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Summary Dysregulation of CpG-methylation is a common feature of many human cancers and tumour suppressor genes can be silenced by
hypermethylation. Recently, 2 methyl-CpG-binding domain proteins have been linked to gene inactivation by their ability to recruit co-
repressors and HDAC-activity to methylated gene promoters. Here, we have analysed mRNA expression of these genes, MeCP2 and MBD2,
in a wide variety of primary human tumours. In solid tumours, expression levels of MBD2 (57/71) and MeCP2 (64/71) were significantly reduced
in the majority of primary tumours as detected by quantitative real-time RT-PCR. Western blot analyses of MeCP2 in matched tumour–normal
samples of patients with non-small-cell lung cancer (NSCLC) indicated reduced protein in a significant percentage of patients. In acute
myelogenous leukaemia (n = 26), expression levels were only slightly reduced and did not differ between samples analysed at diagnosis or at
the time of relapse. In early-stage NSCLC (n = 70) expression of MeCP2 and MBD2 was significantly lower in squamous cell carcinoma than
in adenocarcinoma or large cell carcinoma (P = 0.03 and P = 0.01). To further elucidate the mechanisms of gene regulation, we analysed
MeCP2 and MBD2 regulation during haematopoietic differentiation. No significant changes in MeCP2 or MBD2 expression were found when
NB4 cells were differentiated toward granulocytes suggesting that neither differentiation nor cell cycle status were relevant for the reduced
expression of these genes in human cancer. In conclusion, the significant loss of MeCP2 and MBD2 expression in human cancers suggests a
potential role of this phenomenon in the development of solid human tumours. © 2001 Cancer Research Campaign http://www.bjcancer.com
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Methylation at CpG dinucleotides is a common feature of the
genomic organization of most higher organisms (Singal and
Ginder, 1999; Walsh and Bestor, 1999). 

The physiological pattern of methylation is established during
embryonic development (Brandeis et al, 1993). Subsequently,
methylation patterns are passed on to the daughter cells during
mitosis. During the DNA replication process, DNMT1, a methyl-
transferase with a specificity for hemimethylated DNA, adds
methyl groups to the newly synthesized DNA strand (Pradhan 
et al, 1997). The physiological role of CpG-methylation in
embryogenesis and development has not been entirely defined, but
the deletional mutant of DNMT1 proved to be embryonically
lethal in mice (Li et al, 1992). 

A role of methylation for tissue-specific regulation of gene
expression has been discussed, but we and others have recently
shown that the role of methylation in tissue–specific gene 
repression is limited (Warnecke and Clark, 1999; Müller 
et al, 2000a). While the role of CpG-methylation in normal devel-
opment is unclear, an important role for CpG-methylation has
been proposed in the pathogenesis of human cancers (Bird, 1996). 

Changes in the patterns of CpG-methylation appear to be an
intrinsic feature of human malignancy (Laird and Jaenisch, 1996).
Modern technology such as restriction genomic landmark 
scanning has proven that significant changes in the genomic
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methylation pattern occur in probably all human tumours (Liang 
et al, 1998). The relevance of these phenomena and the mecha-
nisms leading to the establishment of altered CpG-methylation are
unknown. Besides changes in methylation in general, several
tumour suppressor genes have been proposed to be silenced by
aberrant methylation of their promoter region (Corn et al, 1999;
Kawano et al, 1999). For example, the p16ink4A locus is deleted
in most cell lines but is structurally not affected in the majority 
of primary tumours (Shapiro et al, 1995; Swafford et al, 1997).
Expression of p16 is still lost in many primary tumours and hyper-
methylation which correlates well with gene silencing is proposed to
be the relevant mechanism (Nakamura et al, 1999; Song et al, 2000).

However, the mechanisms of gene silencing by methylation are
poorly understood. While the binding of some transcription factors
appears to be inhibited by CpG-methylation at consensus-binding
sites, others are not (Gaston and Fried, 1995; Singal and Ginder,
1999). Indirect mechanisms have been hypothesized to be relevant
for gene silencing in vivo. The finding that methyl-CpG-binding
domain (MBD) proteins can suppress transcription from methy-
lated promoters suggests an attractive hypothesis for the silencing
of methylated genes in cancer (Nan et al, 1997). The recruitment
of histone deacetylase activity (HDAC) by members of the MBD
protein family has linked their repressor activity to known 
transcriptional co-repressors that are associated with HDAC-
recruitment (Jones et al, 1998). So far repressor activity has been
confirmed for MBD1, MBD2 and MeCP2 (Nan et al, 1997; Ng 
et al, 1999, 2000). Two of these transcriptional repressors, MBD2
and MeCP2, can recruit co-repressors and HDACs to methylated
DNA (Nan et al, 1998; Ng et al, 1999). 



