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Abstract

How early does the brain decode object categories? Addressing this question is critical to constrain the type of neuronal architec-
ture supporting object categorization. In this context, much effort has been devoted to estimating face processing speed. With
onsets estimated from 50 to 150 ms, the timing of the first face-sensitive responses in humans remains controversial. This contro-
versy is due partially to the susceptibility of dynamic brain measurements to filtering distortions and analysis issues. Here, using
distributions of single-trial event-related potentials (ERPs), causal filtering, statistical analyses at all electrodes and time points,
and effective correction for multiple comparisons, we present evidence that the earliest categorical differences start around 90 ms
following stimulus presentation. These results were obtained from a representative group of 120 participants, aged 18-81, who
categorized images of faces and noise textures. The results were reliable across testing days, as determined by test-retest
assessment in 74 of the participants. Furthermore, a control experiment showed similar ERP onsets for contrasts involving
images of houses or white noise. Face onsets did not change with age, suggesting that face sensitivity occurs within 100 ms
across the adult lifespan. Finally, the simplicity of the face-texture contrast, and the dominant midline distribution of the effects,
suggest the face responses were evoked by relatively simple image properties and are not face specific. Our results provide a

new lower benchmark for the earliest neuronal responses to complex objects in the human visual system.

Introduction

Visual processing speed is essential to constrain models of object
processing, and their underlying architecture (Nowak & Bullier,
1997; Thorpe & Fabre-Thorpe, 2001; Foxe & Simpson, 2002). In
that context, much effort has been devoted to map the time course
of object processing in animals and in humans, with a particular
emphasis on brain responses to faces, and whether they support the
existence of alternative face pathways (Cauchoix & Crouzet, 2013).
In macaque monkeys, several studies have reported face selective
responses at around 60-100 ms after stimulus onset (Sugase et al.,
1999; Keysers et al., 2001; Edwards et al., 2003; Hung et al., 2005;
Kiani ef al., 2005; Afraz et al., 2006; Issa & DiCarlo, 2012), sug-
gesting that 60 ms might be a lower bound for face detection in the
macaque brain. In humans, the onset of face processing is less clear,
with magnetoencephalography (MEG), scalp and intracranial elec-
troencephalography (EEG) studies reporting face response onsets
ranging from roughly 50-150 ms (e.g. Rousselet er al., 2008; Ros-
sion & Caharel, 2011). For instance, several recent M/EEG studies
have reported face sensitivity around or before 100 ms (Liu et al.,
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2009; Dering et al., 2011; Carlson et al., 2013; van de Nieuwenhui-
jzen et al., 2013; Cauchoix et al., 2014; Isik et al., 2014). Support-
ing these reports, it seems that some areas of the face network are
active around 100 ms, as suggested by simultaneous EEG/functional
magnetic resonance imaging (fMRI) and transcranial magnetic stim-
ulation (TMS) studies (Pitcher et al., 2007, 2009; Sadeh et al.,
2010). Thus, it is plausible that face-sensitive responses occur before
100 ms in humans and monkeys. However, results from most
human studies should be considered cautiously, because of several
important limiting factors (Rousselet & Pernet, 2011; VanRullen,
2011; Rousselet, 2012). Most notably, the field is dominated by
group analyses, with no quantification of onsets from individual
participants. Too often, these group analyses are performed in time-
windows of interest, thus forfeiting onset quantification. Some stud-
ies use high-pass filter settings that could lead to artificially early
onsets (Luck, 2005; Acunzo et al., 2012; Rousselet, 2012; Widmann
& Schroger, 2012; Widmann et al., 2015). Multiple comparisons
over electrodes and time-points are too often ignored or corrected
using out-dated methods (Pernet er al., 2015). Also, a small sample
size of exclusively young adults is the norm, potentially providing
an inaccurate estimation of population variability. Finally, a typical
face experiment in humans lacks test—retest assessment.
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The goal of the current study was to provide a lower bound on
object processing in humans, using faces as a case study, while
overcoming some of the limitations of previous research. To achieve
this goal, we quantified onsets for arguably the simplest contrast
between event-related potentials (ERPs) to faces and noise textures
lacking any object structure. We estimated these onsets in a large
group of adult participants from a representative age distribution.
Many of these participants were tested twice for test—retest reliability
assessment of the results. We estimated onsets in each participant
from data filtered to avoid potential onset distortions.

