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Abstract: Vital signs historically served as the primary method to triage patients and resources
for trauma and emergency care, but have failed to provide clinically-meaningful predictive
information about patient clinical status. In this review, a framework is presented that focuses
on potential wearable sensor technologies that can harness necessary electronic physiological signal
integration with a current state-of-the-art predictive machine-learning algorithm that provides early
clinical assessment of hypovolemia status to impact patient outcome. The ability to study the
physiology of hemorrhage using a human model of progressive central hypovolemia led to the
development of a novel machine-learning algorithm known as the compensatory reserve measurement
(CRM). Greater sensitivity, specificity, and diagnostic accuracy to detect hemorrhage and onset of
decompensated shock has been demonstrated by the CRM when compared to all standard vital signs
and hemodynamic variables. The development of CRM revealed that continuous measurements
of changes in arterial waveform features represented the most integrated signal of physiological
compensation for conditions of reduced systemic oxygen delivery. In this review, detailed analysis of
sensor technologies that include photoplethysmography, tonometry, ultrasound-based blood pressure,
and cardiogenic vibration are identified as potential candidates for harnessing arterial waveform
analog features required for real-time calculation of CRM. The integration of wearable sensors with
the CRM algorithm provides a potentially powerful medical monitoring advancement to save civilian
and military lives in emergency medical settings.
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1. Introduction

Vital signs are the most rudimentary, yet frequently relied upon physiologic data used by emergency
care clinicians on which they base treatment decisions. In both prehospital and emergency department
settings, vital signs are used as a primary method for triaging patients and resources for both trauma
and medical encounters [1]. Pulse palpation and blood pressure have been used by physicians dating
back to the 18th century with the documented work of Stephen Hales [2]. Whereas anatomical imaging
diagnostics have enjoyed major advancement with novel diagnostic modalities such as computed
tomography and magnetic resonance imaging in the hospital, physiological monitoring available
in the prehospital and emergency room settings has remained largely unchanged. Blood pressure
is still measured with a sphygmomanometer with only small incremental gains in technology over
the last century. In austere clinical settings where sphygmomanometry may not be readily available
(e.g., military operations, wilderness medicine), patient status is assessed by gross manual measures
such as palpitation for radial pulse character and mental status [3–6]. In this regard, the Special
Operations Medical Association Prolonged Field Care Working Group identified a “monitor to provide
hands-free vital signs data at regular intervals” as a core capability needed to meet the requirement for
prolonged field care on the battlefield [7,8]. New advancements in capturing and analyzing real-time
electronic signals from the body using wearable sensor signals that are integrated with advanced
computer processing capabilities hold great promise for development of novel monitoring technologies.
In this review, we provide evidence for the need to use a photoplethysmographic (PPG) signal as
the most informative ‘vital sign’ to be captured in emergency medical care settings. We introduce
a variety of currently available wearable sensor technologies that could be used to harness PPG
signals for integration with a novel predictive machine-learning algorithm designed to optimize
pathophysiological monitoring and early triage decision support beyond standard vital signs.

2. Need to Identify New Vital Sign Measurements

2.1. Compromised DO2—A Primary Clinical Challenge to Effective Medical Monitoring

Hemorrhage is the primary reason for death after major trauma in both civilian and military
settings [9–13]. If not controlled in its early stages, hemorrhage can result in inadequate systemic
oxygen delivery (DO2) to vital organs (e.g., brain, heart, gut) that without effective intervention can
rapidly lead to organ dysfunction and tissue death [14]. Clinically, DO2 is indirectly assessed by
measurements of standard vital signs such as blood pressure. However, improvement in blood pressure
alone does not correlate with oxygen received at the tissue level as supported by the observation that
crystalloid fluids can elevate systolic pressure while simultaneously worsening patient outcomes [9].
Clinicians frequently define a measurement of systolic pressure <90 mmHg as hypotension incapable
of sustaining adequate DO2. More recent data suggest the use of this threshold may not accurately
represent risk for poor clinical outcome [4,15,16]. To this end, it has been proposed that optimal
assessment of patient status demands actual measurement of systemic DO2 [17–19].