Loss of MBD-expression in human cancer 1169
MeCP2 is the so far best studied member of the MBD family and
homozygous deletions of this gene are embryonically lethal (Tate 
et al, 1996). More evidence for the importance of MeCP2 derived
from the recent finding that mutations of MeCP2 occur at a high
frequency in patients with RETT syndrome which is characterized
by a progressive neurodegenerative disorder (Amir et al, 1999). The
potential role of MeCP2 in human cancers is currently unknown. 

Even less is known about MBD2 which also suppresses tran-
scription from methylated promoters. A recent report suggested
that MBD2 expression is reduced in gastric and colon cancer but
so far, there has been no systematic evaluation of its potential role
in human cancer (Kanai et al, 1999). 

In the current study, we systematically examined MeCP2 and
MBD2 mRNA expression in a wide variety of human tumours.
Several important findings were obtained: very low levels of
MeCP2 and MBD2 could be detected in carcinoma samples
derived from breast, colon, lung, and ovarian cancer. The loss of
expression of MeCP2 or MBD2 did not have prognostic impact on
survival for patients with early stage non-small-cell lung cancer. 

On the other hand, MBD2 and MeCP2 expression levels in
acute myeloid leukaemia were reduced by about 50%, indicating
that tumour-type-specific differences in the degree of loss of
expression occur. 

Finally, loss of MBD2 or MeCP2 expression was not associated
with the degree of differentiation or cell cycle distribution since
granulocytic differentiation of NB4 leukaemic cells or monocyctic
differentiation of U937 cells did not alter MBD2 or MeCP2
expression levels. 

Taken together, our data show that the loss of MBD2 and
MeCP2 expression is a common feature of a wide variety of
human cancers. 

MATERIAL AND METHODS 

Tumour samples 

Fresh tumours from patients with breast cancer (n = 15), non-
small-cell lung cancer (NSCLC) (n = 14), cervical carcinoma 
(n = 6), endometrium carcinoma (n = 15), ovarian cancer (n = 15),
and colon cancer (n = 6) were obtained at a molecular diagnostic
laboratory after morphological dissection of the tumour by a
pathologist. 

Another group of patients with early stage NSCLC (n = 70)
has been described previously (Müller-Tidow et al, 2001).
Briefly, tumour specimens were obtained at the time of initial
surgery at a University hospital in Germany. Samples were snap
frozen in liquid nitrogen and stored at –80˚C. Only samples from
individuals with stages I to IIIA disease that were resected
without pathological evidence for remaining tumour (RO resec-
tion) were included in this study. In addition, patients who survived
for less than 90 days after surgery were excluded. Patients with stage
IIIA tumours received radiation therapy after surgery. All patients
were followed up for a minimum period of 5 years.

Bone marrow aspirates from patients with acute myelogenous
leukaemia either at diagnosis (n = 16) or at relapse (n = 8) were
obtained at the University of Münster for diagnostic reasons.
These samples contained at least 70% blast cells by microscopic
analysis. Samples from patients in complete remission (n = 9)
served as controls. 

Control samples from a wide variety of organs were obtained
from Clontech (Heidelberg, Germany). These samples contained
© 2001 Cancer Research Campaign
cDNA pooled from 2 (brain and lung), 7 (ovary), 20 (colon), and
up to 550 (leukocytes) individuals. 

RNA isolation and cDNA preparation 

For RNA preparation, samples were disrupted into small pieces
and RNA was isolated from tumour samples using Trizol reagent
(Gibco, Life Technology) or RNeasy (Qiagen). A total of 1 µg
RNA of each sample was reverse transcribed using an oligo-d(T)
primer and RNase H– MMLV reverse transcriptase according to
the protocol of the manufacturer (Promega). The cDNA was
diluted to give a total volume of 200 µl, and 5 µl of this dilution
was used for each PCR reaction. The quality of the cDNA was
confirmed by amplification of glyceraldehyde-3-phosphate-
dehydrogenase (GAPDH, cytosolic protein) or TATA-binding protein
(TBP, nuclear protein) (see below) and only samples with consis-
tent and strong amplification were included into the final analyses. 