Materials and methods
Participants

In this study we pooled together data from 120 healthy participants
(60 females) aged 18-81 years, recruited and tested in Canada
(group 1: n=30) and in the UK (group 2: n =31, group 3:
n = 59). Basic information about the participants is given in Table 1
and detailed descriptions are provided in Rousselet ez al. (2009) for
group 1, Rousselet et al. (2010) for group 2 and Bieniek et al.
(2013) for group 3. A total of 74 participants took part in a second
experimental session to assess the reliability of their results (24 par-
ticipants from group 2 and 50 participants from group 3). The
McMaster University research ethics board and the Glasgow Univer-
sity School of Psychology ethics committee approved the experi-
ments. All participants provided written informed consent.

Design and procedure

Participants from all three groups viewed images of faces (F) and
textures (T). The same set of ten faces was used across the three
experiments and is described in Gold et al. (1999). In short, all
faces were front view greyscale images, cropped into an oval shape
to remove external features (hair, ears). Textures were images with
random Fourier phase spectra. All faces and textures had their Four-
ier amplitude spectra set to the average of the ten face amplitude
spectra. All images were 256 x 256 pixels (visual angle: 8° x 8°
for group 1 and 9° x 9° for groups 2 and 3). In the original studies,
image Fourier phase coherence or screen luminance was manipu-
lated (see illustrations in Rousselet er al., 2009; Bieniek et al.,
2013). Thus, from each study, we chose trials from the conditions
in which participants experienced stimuli with comparable Fourier
phase coherence and screen luminance: group 1 — phase coher-
ence = 70 and 0%, luminance = 33 cd/m? (120 trials per condition);
group 2 — phase coherence = 70-75% (pooled) and 0-5% (pooled),
luminance = 33 cd/m? (128 trials per condition); group 3 — phase
coherence = 70 and 0%, luminance = 60.8 cd/m> (150 trials per
condition). For group 3, we chose the condition with lumi-
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nance = 60.8 cd/m* because the 31 cd/m? condition had only 75 tri-
als per condition and we found no difference in processing speed
between 60.8 and 31 cd/m® (Bieniek ef al., 2013). We also found
no ERP difference between 70 and 75% phase coherence, or
between 0 and 5% (Rousselet er al., 2009, 2010). Groups 1 and 2
performed a one-interval, two-alternative forced choice task discrim-
inating between two faces that included varying amounts of phase
noise. On each trial, one face appeared briefly (53 ms), and partici-
pants had to indicate which of two possible faces was presented by
pressing 1 or 2 on the numerical pad of the keyboard. Each partici-
pant performed the task with a single pair of male or female faces
throughout the experiment. Group 3 had to discriminate between
pictures of face and noise stimuli presented for 104 ms. They indi-
cated their response by pressing 1 for face or 2 for noise on the
numerical pad of the keyboard. In the three groups, participants
were given unlimited time to respond, and were told to emphasize
response accuracy, not speed. The task differences among studies
should not affect onsets because task effects on face ERPs are weak
to non-existent within 200 ms (Rousselet et al., 2011). There were
no onset differences among the three groups of participants in ses-
sion 1 (one-way ANovA: F, 17 = 0.26, P = 0.77), and between the
two groups of participants in session 2 (£ 7, = 0.21, P = 0.65).

