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Abstract: Enteroaggregative Escherichia coli is the primary cause of pediatric diarrhea in
developing countries. They utilize aggregative adherence fimbriae (AAFs) to promote initial

adherence to the host intestinal mucosa, promote the formation of biofilms, and mediate host

invasion. Five AAFs have been identified to date and AAF/IV is amongst the most prevalent found
in clinical isolates. Here we present the X-ray crystal structure of the AAF/IV tip protein HdaB at

2.0 Å resolution. It shares high structural homology with members of the Afa/Dr superfamily of

fimbriae, which are involved in host invasion. We highlight surface exposed residues that share
sequence homology and propose that these may function in invasion and also non-conserved

regions that could mediate HdaB specific adhesive functions.

Keywords: AAF/IV; HdaB; chaperone-usher; adhesion; invasion; pilus; fimbria; Escherichia coli

Introduction
Escherichia coli is a Gram-negative bacterium that

colonizes the bowels of humans and other animals.

Although the majority of strains have developed a

commensal relationship with their host, several

E. coli strains are highly pathogenic and harbor vir-

ulence factors to promote biofilm formation, evasion

of host immune responses to infection, and ultimate-

ly cause severe illness and death. Enteroaggregative

E. coli (EAEC) is the primary cause of pediatric

diarrhea in developing countries1,2 and its defining

characteristic is an aggregative adherence (AA)

pattern to HEp-2 cells in vitro,1 which appear as a

stacked brick-like arrangement of adherent bacteria.

In 2011 a Shiga toxin (Stx)-producing strain of

EAEC was responsible for a large outbreak in

Germany, which spread across Europe and resulted

in 3816 cases of gastroenteritis, 845 cases of hemo-

lytic uremic syndrome (HUS), and 54 fatalities.3–5

This O104:H4 strain was significantly more
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infectious than other Stx-producing E. coli strains

because of its specific arsenal of EAEC virulence

factors, including aggregative adherence fimbriae

(AAFs).3

AAFs are essential EAEC factors that promote

initial adherence to the host intestinal mucosa,

promote the formation of biofilms but can also medi-

ate host invasion.6–8 Four variant AAFs have been

characterized to date (AAF/I to AAF/IV) and a new

one has also been recently identified (AAF/V).9–14

These are located on a 55–65 MDa plasmid (pAA)

and are encoded by the agg (aggregative), aaf

(aggregative adherence fimbriae), agg3 (aggregative

3), hda (HUS-associated diffuse adherence), and aaf5

(aggregative adherence fimbriae 5) gene clusters,

respectively.

AAFs are assembled via the FGL chaperone/usher

(CU) pathway.8,15–17 CU systems are composed of an

outer membrane ‘usher’ pore and usually a single

chaperone and several fimbrial/pilin domains. Pilin

domains form the final polymeric structure and are

composed of an Ig-like fold that lacks the final

G-strand, but instead this is presented as an unstruc-

tured N-terminal extension (NTE). Upon entry into

the periplasm these domains form a complex with the

chaperone, which stabilizes them, prevents their auto-

polymerization and directs them to the usher. At the

outer-membrane the NTE of one pilin domain is

inserted into an adjacent pilin domain, completing the

Ig-like fold and as the fiber polymerizes it is secreted

through the usher pore into the extracellular space.

EAEC strains express one or more AAF struc-

tures and although functional redundancy exists,

there is evidence that AAFs also perform specialized

roles.18 The structures of AAF/I and AAF/II were

recently resolved and are composed of a major subunit

(AggA and AafA, respectively), serving as the chief

polymeric unit, and a single minor capping subunit

that lacks the NTE (AggB and AafB, respectively).8

The major subunits have significant positive charge

and mediate electrostatic interactions with host recep-

tors including fibronectin, although they have only low

structural homology with one another. The minor sub-

units, however, share a conserved tertiary arrange-

ment and are also highly similar to members of the

Afa/Dr superfamily, which are responsible for the

recruitment of host integrin and cellular invasion.19,20

In this study, we report the X-ray crystal struc-

ture of the AAF/IV pilus tip subunit, HdaB. This is

a donor strand complemented construct (HdaB-dsA)