Analyses of gene expression by real-time quantitative
RT-PCR 

The quantitation of mRNA levels was carried out using a real-time
fluorescence detection method. The cDNA was prepared as
described above and amplified by PCR in the ABI prism 7700
sequence detector (PE Biosystems, Foster City, CA). The primer
and probe sequences used were published previously (Müller et al,
2000a). All primer and probe combinations were positioned to span
an exon–exon junction. When genomic DNA was used as a
template, no bands were seen after PCR amplification. The probes
were labelled at the 5′ end with VIC (GAPDH probe) or with FAM
(all others) and at the 3′ end with TAMRA which served as a
quencher. The 5′ to 3′ nuclease activity of the Taq polymerase
cleaved the probe and released the fluorescent dyes (VIC or FAM)
which were detected by the laser detector of the sequence detector
(Heid et al, 1996). After the detection threshold was reached, the
fluorescence signal was proportional to the amount of PCR product
generated. Initial template concentration can be calculated from the
cycle number when the amount of PCR product passed a threshold
set in the exponential phase of the PCR reaction. Relative gene
expression levels were calculated using standard curves generated
by serial dilutions of U937 cDNA. The relative amounts of gene
expression were calculated by using the expression of GAPDH or
TBP as an internal standard. At least 2 independent analyses were
performed for each sample and each gene. Analyses of gene expres-
sion data were performed without knowledge of patient data. 

Western blot analysis 

Protein was extracted from frozen tumours and corresponding
normal lung tissue using radio-immunoprecipitation-assay buffer
(RIPA) and sonication. Protein lysates were cleared by centrifuga-
tion and Western blotting was performed as previously described
(Müller et al, 2000b). The primary anti-MeCP2 antbody was
puchased from Upstate Biotechnology and was used at a 1:200
dilution. An anti-actin antibody was used to control for equal
protein loading. 

Statistical analyses 

Statistical data analyses were performed using SPSS 9.0 and 10.0
for Windows. When 2 groups with similar variance were
compared, student’s t-test was used. Otherwise, the Mann–Whitney
British Journal of Cancer (2001)85(8), 1168–1174
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U-test was used. Means of several groups were compared with 
one-way analyses of variance (ANOVA). Kaplan–Meier plots were
statistically evaluated by the log-rank test. All P values indicate 2-
sided comparisons and a P < 0.05 was considered as significant. 

Differentiation of leukaemic cell lines 

NB4 leukaemic cells were grown in RPMI supplemented with
10% fetal calf serum. For the induction of differentiation, cells
were pulsed for 30 min with dimethylsulfoxide (DMSO) (Chih 
et al, 1997). Subsequently, all-trans retinoic acid (ATRA) (10–6 M)
was added and differentiation was followed by morphology. 
In addition, expression of a differentiation antigen, CD11b was
analysed by flow cytometry using standard protocols. For cell
cycle analyses, 106 cells were harvested at the indicated time
points and fixed in 70% ice-cold ethanol. DNA amount was quan-
titated by propidium iodine staining of nuclei and analyses were
performed with a FACScan flow cytometer. 

U937 cells were grown in RPMI supplemented with 10% fetal
calf serum and differentiated with 12-Ο-tetradecanoylphorbol-13-
acetate (TPA) (Santoli et al, 1983). 
British Journal of Cancer (2001) 85(8), 1168–1174
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Figure 1 Expression of MeCP2 and MBD2 mRNA in normal human organs and i
normal human organs was analysed in a panel of human normal cDNAs which we
Methods). Expression levels were standardized using TBP expression. (B) Expres
from different locations. Average expression levels of pooled cDNA from healthy lu
individuals) are indicated by a dash. Expression levels were standardized by TBP 
RESULTS 

Expression of MeCP2 and MBD2 in healthy organs 

We used quantitative real-time RT-PCR to analyse mRNA expres-
sion levels in a wide variety of human organs as well as in different
human cancers. Probes were labelled with a fluorochrome at the 5′
end and with a quencher molecule at the 3′ end. In addition, probes
were designed to span an exon–exon junction to avoid amplifica-
tion of genomic DNA. Consequently, RT-minus controls and
genomic DNA did not lead to an increase in signal intensity in the
PCR reaction (data not shown). The average mRNA expression
levels of the HDAC-recruiting methyl-CpG-binding domain
proteins were then analysed in a wide variety of human organs by
using quantitative real-time RT-PCR (Figure 1A). 