EEG data pre-processing

EEG data were obtained in Canada using a 256-channel Geodesic
Sensor Net (Electrical Geodesics Inc., Eugene, OR, USA), and in
the UK using a Biosemi Active Electrode Amplifier System with
128 electrodes. Data were pre-processed using Matlab 2012a and
EEGLAB 11.0.2.1b (Delorme et al., 2011). Data were first re-refer-
enced off-line to an average reference. Subsequently, the same data
were filtered in two different ways. First, to measure onsets, we
used a 2-Hz causal fourth-order Butterworth high-pass filter to avoid
onset distortion associated with non-causal filtering. Second, we
used a 1-Hz non-causal fourth-order Butterworth high-pass filter to
perform independent component analysis (ICA). Due to high levels
of power line noise, the Canadian dataset (group 1) was also low-
pass filtered using a 30-Hz non-causal fourth-order Butterworth fil-
ter. Subsequently, all datasets were re-sampled at 500 Hz and
epoched between —300 and 1000 ms around stimulus onset. In the
causal filtered dataset, baseline correction was performed using the
average activity between time 0 and —300 ms, whereas in the non-
causal filtered dataset, individual channel mean was removed from
each channel, which increases ICA reliability (Groppe et al., 2009).
Noisy electrodes were identified by visual inspection of the non-cau-
sal filtered data and rejected from the causal and non-causal datasets.
ICA was performed on the non-causal filtered data using the info-
max algorithm as implemented in EEGLAB. Components represent-
ing blinks were then identified and removed from both causal and

TABLE 1. Participants’ information: for each age bracket the median age, years of education, visual acuity (measured using a Colenbrander high contrast card
at 63 cm), and Pelli-Robson contrast sensitivity are given with minimum and maximum values in brackets

No. of participants

Age bracket (years) Age (years) (females, males)

Years of education Visual acuity Contrast sensitivity

18-19 19 (18, 19) 6 (4,2)
20-29 22 (20, 29) 29 (14, 15)
30-39 33 (30, 38) 15 (5, 10)
40-49 43.5 (40, 49) 16 (10, 6)
50-59 55 (50, 59) 9 (3, 6)
6069 66 (60, 69) 31 (16, 15)
70-81 73.5 (70, 81) 14 8, 6)

15.5 (15, 18.5) 1.25 (1, 1.6) 1.95 (1.95, 1.95)
18 (15, 25) 1.25 (0.8, 1.68) 1.95 (1.8, 2.25)
19 (14,25) 1.25 (0.8, 1.6) 1.95 (1.95, 2.1)
18 (12, 27) 1.25 (0.8, 1.6) 1.95 (1.95, 2.25)
19 (13, 19) 1.25 (0.63, 1.6) 1.95 (1.95, 1.95)
16 (5, 21.5) 0.96 (0.4, 1.39) 1.95 (1.95, 1.95)

13.5 (10, 21) 1 (0.4, 1.25) 1.95 (1.65, 1.95)
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non-causal filtered datasets (number of ICs removed: median = 2,
min. = 0, max. = 10). Subsequently, data were re-epoched between
—300 and 600 ms and baseline correction was performed again.
Finally, data epochs were removed based on an absolute threshold
value larger than 100 puV and the presence of a linear trend with an
absolute slope larger than 75 uV per epoch and R* larger than 0.3.
Across participants, the median number of trials available for analy-
ses was, for faces (session 1/session 2): 127/146; min. = 27/92;
max. = 150/150; for textures: 127.5/146; min. = 25/91; max. = 150/
150. There was no significant relationship between the number of
face/texture ERP trials and ERP face sensitivity onsets.

EEG data analysis

Statistical analyses were conducted using Matlab 2012a and the
LIMO EEG toolbox (Pernet et al., 2011). Because we used causal
filters, a legitimate concern is whether effects from one trial could
be smeared forward in time to the next trial. This was not the case,

as illustrated in Fig. 1, which shows flat baselines in a sample of
participants with large ERP effects that would be most likely to
introduce forward distortions.

Single participant data analyses

To determine the onset of face ERP sensitivity, in every participant
we computed z-tests between face and texture ERPs. All single-parti-
cipant tests were performed independently at every electrode and
every time point. We controlled for multiple comparisons by using a
bootstrap spatial-temporal clustering approach (Maris & Oostenveld,
2007; Pernet et al., 2011, 2015). The onset of ERP face sensitivity
was defined independently in each participant as the first significant
t-test across all electrodes, after removing any significant cluster that
started before stimulus onset (which happened in three participants).