and represents the structure of the HdaB domain in

the final AAF/IV fiber. Here the first 10-residues

(NTE) of the AAF/IV major subunit (HdaA) are

fused after an artificial linker sequence to the

C-terminus of HdaB. AAF/IV is amongst the most

abundant AAF structure identified in EAEC clinical

isolates13,14 and we show that HdaB too shares

structural homology with members of the Afa/Dr

superfamily and other FGL CU assembled pilin

subunits. Primary and tertiary structure analyses of

these proteins with HdaB highlight potential regions

involved in host invasion but also fiber-specific

carbohydrate recognition. Finally, our structure of

HdaB-dsA is formed through an artificially induced

covalent domain-swapped dimer. A cysteine residue

from within the linker forms a disulfide bond

between the subunits and this could be used as a

strategy to obtain crystals in similar systems where

it has not previously been possible.

Results and Discussion

Overall structure
To create HdaB-dsA, the N-terminal donor strand of

HdaA (residues 1-10) was fused to the C-terminus of

HdaB (residues 1-119), with an intervening

14-residue linker (HMDNKQEFIPLCQA). During

purification of HdaB-dsA two bands eluted during

gel filtration, corresponding to a monomer and

dimer [Fig. 1(A)]. Both forms were used to set up

crystallization trials, yet only the dimeric species

successfully crystallized.

The structure of HdaB-dsA was determined by

molecular replacement and refined to 2 Å resolution

(Table I). Due to the high structural homology

reported between AggB and AafB, the coordinates of

AafB were used as the search model (47% sequence

identity).8 HdaB-dsA crystals belong to P43212 space

group and the asymmetric unit consists of two

molecules composed of a domain-swapped dimer

[Fig. 1(B)]. Here the HdaA donor strand from one

subunit is inserted into the acceptor groove of its

dimer mate. However, in addition to the conserved

intra-domain disulfide bond (Cys28-Cys117) an inter-

domain disulfide bond (Cys131-Cys131) is also formed

between the synthetic linker from each chain, which

loop out, fold back against the C-terminus of HdaB

and pack against one another [Fig. 1(B)]

Therefore this dimer is in fact a covalent one,

albeit artificially induced, with a significant propor-

tion of its interface (�8000 Å2) provided by the large

linker; which is further stabilized by the inter-

domain disulfide bond. Although several domain-

swapped oligomeric structures have been reported

for other CU assembled pilin domains,22–24 the

inter-domain disulfide bond observed here is unique

to HdaB-dsA. As it was not possible to obtain

crystals for monomeric HdaB-dsA, formation of this

dimer was essential for the successful structure

elucidation of HdaB-dsA. Therefore introduction of

such an extended linker containing a cysteine at

this specific site could be used to promote crystalli-

zation of other proteins from similar systems.

All HdaB-dsA residues could be built into electron

density maps except for the majority of the disordered
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N-terminal vector encoded His6 tag and disordered

Lys124 (chain A) from within the linker sequence. The

final model also contains 318 water molecules, three

citrate ions and a single iodide ion. As expected for a

CU pilin domain, a single molecule of HdaB is formed

from a classical Ig-like fold, with the final G-strand

donated by the NTE of HdaA [Fig. 2(A,B)]. Within the

HdaA NTE, residues Ala1, Ile3, Ala5, His7 and Val9

complement the P1-P5 pockets of HdaB, respectively

[Fig. 2(C)]. The overall structures of the two HdaB-

dsA chains are essentially identical, however, substan-

tial deviations are observed within loops L1 and L2

with an RMSD of 1.1 Å over all Ca atoms [Fig. 3(A)].

Putative functional regions of HdaB

As anticipated, tertiary structure comparisons using

the Dali server25 identified the EAEC AAF/I and

AAF/II tip subunits AggB and AafB as having signifi-

cant structural homology (RMSD 1.2 Å and 1.4 Å,

respectively)8 with HdaB-dsA (Table II). In addition,

other minor pilin tip members of the Afa/Dr super-

family were also highlighted: the diffusely adherent

E. coli (DEAE) AfaD/DraD protein (RMSD 1.8 Å)28,29

and the Salmonella enteritidis fimbriae 14 (SEF14)

SefD protein (RMSD 1.9 Å)30 (Table II). The second-

ary structure elements of these proteins superpose

with little deviation; however, variations are localized

to regions within the L1, L2 and L3 loops of all four

structures [Fig. 3(B)] and could be of significance

because dynamic loop regions are often important for

protein function31.