Both genes were found to be expressed in all organs that we
have analysed. Highest levels of MeCP2 and MBD2 mRNA were
found in ovary and colon, respectively. Very low levels of MeCP2
were detected in testis, whereas expression of MBD2 was
especially low in brain. Interestingly, expression levels varied up
to 60-fold between different healthy tissues. 
© 2001 Cancer Research Campaign
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Figure 2 Analyses of MeCP2 and MBD2 expression in non-small-cell lung cancer. (A) Expression of MBD2 and MeCP2 in a panel of early stage non-small-
cell lung cancer (n = 70) and in corresponding normal lung tissue specimens (n = 12). Expression levels were standardized for GAPDH expression. Expression
of MeCP2 (P = 0.0001) and MBD2 (P = 0.0001) was significantly lower in tumour samples than in controls. (B) Patients were divided in those with ‘low’ and
‘high’ MBD2 and MeCP2 expression according to the median of expression. Kaplan–Meier survival analyses are shown. No significant differences in survival
were found for MBD2 or MeCP2 low vs high-expressing tumours. (C) 15 mg of protein lysates from matched tumour (T) and normal (N) samples from patients
with NSCLC were analysed for MeCP2 protein expression by Western blot analysis. Thereafter, the blot was stained with anti-actin antibody to visualize equal
protein loading. Most of the analysed patients expressed significantly reduced or no MeCP2 protein compared to normal lung tissue 
Expression of MeCP2 and MBD2 in solid cancers 

Next, we focused on mRNA expression levels of MeCP2 and
MBD2 in a panel of primary human carcinomas. Tumours were
obtained for molecular diagnostic reasons and were microscopi-
cally dissected. Expression levels of MBD2 and MeCP2 in
primary tumours derived from ovary, colon and lung were reduced
by 20 to 80% compared to the mean levels reached in healthy
controls. (Figure 1B). Low levels of expression were seen in breast
cancer, higher expression levels in endometrium cancer.
Interestingly, reduced expression similarly occurred for MeCP2 as
well as for MBD2 resulting in a significant degree of linear corre-
lation between these genes in this panel of primary tumours 
(r = + 0.4, P = 0.01). These initial findings suggested a strong association
between carcinomas and reduced MBD2 and MeCP2 expression. 

To confirm these findings we used a previously well character-
ized group of patients with early stage (I to IIIA) non-small-cell
lung cancer. 12 samples from disease-free lung tissue served as
negative controls. In addition, a different housekeeping gene,
GAPDH, was used for standardization. Again, expression levels of
MeCP2 and MBD2 were much lower in tumour samples than in
healthy control tissue (Figure 2A). Also, we detected that the
expression of MBD2 and MeCP2 was neither associated with the
stage of the disease, the sex of the patient nor with the histological
grading (data not shown). In addition, MBD2 and MeCP2 were
© 2001 Cancer Research Campaign
not associated with the subsequent development of metastasis or
the patients’ overall survival (Figure 2B). 

To analyse whether mRNA expression levels corresponded 
to protein expression, Western blot analyses for MeCP2 were
performed (Figure 2C). Protein lysates from matched tumour–normal
samples were prepared for 9 patients with NSCLC. Western blotting
analyses demonstrated that MeCP2 protein expression was signifi-
cantly reduced in 5/9 NSCLC tumours compared to matched normal
lung tissue from the same patient. These data showed evidence that
at least MeCP2 expression in NSCLC was not only reduced on the
mRNA level but also on the protein level. 