We compared onsets obtained using t-tests with standard means
(mean data) against those obtained with 20% trimmed means (tmean
data). #-Tests on 20% trimmed means can help increase power and

-
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F1G. 1. ERP results. For different age groups, we illustrate examples of ERPs to face (orange) and noise (blue) stimuli at the electrode with the maximum abso-
lute ¢ value. The age of each participant is reported in each plot. The lower right plot shows the time-course of the mean across all participants of the maximum
F values (squared 7 values) across all electrodes in session 1. F values were normalized [0, 1] before averaging. The shaded area shows the 95% percentile boot-
strap confidence interval. The F values depart from baseline shortly before 100 ms.
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might reveal earlier onsets in noisier EEG sessions (Rousselet et al.,
2008; Wilcox, 2012; Desjardins & Segalowitz, 2013). We compared
mean with trimmed mean onsets using data without low-pass filter-
ing (mean vs. tmean), and after application of a low-pass filter
(mean Ip vs. tmean Ip) to check if low-pass filtering, as commonly
applied in ERP research, produces signal distortions leading to artifi-
cially earlier onsets (VanRullen, 2011). This comparison was per-
formed in 90 participants only, because 30 participants from the
Canadian dataset had to be low-passed filtered during the pre-pro-
cessing stage to reduce line-noise. Low-pass filtered ERP data
deposited in the Dryad repository: http://dx.doi.org/10.5061/dryad.
46786.

Effect size

For each participant, we computed effect sizes at the time of ERP
face sensitivity onsets for mean, tmean, mean Ip and tmean Ip data.
We used a non-parametric measure of effect size, Cliff’s delta (Cliff,
1996; Wilcox, 2006), which is related to the Wilcoxon—Mann—Whit-
ney U statistic and estimates the probability that a randomly selected
observation from one group is larger than a randomly selected
observation from another group, minus the reverse probability.
Cliff’s delta ranges from 1 when all values from one group are
higher than the values from the other group to —1 when the reverse
is true. Completely overlapping distributions have a Cliff’s delta of
0.

Group analyses

Group analyses were performed on onsets obtained from the single
participant data analyses. Data and code deposited in the figshare
repository: http://dx.doi.org/10.6084/m9.figshare.1588513. We quan-
tified distributions of onsets using the Harrell-Davis estimate of the
deciles (Wilcox, 2012). Throughout the article, square brackets
report 95% bootstrap confidence intervals with 1000 samples. We
used a shift function to quantify differences between deciles of onset
distributions (Doksum, 1974, 1977; Wilcox, 2006). We computed
group-level regressions using Matlab’s robustfit function, with
default parameters. We report slopes and intercepts along with 95%
percentile bootstrap confidence intervals.

Control experiment

So far, we have described parametric analyses of univariate differ-
ences in means and trimmed means between distributions of single-
trial face and noise ERPs. But single-trial ERP distributions could in
principle differ not only in central tendency, but also in dispersion,
skewness and kurtosis. Differences between ERP conditions could
also be distributed across electrodes. Our tests of central tendency
would not be sensitive to such differences and therefore might miss
earlier onsets. In addition, we wanted to determine if the face onsets
measured in the main experiment were comparable to onsets involv-
ing other image categories. To address these issues, we re-analysed
ERP data from an experiment in which eight observers categorized
pictures of faces, houses and noise textures, presented for 53 ms
(Bieniek et al., 2012). Seven observers were tested twice. There
were up to 1000 trials per observer in total: 300 face trials, 300
house trials, 300 trials of phase noise textures with the same ampli-
tude spectra as faces and houses, and 100 white noise trials. EEG
preprocessing was as described above, except that the causal filtered
data used to measure onsets were not low-pass filtered, but were
transformed into single-trial spherical spline current source density
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waveforms using the current source density (CSD) toolbox (Tenke
& Kayser, 2012). The CSD transformation is a spatial high-pass
filtering of the data, which sharpens ERP topographies and reduces
the influence of volume-conducted activity. We hoped this transfor-
mation would help to identify earlier effects by de-blurring scalp
ERPs. CSD waveforms were computed using 50 iterations and the
parameters m = 4, lambda = 107°.

