chain pressure and

charge – DOPG and DOPE

[26]

XylE

E. coli

12 TM

MFS secondary

transporter

PURExpress IVTT with

liposomes

DOPG highly favoured, DOPE also

increases insertion yield

[26]

aPredicted number of TM segments [115].
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4.2. In vivo folding with force profile measurements
Co-translational folding can also be studied in vivo. One
method used to probe membrane protein folding in vivo is
to use translational arrest peptides (APs), in which a stalling
peptide sequence is cloned into a region of coding DNA.
These stalling sequences are used in nature as a mode of
regulation for nascent chain translation [127]. A well-
characterized example of a bacterial stalling sequence is
SecM [128]. SecM induces stalling in the final codon of its
sequence, where a proline alters the ribosomal peptidyl trans-
ferase geometry to halt translation until a significant enough
force is produced by the nascent chain to release the stall
[127,129].

APs such as SecM are extremely sensitive to tension in
the nascent chain and can be applied in vivo as force sensors
to measure the forces acting upon a nascent polypeptide
chain during translation (figure 6) [130–133]. In constructs
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Figure 6. Arrest peptide studies for membrane protein folding. (a) The LebB construct used for arrest peptide (AP) force measurements from [125]. A leucine/
alanine (L/A) helix was cloned upstream of the polytopic membrane protein to maintain the proteins native N-in orientation. The predicted +ΔGapp was calculated
for each helix, and a test TM helix was selected from the proteins CaiT, NhaA, EmrD, BtuC and GlpT. Downstream of this at variable length (L) is a SecM AP peptide.
(b) Schematic of the experimental set-up. The ribosome translates the LepB construct and the helices insert into the membrane via the translocon. Once the AP
stalls, the force produced by the partitioning of the test helix into the membrane can release the AP. An fFL value is calculated by the fraction of full-length versus
truncated protein produced as determined by western blot.
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with highly hydrophobic TM helices, the pulling force of
the nascent chain is strong, relieving the AP stall and
yielding mostly full-length protein. When the force is
low, for example if a TM is not very hydrophobic, the transla-
tional arrest will be efficient enough that truncated protein
will be made rather than full-length. Placing the AP at differ-
ent polypeptide lengths can build up a force-profile for a
protein by measuring the fraction of truncated protein in
relation to fully translated protein by SDS-PAGE at each
AP position.

Leader peptidase (Lep) has emerged as an ideal candidate
for use in these folding studies. Lep is a two transmembrane
E. coli membrane protein which has a large C-terminal peri-
plasmic domain that is co-translationally translocated across
the inner membrane through the SecYEG translocon. SecM
can be introduced near the C-terminal of Lep, and a 19-resi-
due long leucine-alanine based segment varying in
hydrophobicity is placed in the C-terminal domain at varying
distances upstream of the AP. How the pulling force varies
depending on the position of SecM can provide information
on the dynamics of transmembrane helix insertion [130].
Measurement of forces which act on charged residues in
the nascent chain during translation through the SecYEG
translocon have been investigated using this technique
using various constructs of Lep [129,130].

The proteins EmrE, GlpG and BtuC have been extensively
characterized using the SecM force-pulling assay. A residue-
by-residue analysis of each protein combined with mutagen-
esis and coarse-grained molecular dynamics simulations
demonstrated the effect that charged residues, re-entrant
helices and surface helices can have on TM integration [132].
These AP assays have also been used to elucidate the contacts
that form between TM helices during co-translational folding
[131]. These types of experiments have considerably expanded
the toolbox for in vivo folding studies to measure changes in
mechanical forces generated on a nascent chain, in particular
during protein folding, membrane insertion and membrane
translocation via the translocon [133].
4.3. Advantages and disadvantages
Folding studies using cell-free systems are able to look at the
effect of the lipid bilayer during co-translational folding, some-
thing that cannot be done with folding studies on fully
translated proteins. While co-translational studies are limited
with regards to which proteins have been studied so far, they
still represent a step forward for elucidating folding mechan-
isms in vivo and the information gained can be combined
with in vitro measurements to get a fuller picture of folding.
Structural detail of co-translational folding has been lacking,
however recent advances in SEIRAS have started to address
this. Most co-translational experiments to date are very limited
in what thermodynamic information can be obtained, with
only some values for the apparent free energy of insertion pro-
vided by the arrest peptide method. In the near future there
will hopefully be folding experiments in vivo using genetically
modified native membranes, and further development for
biophysical measurements on in vivo samples, to address this
gap in thermodynamic information.
5. Conclusion and future directions
Folding of alpha-helical membrane proteins has been studied
in lipids using multiple methods—in vitro folding and dena-
turant studies, single-molecule force microscopy and cell-free
transcription translation. There is no one correct choice for
which method to use as it will depend on the information
sought. Simplified in vitro systems allow for detailed study
of thermodynamincs and are more easily adapted. More
complex systems are arguably close to the true in vivo folding
conditions but are not yet advanced enough to measure
all desired parameters. These techniques need to improve in
a few different directions. In vitro denaturant studies need
to advance to elucidating the thermodynamics of refolding
in lipids, on more proteins from a wider variety of protein
classes and organisms. These in vitro studies are used as
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groundwork for co-translational studies, which need
improved temporal resolution in order to ascertain folding
kinetics and mechanisms. Folding work in vivo needs
advances in biophysical methods in order to gain more infor-
mation on how different lipids affect folding pathways.
Finally, the vast majority of work to date has been on bac-
terial proteins and must be expanded to include eukaryotic
systems with all the additional complexity that involves.
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