MBD2 and MeCP2 mRNA levels in acute myeloid
leukaemia 

To further study whether low-level expression of MeCP2 and
MBD2 was restricted to carcinomas only or whether it was a general
phenomenon in human malignancies, we analysed a panel of human
acute myeloid leukaemias (n = 24). Samples from 16 patients were
obtained at the time of initial diagnosis and 8 samples were obtained
from patients at the time of relapse. All leukaemic samples
contained more than 70% blast cells. Normal bone marrow from
patients in complete remission served as control (n = 9). Expression
of MeCP2 and MBD2 was higher in normal bone marrow than in
British Journal of Cancer (2001)85(8), 1168–1174
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Figure 4 Analyses of MBD expression during differentiation. 
(A) Differentiation of NB4 cells towards granulocytes was followed by flow
cytometric staining for the surface antigen CD11c. (B) In addition, the cell
cycle status was analysed at various time points to document the decrease
in cycling cells that is associated with cellular differentiation. (C) While an
increase in CD11c expression and a decrease of cells in S and G2/M phase
were associated with a rapid decrease of cyclin A1 mRNA, no significant
changes in MBD2 and MeCP2 expression levels were observed 
AML blasts but this difference was statistically not significant
(Figure 3). For patients with AML, MeCP2 and MBD2 expression
levels were higher at diagnosis than at the time of relapse. However,
most likely due to the small sample size, these differences were
statistically not significant by one-way analyses of variance
(MeCP2: P = 0.24; MBD2: P = 0.16). These data indicate that
MeCP2 and MBD2 expression levels are probably somewhat lower
in leukaemic blasts than in normal bone marrow but the differences
appear to be much smaller than those detected in most carcinomas. 

MeCP2 and MBD2 are not cell cycle regulated and their
expression is not associated with haematopoietic
differentiation 

Reduced gene expression in cancer might be linked to gene regula-
tory processes during the cell cycle or cellular differentiation. 
In vitro differentiation of leukaemic cells provides an easily acces-
sible model to examine the roles of the cell cycle and differentiation
mechanisms on gene expression levels. We used NB4 leukaemic
cells that differentiated towards granulocytes upon exposure to
ATRA and DMSO. Differentiation was controlled using
morphology (not shown), differentiation surface marker expression
and cell cycle analyses (Figure 4). In addition, we measured cyclin
British Journal of Cancer (2001) 85(8), 1168–1174
A1 mRNA as another control for granulocytic differentiation
(Müller et al, 2000b). While cyclin A1 levels were rapidly down-
regulated after NB4 cell exposure to ATRA and DMSO, no major
changes were detected for MBD2 or MeCP2. Even when most cells
were in G1 phase, expression levels of MeCP2 and MBD2 did not
change, indicating that expression of these genes neither depended
on the cell cycle nor on the state of cellular differentiation. Similar
results were obtained, when U937 cells were differentiated towards
monocytes upon TPA exposure (data not shown). 

DISCUSSION 

Our study provides strong evidence for the loss of expression of
MeCP2 and MBD2 in a substantial fraction of human cancers.
This is the first time that expression of genes associated with
CpG-methylation has been demonstrated to be consistently altered
in human cancers. Expression of other methylation-associated genes
such as DNA methyltransferase is currently controversially
discussed (De Marzo et al, 1999; Eads et al, 1999; Xie et al,
1999). 

We used quantitative real-time RT-PCR to analyse gene expres-
sion in a large panel of normal human organs as well as in multiple
primary human tumours. We have previously demonstrated the
feasibility of analysing MBD gene mRNA expression by real-time
RT-PCR, and several precautions were taken to obtain reliable data
(Müller et al, 2000a). First, all probes span an exon–exon junction,
thus excluding the amplification of genomic DNA. Second, the
results were consistent when different housekeeping genes were
used for standardization purposes. The TATA-binding protein
© 2001 Cancer Research Campaign
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(TBP) is expressed in the nucleus itself and has been shown to be
a reliable housekeeping gene for standardization purposes (Bieche 
et al, 1999; Müller et al, 2000a). The GAPDH gene has been
extensively used for this purpose as well. The data did not differ
significantly whether the expression of the genes of the nuclear
TBP or of the cytoplasmic GAPDH protein were used for stan-
dardization. Third, differences in gene expression levels could not
be explained by differences in the cell cycle status. We showed
that MBD2 and MeCP2 levels did not change upon exit of tumour
cells from the cell cycle. Also, the NSCLC samples were addition-
ally analysed for the proliferation markers PCNA and cyclin A2
(data not shown). The use of these genes for standardization
purposes did not alter the detected loss of MBD2 and MeCP2
expression seen in the tumour samples. 

To analyse whether reduced mRNA expression levels of
MeCP2 corresponded to decreased protein expression as well, we
performed Western blotting experiments. These experiments pro-
vided evidence that MeCP2 expression was reduced in NSCLC
tumour cells on the protein level. High-quality antibodies to study
expression of MBD2 at the protein level are currently not avail-
able. 