We applied several statistical tests to measure onsets defined by
differences between pairs of conditions: linear contrasts (z-tests) on
means and 20% trimmed means, two-sample Kolmogorov—Smirnoff
tests, mutual information and logistic regression. Mutual information
is a non-parametric estimate of the dependence, whether linear or
non-linear, between pairs of variables (Ince et al., 2010). We calcu-
lated mutual information using the direct method, quadratic extrapo-
lation bias correction and four equiprobable bins (Magri et al.,
2009). We searched for effects distributed across electrodes using
logistic regression, independently at each time point, with a one
time-point training window, and leave-one-out cross validation (Phil-
iastides & Sajda, 2006). We report results without classifier regular-
ization, which performed very well: in every participant and session,
at least one contrast gave classification performance > 90%, and all
baselines were centred on 50%. Reducing the number of trials also
had little effect on classification accuracy, suggesting that perfor-
mance had reached an asymptote. We also used 12 regularization
(Conroy & Sajda, 2012), with A = 0.1 optimized for maximum clas-
sification performance across time points. With regularization, onsets
were only 2.2 ms [0.8, 4.5] earlier than without regularization.

Onsets were measured using bootstrap clustering techniques with
1000 bootstrap samples except for logistic regression, for which we
used 200 bootstraps because it was extremely time-consuming. In
the Results, we report, for every statistical test, the minimum onset
across the two sessions for the seven participants tested twice, and
the single onset from participant 8.

Results

Consistent with recent EEG and MEG findings, our results suggest
the existence of neuronal face sensitivity within 100 ms (Figs 1 and
2). Using t-tests with means on low-pass filtered data revealed a
median onset of 92 ms [85, 99] in session 1 (Fig. 2, mean Ip data).
The 1st decile of the distribution was 70 ms [65, 74] and the 9th
decile was 122 ms [113, 131]. These estimates did not change sig-
nificantly for data that were not low-pass filtered, or when 20%
trimmed means were used instead of means (Figs 2 and 3). Because
there were no significant differences between onset distributions in
any of the comparisons (Fig. 3), all further analyses were only
performed on the mean Ip data.

Our data were from participants 18-81 years old. Thus, we
looked at the relationship between ERP face sensitivity onsets and
age, and found no evidence for a significant relationship (Fig. 4A
and B). This finding is consistent with previous observations of age-
ing affecting the time-course of face ERPs starting around 120 ms
after stimulus onset, thus sparing the earliest face responses (Rous-
selet et al., 2010; Bieniek ez al., 2013). We also performed a multi-
ple regression analysis to test if onset variability could be explained
by participants’ age, visual acuity, contrast sensitivity, years of edu-
cation or sex. None of these variables was significantly associated
with onset times.

Next we looked at how big the effects were at ERP onset times
(Fig. 5). In the majority of participants, Cliff’s delta estimates of
effect sizes ranged from 0.1 to 0.3, which corresponds to small to
medium effect sizes in Cohen’s d framework. There was no significant
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relationship between onset latencies and effect sizes (Fig. 5C),
which means that later onsets were not systematically associated
with smaller (or larger) effect sizes compared with earlier onsets.
Effect sizes also did not depend on participants’ age (Fig. 5D), sug-
gesting that ageing does not affect the size of ERP face differences
at onset time, contrary to what happens beyond 120 ms post-stimu-
lus onset (Rousselet et al., 2010; Bieniek et al., 2013).

Event-related potentials onsets were reliable (Fig. 6). The distribu-
tion of test-retest differences is symmetric and centred on zero, indi-
cating no systematic bias across sessions (for instance onsets could
have been systematically earlier in session 2). Also, across the 74
participants tested twice, no significant differences were found
between any of the onset deciles (Fig. 6C). This last result is impor-
tant because it demonstrates that test—retest reliability does not
depend on onset times. One could have imagined for instance that
the earliest onsets might have been obtained by chance, so that a
second test would be systematically biased towards longer onsets:
our analysis suggests that this was not the case. Finally, test-retest
differences were not significantly associated with participants’ age

(Fig. 4C), suggesting the absence of age-related differences in pro-
cessing speed reliability.