Whilst the function of the AAF/IV shaft forming

subunit HdaA likely promotes host adhesion, as do the

major components of AAF/I and AAF/II,8,12 the role of

the minor tip domain, HdaB, is not known. The func-

tion of the E. coli Afa/Dr fimbriae tip protein AfaD is

an invasin, which can recognize host b1 integrin and

Figure 1. The HdaB-dsA domain-swapped dimer. A: Gel

filtration profile of monomeric (17.5 kDa) and dimeric (35 kDa)

HdaB-dsA. B: Asymmetric unit of HdaB-dsA crystals. Upper

panel: domain-swapped dimer of HdaB-dsA shown as

cartoon with citrate ions shown as spheres. The linker region

is boxed and expanded below. Lower panel: the linker

regions shown as sticks and also the Cys131-Cys131

inter-domain disulfide bond are highlighted.

Table I. Crystallographic Data and Refinement Statis-
tics for HdaB-dsA

Crystal parameters
Space group P43212
Cell dimensions (Å) a 5 b 5 112.2940,

c 5 61.6521
Number of protein molecules

per asymmetric unit
2

Data Collection
Beamline DLS I24
Wavelength (Å) 1.65310
Resolution (Å) 28.74-2.00 (2.11-2)
Unique observations 4,82,265 (27,204)
Rmerge 0.371 (0.054)
< I >/rI 5.4 (1.9)
Completeness (%) 98.1 (95.1)
Redundancy 3.6 (3.1)
Wilson B value (Å2) 31.6
Average B value (Å2) 34.1
Refinement
Rwork/Rfree (%) 20.2/24.8
Number of protein residues in

the asymmetric unit
294

Number of ligands/ions 3 citrates, 1 iodide ion
Number of water molecules 318
Rmsd stereochemistry
Bond length (Å) 0.009
Bond angles (8) 1.184
Ramachandran analysis
Residues in favored regions 97.7%
Residues in allowed regions 100%

Numbers in parentheses refer to the outermost resolution
shell.
Rmerge 5 R|I – |/RI where I is the integrated intensity of a
given reflection and is the mean intensity of multiple corre-
sponding symmetry-related reflections.
Rwork 5 RjjFo| – |Fcjj/RFo where Fo and Fc are the observed
and calculated structure factors, respectively.
Rfree 5 Rwork calculated using �10% random data excluded
from the refinement.
Rmsd stereochemistry is the deviation from ideal values.
Ramachandran analysis was carried out using Molprobity21.
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lead to bacterial internalization.20,29 The SEF14 tip

protein SefD, and the AAF/I and AAF/II tip proteins

AggB and AafB, respectively, have also been shown to

promote host invasion and it is therefore likely that

HdaB too carries out this role.6,32 However, an AafB

allele of 042 strain is non-invasive18 and therefore the

conditions under which, or the extent to which AAF

invasins contribute to cellular uptake is unclear. Fur-

thermore, AafB induces inflammation during EAEC

infection18 and so these fimbriae tip proteins may also

carry out other unique functions of which we are still

not aware.

We next mapped the sequence conservation

between HdaB, AafB, AggB, Agg3B, AfaD, and SefD

onto the surface of the HdaB-dsA structure [Fig.

3(C,D)]. With this approach we identified three clear

regions with localized conservation and we speculate

that these may encompass residues involved in pro-

moting cellular invasion. The first region is localized

to Qln43 within loop L1, the C2 b-strand and Ser112

from the F b-strand; the second is situated at the

inter-domain boundary within the A and B

b-strands and the intervening loop; and the third

region is spread over loops L1 and L3, the D1 and

D2 b-strands, and the D2-E and E-F loops. Although

region 3 is predominantly charged, region 2 and par-

ticularly region 1 contain significant hydrophobic

surface, and this may indicate protein:protein inter-

action sites.

Other structures identified by the server DALI

with Z-scores above 8.0 were the FGL CU assembled

Salmonella SAF major pilin domain SafA33 (RMSD

1.9 Å), E. coli AFA-III major pilin domain AafE-III24

(RMSD 2.4 Å), Yersinia pestis PSA pilin domain

PsaA34 (RMSD 2.2 Å). and the E. coli CS6 pilus sub-

units CssA and CssB35 (RMSD 2.4 Å and 2.8 Å,

respectively) (Table II). Again, the Ig-like fold of

these structures overlay well with deviations gener-

ally observed in loop regions and additional second-

ary structure elements (not shown).