The maintenance of CpG-methylation is essential for normal
embryonic development and deletional mutants that disturb this
process can be lethal (Li et al, 1992), e.g. the deletion of MeCP2
(Tate et al, 1996). MeCP2 was the first identified member of the
Methyl-CpG-binding domain protein family and has been shown
to be a transcriptional repressor. Mechanistically, MeCP2 acts by
recruiting co-repressors and HDACs to methylated CpG dinu-
cleotides (Nan et al, 1998). We and others have shown that human
promoters can be transcriptionally repressed by MeCP2 when the
promoter is methylated (Kudo, 1998; Müller et al, 2000a). MeCP2
has been shown to be mutated in RETT syndrome, a neurodevel-
opmental disorder (Amir et al, 1999). Point mutations occur in the
majority of patients and these mutations diminish the protein’s
ability to bind to methylated DNA. 

Since methylation has been shown to be associated with the
silencing of tumour suppressor genes, MeCP2 was considered to
be an attractive candidate gene to mediate methylation-associated
gene silencing in cancer. In the current study we provide strong
evidence that MeCP2 mRNA expression is greatly reduced in a
significant fraction of solid human cancers. This finding strongly
argues against a role of MeCP2 in the silencing of methylated
genes in cancer. It has already been hypothesized that MeCP2
expression levels might be too low in normal tissues to bind to all
methylated DNA sequences (Nan et al, 1997). The reduced
MeCP2 expression in human cancers suggests that MeCP2 func-
tion is disturbed in cancers. 

MBD2 is another MBD family member that has been demon-
strated to be associated with HDAC recruitment and subsequent
transcriptional repression (Ng et al, 1999). No mutations of MBD2
have been detected in human disease so far, as have been for
MeCP2. In contrast to the single protein encoded by the MeCP2
gene, 2 isoforms of MBD2 occur and an additional testis-specific
form is known (Hendrich and Bird, 1998; Hendrich et al, 1999).
Potential functional differences between the MBD2 isoforms
remain currently unknown. Therefore, we decided to use a primer
and probe combination that could detect the 2 common isoforms
but not the testis-specific transcript (Müller et al, 2000a). Our
study showed that expression of MBD2 gene is significantly
reduced in a wide variety of primary human cancers. Similar find-
ings have previously been reported for a small group of colorectal
© 2001 Cancer Research Campaign
and gastric carcinomas (Kanai et al, 1999). The reasons for the
loss of MBD2 expression and its functional consequences are
unknown. However, the high frequency of this finding suggests a
non-random mechanism. This is even more likely when one
considers the high degree of correlation between loss of MBD2
and loss of MeCP2 expression in different cancers. 

Another interesting point is that the loss of expression differed
among cancer types. Our analyses showed the reduced expression
to be especially pronounced in squamous cell carcinoma of the
lung (data not shown). Also, expression in breast cancers appeared
to be low while some other gynaecological malignancies such as
cancer of the endometrium showed relatively high levels. In addi-
tion, only a minor reduction in MeCP2 and MBD2 expression was
found in acute myeloid leukaemia. 

More detailed analyses of MBD2 and MeCP2 gene expression
were performed in non-small-cell lung cancer from patients in an
early stage of disease. This homogenous patient population has
been extensively characterized previously (Müller-Tidow et al,
2001). Interestingly, loss of expression of both genes occurred
independently of the stage of the disease, histological grade or the
sex of the patient. In addition, the reduction in neither MeCP2 nor
MBD2 mRNA levels were associated with p53 mutational status
and finally, expression levels of MeCP2 and MBD2 mRNA levels
were not associated with the prognosis of the disease. These 
findings indicate that MeCP2 and MBD2 are likely to be down-
regulated during early stages of the pathogenesis of most solid
tumours. Down-regulation of these genes appears to occur in most
tumours. Gross changes in genomic methylation patterns have
been reported to be a common feature of human tumours as well
(Costello et al, 2000). It is tempting to speculate that the loss of
MBD protein expression and dysregulation of genomic methyla-
tion patterns are somehow connected. 

Taken together, our study shows strong evidence for a loss of
MeCP2 and MBD2 expression in multiple human solid tumours.
The demonstrated relevance of the loss of MeCP2 function for
human disease as well as the lethality of the MeCP2 knockout
model suggest that the loss of MeCP2 expression might be rele-
vant in the pathogenesis of cancer. The functional role of MBD2 as
well as the reasons and consequences of its loss of expression in
human cancers also need to be further studied. 
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