So far, our analyses were applied to the full sample of 120 partic-
ipants in session 1, and 74 participants in session 2. This sample
size is larger than samples used in most ERP studies, and therefore
it is worth considering what could be expected given fewer partici-
pants. To answer this question, we estimated the variability in med-
ian onsets as a function of sample size using Monte-Carlo
simulations. To this end, we drew samples of 5-70 participants, in
steps of five. For each sample size, participants were sampled with
replacement 10 000 times, and every time the median onset and the
median of the between-session onset differences were computed.

Medians of Monte-Carlo estimates of onsets changed very little as
a function of sample size (Fig. 7A). However, smaller sample sizes
were associated with much larger variability, particularly on the
right side of the median distribution. This right skewness implies
that, in the long run, testing too few participants would lead to
over-estimating onsets, as illustrated in Fig. 7B. Testing at least 20
participants appears to reduce this problem considerably.
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FIG. 4. Regressions of onsets against age for mean lp data. Each circle represents the onset from one participant. The regression line appears in black. (A,B)
Results from sessions 1 and 2. The group median onset and its 95% CI is indicated at the top of each scatterplot. Beneath, the equation describes the regression
intercept and slope and their respective 95% CIs. (C) Results for the between-session onset differences. In each case, the dependent variable was not signifi-

cantly associated with age.

Similarly to the median estimates, the medians of the between-
session differences were fairly stable across sample sizes. The
distributions of between-session differences were also right skewed,
and this effect was considerably increased at the smallest sample
sizes. The consequence of this asymmetry is a long-run tendency to
over-estimate between-session differences. It seems that testing at
least 20 participants would considerably improve the test-retest reli-
ability of the median estimates.

Control experiment results

The goal of the control experiment was to test in an independent
dataset (n = 8) if any earlier onsets could have been missed because
of differences not captured by parametric comparisons of central
tendency. We also tested whether similar onsets would be observed
for a control object category (houses) and between our structured
textures and a control texture (white noise). For each of eight partic-
ipants — seven of whom were tested twice for a total of 15 EEG ses-

sions — we looked for differences in mean, variance, skewness and
kurtosis between four pairs of image categories: textures vs. white
noise; faces vs. textures; houses vs. textures; faces vs. houses.
Within 200 ms after stimulus onset, only pairwise comparisons
between means were significant. Corroborating this result, in every
participant and for each pairwise comparison, kernel density esti-
mates and shift functions revealed that at onset times, the shapes of
the single-trial ERP distributions were similar across stimulus cate-
gories. ERP differences between pairs of image categories were due
to shifts of entire distributions, which should be well captured by
quantifying differences between means. We confirmed that categori-
cal ERP differences were essentially due to differences in means
during the first 200 ms after stimulus onset by estimating ERP cate-
gory onsets using a range of robust and non-parametric techniques
(Fig. 8). Onsets derived from z-tests on means were similar to those
reported in the main experiment. Results from the other methods
were very similar, and all the pairwise comparisons between onsets
from the main experiment and from the control experiment failed to

© 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

European Journal of Neuroscience, 44, 1804-1814



1810 M. M. Bieniek et al.

A 2

15

10

KDE

0.2

; 0.3
Effect size

0.7
0.13[0.11, 0.17] + 0 [-0.0001, 0.0005]

o
)

0.5

Effect size (delta)

50 75 100 125

Onset (ms)

150 175

200

B 1
9 I
8 =
87| ~
56 .
E 5 -f- Median =
% 4 i 016[0.15,0.17]
S s} -
2 -
1 —
L
0 005 01 015 02 025 03
Effect size
D
0.7 0.16[0.14, 0.17] + 0 [~0.0003, 0.0003]
0.6
T o5
3
\q‘; 04
N o
3 03 R .
8 %6 g8 & ° OC8
5 73) OCS*OOOU @08 > Odvooo éﬂéd 6}
: o © Lo °
0
20 30 40 50 60 70 80
Age (years)

Fi1G. 5. Effect sizes at onset times. (A) KDEs of effect size distributions. (B) Deciles of effect size distributions with 95% Cls. The median is marked by a ver-
tical dashed line. (C) Linear regression of effect size on onset. (D) Linear regression of effect size on age. In C and D, each circle represents a participant. The
regression equation with intercept and slope and their corresponding 95% Cls are given at the top of each scatterplot. All results are from session 1 (n = 120).