SafA and AafE-III form the major component of

the SAF pilus and AFA-III pilus shafts, and whereas

Figure 2. Overall Structure of HdaB-dsA. A: Stereo cartoon representation of an individual HdaB-dsA monomer with secondary

structure labeled (b-strands and loops). HdaB from chain A is colored teal whilst the HdaA donor strand from chain B is colored

red. N/C-termini are annotated as residue type/number in red (HdaA) and black (HdaB). For clarity the artificial linker is not

shown. B: Topology of HdaB-dsA colored and labeled as in (A). C: Surface representation of HdaB-dsA with self-

complementing donor strand from HdaA as sticks. Residues for interacting side-chains in the HdaA strand are indicated.

Lee et al. PROTEIN SCIENCE VOL 25:1898—1905 1901



Figure 3. Putative functional binding regions of HdaB. A: Overlay of HdaB-dsA from chains A and B. Regions that display significant

structural variation are annotated. B: Cartoon representation of HdaB-dsA (teal) superposed with DraD (pdb: 2axw in purple), AggB

(pdb: 4phx in yellow), AafB (pdb: 2orl in green) and SefD (pdb: 3uiz in blue). Regions that display significant structural variation are

annotated. C: Primary sequence alignment of HdaB (UniProtKB: B3V224), AafB (UniProtKB: D3H575), AggB (UniProtKB: P46006),

Agg3B (UniProtKB: C9K5V1), DraD/AfaD (UniProtKB: Q47038) and SefD (UniProtKB: Q53997). Identical and similar amino acid resi-

dues are shaded in red and orange, respectively. Secondary structure of HdaB is shown above as lines (loops) and arrows (b-strands),

and * represents conserved residues that are exposed on the surface of HdaB. D: Upper panel: surface representation of monomeric

HdaB-dsA colored based on (C). Lower panel: electrostatic surface potential of HdaB-dsA. Three regions with sequence conservation

based on (C) are circled and labeled 1 to 3. Secondary structure within these regions are annotated as in Figure 2(B). The citrate 1/1’

binding site in HdaB_dsA is represented as a yellow star and the potential galactose binding site is shown as a black star. E: Potential

binding site of galactose in HdaB. PsaA/galactose complex (pdb: 4f8p) is superimposed onto HdaB-dsA and key residues are shown

as sticks. F: Citrate 1 binding site on HdaB_dsA chain A with key residues are shown as sticks.



a ligand has not been identified for SafA, AafE-III

promotes adhesion to host cell surfaces through

recognition of CEACAMs.36 However, comparison of

interfacial AafE-III residues from a nuclear magnetic

resonance (NMR) spectroscopy derived model of an

AafE-III/CEACAM536 complex with HdaB shows no

similarity. The CS6 pilus is composed of alternating

subunits of CssA and CssB, which each recognize

their own host cell surface receptors,35 but no struc-

tural data is available for a ligand complex. PSA pili

on the other hand are composed solely of repeating

PsaA subunits, which bind b1-linked galactosyl resi-

dues in glycosphingolipids and the phosphocholine

group in phospholipids,34 and a PsaA/galactose com-

plex has been obtained.34

Examination of this interface shows that several

of the PsaA residues that coordinate galactose are

either identical or similar to those in HdaB [Fig.

3(E)]. Superposition of PsaA with HdaB places galac-

tose across the C1 and D2 b-strands and L3 loop.

PsaA residues Arg41, Asn76 and Asn80 create

hydrogen bonds with galactose, and Arg36, Qln81,

and Thr86 occupy these positions in HdaB. An addi-

tional PsaA interaction with galactose comes from

Asp74 within the equivalent L3 region of HdaB, and

due to the dynamic nature of this loop several HdaB

residues with similar properties could take up this

position. Finally in PsaA Tyr78 is packed against

the galactose ring and in HdaB this is occupied by

Phe84.