Similar results were observed in session 2.
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find significant differences, even without controlling for multiple
comparisons. Thus, the results from the control experiment suggest
that 7-tests on the mean, combined with modern control for multiple
comparisons, are adequate and sufficient to capture early differences
in single-trial ERP distributions.

Discussion

Estimating processing speed is a critical step to constrain the type of
neuronal architecture underlying cognitive processes. This approach
has been particularly fruitful to study visual processing, revealing

the hierarchical structure of the visual system (Mormann et al.,
2008; DiCarlo et al., 2012). Despite recent advances, in humans
there is still considerable debate about the timing of object process-
ing, and especially of face processing. To address this controversy,
we measured ERP onsets of face sensitivity in a sample of 120
healthy participants, 18-81 years old. Across participants, median
onset was 92 ms [85, 99], with the 1st decile at 70 ms and the 9th
decile at 122 ms. To our knowledge, the current study is the first to
report a detailed distribution of onsets from such a large sample
size. This is in contrast to most previous studies, which have limited
their analyses to time-windows of interest, without quantifying
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onsets per se (e.g. Liu et al., 2002; Thierry et al., 2007). Several
recent studies have estimated onsets using group statistics, thus
providing a single group estimate, without a confidence interval (Liu
et al., 2009; Carlson et al., 2013; van de Nieuwenhuijzen et al.,
2013; Cauchoix et al., 2014; Isik et al., 2014; Clarke et al., 2015).
Our onset estimations are also unlikely to have been biased by filter-
ing distortions, or inefficient control for multiple comparisons. Previ-
ous studies have mostly used potentially ineffective control for
multiple comparisons in which an effect is considered significant if
it is sustained for an a-priori determined number of time points (Piai
et al., 2015), or they have used conservative maximum statistics, or
other techniques that fail to consider the spatial-temporal distribu-
tions of the effects (Pernet er al., 2015). Also, some highly cited
studies have employed 1-Hz high-pass filters (e.g. Liu ez al., 2002,
2009), which can smear effects back in time (Rousselet, 2012). For
instance, Liu et al. (2009), among other results from an ambitious
intracranial study, reported a rare distribution of onsets for object
classification, including faces, starting around 30 ms after stimulus
presentation (their Fig. 3A). Our results call into question such

reports of very early face sensitivity under 70 ms. Our results are
nevertheless compatible with the timing from many previous reports
listed above. And these studies are certainly not the first to report
evidence for face processing within 100 ms (see, for example,
reviews by Rousselet ef al., 2008; Rossion & Caharel, 2011).

So how long does it take to detect a face? Our results can only
provide a lower bound to that question. Indeed, our choice of a sim-
ple face—texture contrast implies that any local edge could be
responsible for our ERP onsets, so there is no ground to argue the
face-specificity of the effects reported here. This choice was inten-
tional as we wanted to quantify the earliest possible face responses.
And several elements of our results suggest that we did not miss
earlier effects. First, we found no evidence that our techniques
lacked power, because we obtained very similar results using z-tests
on means or trimmed means. Second, results from a control experi-
ment suggested that categorical ERP differences at onset time essen-
tially reflect shifts in the means of single-trial distributions, so that
statistical tests sensitive to other distributional differences other than
central tendency did not reveal earlier onsets. Furthermore, there
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pants who were tested twice, each black dot represents the minimum onset
across sessions for each test. For each test, the vertical thick line and the
number next to it indicate the median onset across participants. The thin ver-
tical lines mark the boundaries of the median’s 95% CI. The long vertical
dashed line marks the median onset from session 1 of the main experiment,
in condition mean Ip for the face—texture contrast. The green area marks that
median’s 95% CI. The horizontal orange area marks the matching results
from the control experiment. Abbreviations: tw, texture — white noise con-
trast; ht, house — texture contrast; th, face — house contrast; ft, face — texture
contrast; z-testm, 7-test on means; t-testtm, 7-test on 20% trimmed means;
KS, Kolmogorov—Smirnov test; MI, mutual information; LR, logistic
regression.