The structure of HdaB-dsA reported here has

three citrate ions bound from the crystallization

solution [Fig. 1(B)]. Two of these, citrate 1 and 1’,

bind to equivalent positions toward the dimer inter-

face on the A and B chains, whilst the third is locat-

ed at the C-terminal pole of chain B. Citrate 1 and

1’ are bound by Arg36, and Qln81 in HdaB, which

overlaps with the putative galactose binding site

[Fig. 1(F)]. Although we have not been able to detect

any significant interactions between HdaB-dsA and

galactose or citrate in vitro using NMR spectroscopy

(data not shown), it could be that these are non-

native ligands with very weak affinities but are

occupying real functional binding sites.37 Moreover,

if this is a genuine ligand site, it is located in a

region of HdaB that lacks sequence conservation

with other members of the Afa/Dr superfamily and

therefore may be unique to AAF/IV [Fig. 3(C,D)].

To test the validity of our observations, we are

now screening carbohydrate arrays and carrying out

mutational analysis of these sites in functional

assays. Although further work is required to unravel

the functional details of how HdaB promotes EAEC

infection, our new structure of HdaB sheds some

light here and may help in the development of

new-targeted strategies to combat future EAEC

outbreaks.

Materials and Methods

Expression and purification

A donor strand complemented construct of HdaB

was created by PCR containing residues 1–119 of

hdaB at the N-terminus, followed by a HMDNQE-

FIPLCQA linker and finally the HdaA residues 1-10

at the C-terminus. HdaB-dsA was cloned into a

pQE-30 plasmid (Qiagen) containing a vector

encoded N-terminal His6 tag. This was transformed

into E. coli BL21 (DE3) strain and grown at 378C in

LB. Expression was induced with 0.5 mM IPTG at

OD600 nm of 0.6 and incubated for a following 4

hrs. Attempts to purify natively folded HdaB-dsA

were unsuccessful and therefore after harvesting the

cells, they were lysed in the presence of 8 M urea

and HdaB-dsA was purified using Ni21-affinity

chromatography under denaturing conditions38. After

elution, HdaB-dsA was dialyzed against 50 mM

NaOAc pH 5.0, 200 mM NaCl, 1.0 M urea, 10 mM

b-mercaptoethanol followed by 50 mM NaOAc pH

5.0, 200 mM NaCl, then finally gel filtered with a

Superdex-75 column (GE healthcare) pre-equilibrated

in the same buffer.

Crystallization, data collection, and

structure determination

HdaB-dsA (6 mg/ml) was crystallized using hanging-

drop vapor diffusion at 293K in 200 mM ammonium

citrate pH 4.8, 20% (w/v) PEG 3350. Crystals were

Table II. Tertiary Structure Analysis of HdaB-dsA

Protein name PDB code Z score RMSD Sequence ID (%)

DraD 2axw 17.5 1.8 Å over 108 equivalent Ca residues 46
AafB 4orl 15.4 1.4 Å over 118 equivalent Ca residues 47
AggB 4phx 15.1 1.2 Å over 114 equivalent Ca residues 57
SefD 3uiz 12.0 1.9 Å over 115 equivalent Ca residues 19
SafA 2co4 11.6 1.9 Å over 111 equivalent Ca residues 12
AfaE-III 1ut2 10.2 2.4 Å over 113 equivalent Ca residues 15
PsaA 4f8p 9.0 2.2 Å over 116 equivalent Ca residues 12
CssA 4b9j 8.5 2.4 Å over 102 equivalent Ca residues 12
CssB 4b9g 8.3 2.8 Å over 104 equivalent Ca residues 14

Z-score values taken from the DALI server25.
RMSD calculated using COOT26.
Sequence ID calculated using Clustal Omega27.
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obtained after 2 weeks and then briefly soaked for 30

sec in this reservoir solution containing an additional

20% (w/v) PEG 3350, 0.5 M NaI and then flash frozen

in liquid N2. Diffraction data were collected at 100 K

on beamline I24 of the Diamond Light Source (DLS),

UK. Data were processed using XDS39 and scaled

with SCALA40 to 2.0 Å. Molecular replacement was

performed with PHASER41 using the structure of

AafB (pdb: 4OR1)8 as the search model. PARROT42

was used to remove model bias and automated model

building was performed with BUCANEER.43 Refine-

ment was carried out in REFMAC44 implementing

TLS and NCS restraints, with 10% of the reflections

omitted for cross-validation. Manual model building

was carried out in COOT.26 Processing and refine-

ment statistics for the final model can be found in

Table I.

Accession numbers

Coordinates and structure factors for HdaB-dsA

have been deposited in the Protein Data Bank (PDB

code 5D55).
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