was no relationship between effect sizes and ERP onsets, suggesting
that the large individual differences in onset times were not
associated with systematic differences in signal-to-noise ratio across
participants. Onset estimates were reliable across two testing days,
with only about 5-10 ms difference between sessions, which is con-
sistent with studies showing stability of scalp and intracranial ERPs
across hours and days (Bansal et al., 2012; Hammerer et al., 2013).
Finally, the timing of our effects and their scalp distribution suggest
the involvement of relatively low-level areas sensitive to coarse
image properties (Tanskanen et al., 2005; Scholte et al., 2009;
Groen et al., 2012, 2013; Cauchoix et al., 2014; Rousselet et al.,
2014), a conclusion supported by the similar latencies observed for
several contrasts among object categories in our control experiment.
The involvement of relatively low-level areas is also supported by
the small timing difference between our earliest onsets (around
70 ms) and onsets to simple stimuli around 50-60 ms from striate
and extra-striate areas (Foxe & Simpson, 2002). However, we can-
not completely rule out the contribution of higher-level areas from
the face network, which is activated within 100 ms (Barbeau et al.,
2008; Liu et al., 2009; Parvizi et al., 2012; Jonas et al., 2014;
Pitcher, 2014). Given the low spatial resolution of EEG, we do not
see the benefit of performing source analysis on our current dataset:
instead, large-scale MEG or combined TMS/EEG-fMRI studies
would be more informative.

How the onsets reported here relate to behaviour remains
unknown. In our experiment, participants were asked to be as accu-
rate as possible, with no emphasis on speed, so we did not attempt
a reaction time analysis. Certainly, behavioural reaction times can
be used to estimate relative processing durations, and would provide
useful upper bounds on processing speed (VanRullen, 2011). But
there might be no relationship between our onset estimates and
behavioural responses, because behavioural variability could
originate from neuronal variability outside the ventral pathway
(DiCarlo & Maunsell, 2005; Gerson et al., 2005; Philiastides &
Sajda, 2006).

Overall, the current study establishes a new lower benchmark for
the earliest ERP responses to complex objects, including faces, in
the human visual system. This benchmark is of course not absolute.
We used heavily simplified greylevel cropped-out faces, in full-front
position. The timing of early face differences should be systemati-
cally investigated using more realistic stimuli, with different sizes,
positions and orientations. Also, we have previously demonstrated
large effects of screen luminance on ERP latencies (Bieniek ez al.,
2013). It remains to be determined how fast the visual system can
process real three-dimensional stimuli under realistic daylight condi-
tions, outside our typical testing booths, in which dark-adapted par-
ticipants look at bright screens. It is also likely that yet better EEG
preprocessing and other brain imaging techniques could improve our
current estimates. At least here we provide a framework to study
ERP onsets.

Finally, our results suggest large individual differences in ERP
onsets, which remain unexplained. We found that ERP onsets did
not change with age, replicating previous observations and suggest-
ing that ageing affects face processing beyond the earliest stage of
image structure detection (Bieniek er al., 2013). ERP onsets were
also not associated with visual acuity and contrast sensitivity. A
challenge for the community would therefore be to quantify results
from large samples of individual participants with the goal of under-
standing differences in processing speed (Rousselet et al., 2010).
How many participants should be tested remains an open question
and depends on the goal of the experiment. From our results, it
seems that in the long run, testing at least 20 participants would
help reduce the risk of over-estimating onsets and would increase
their reliability. However, this is certainly not sufficient to under-
stand individual differences (Yarkoni, 2009).
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