2.2. Current Vital Sign Monitoring

One limitation of most modern monitoring systems is a bias toward capture of only standard vital
signs (Table 1). Standard vital signs exhibit little change during the early stages of volume loss due to
physiological compensatory responses [20–25]. Such responses (e.g., deep inspiration, tachycardia,
and vasoconstriction) regulate and maintain blood pressure and tissue perfusion prior to the onset of
decompensated shock during the early stages of hemorrhage, sepsis, dehydration, and other forms of
central hypovolemia [26–29].
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Table 1. Qualitative timing of changes in traditional vital signs and blood chemistries during progressive
central hypovolemia. Modified from Convertino et al. [14,22] and Moulton et al. [30].

Vital Sign or Measurement Change During Progressive Central Hypovolemia

Systolic blood pressure Late

Diastolic blood pressure Late

Mean blood pressure Late

Heart rate Non-specific

Shock index (heart rate/systolic pressure) Late

Oxygen saturation Late

Radial pulse character assessment Late

End-tidal CO2 Late, Non-specific

Respiratory rate Late, Non-specific

Glasgow Coma Scale Late, Non-specific

Blood pH, PCO2, Base Excess Late, Non-specific

Blood Lactate Late, Non-specific

Hematocrit, Hemoglobin Late, Non-specific

In an effort to identify and compare the time course of changes in standard vital signs and
physiological compensatory responses during the early stages of blood loss, lower body negative
pressure (LBNP) has emerged as a validated model for controlled progressive reductions in central blood
volume that mimics the physiology of hemorrhage in humans [14,31,32]. Like hemorrhage, LBNP leads
to reduced filling of the heart which in turn reduces cardiac stroke volume and output, resulting in lower
DO2 (Figure 1). Using this model of human hemorrhage has consistently revealed that commonly relied
upon vital signs are not specific to the condition of blood loss or do not change until too late in the clinical
course of reduced central blood volume to allow optimized patient care (Table 1).
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Figure 1. Human subject placed in the lower body negative pressure (LBNP) chamber used to induce
progressive reductions in cardiac filling (preload), stroke volume, cardiac output and DO2 similar
to hemorrhage.

Currently used monitors track limited vital sign measurements and chemistries on an interval
basis (e.g., blood pressure) with limited capability for providing continuous, real-time physiological
assessments (e.g., electrocardiogram, pulse, oxygen saturation) and are often non-specific to magnitude
of hypovolemia. In addition, current commercial monitoring systems for emergency settings are bulky,
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power hungry, have wires interfering with patient care, and sensitive to motion artifact. Despite the
above findings and limitations, clinicians continue to rely upon standard vital signs or blood chemistries
when deciding to intervene because new and more effective monitoring technologies are not available.

2.3. Accuracy, Sensitivity, and Specificity

The effectiveness of any monitoring technology relies on its ability to provide accurate, sensitive,
and specific information about the clinical condition of the patient. In this regard, it is critical that
there be an assessment of the number of cases correctly identified as unhealthy (True Positive or
TP rate), correctly identified as healthy (True Negative or TN rate), incorrectly identified as healthy
(False Negative or FN), and incorrectly identified as unhealthy (False Positive or FP). Of course, all of
this requires an agreed upon reference gold standard. Once these parameters are quantified, accuracy,
sensitivity and specificity of the measurement can be assessed. Within this framework, an estimation
of accuracy can be calculated as the ratio of true positive and negative cases (TP plus TN) to the sum of
all measured cases. Mathematically, this can be stated as:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Since sensitivity of a measurement represents its ability to correctly identify unhealthy cases,
it can be calculated as the ratio of TP to the sum of both true positive and false negative unhealthy
cases. Mathematically, sensitivity can be stated as:

Sensitivity =
TP

TP + FN
(2)

Specificity refers to the ability of a diagnostic modality to correctly identify or predict those
individuals who are healthy. That is, specificity can be calculated as the ratio of TN to the sum of all
healthy cases and can be stated mathematically as:

Specificity =
TN

TN + FP
(3)

In addition to accuracy, sensitivity and specificity, Youden’s J statistic was first described in 1950 as
a way to capture a single measurement performance assessment of a dichotomous diagnostic test [33].
The Youden’s J statistic is calculated as:

J =
TP

TP + FN
+

TN
TN + FP

− 1 (4)

Or in its simplistic form:
J = Sensitivity + Speci f icity− 1 (5)

The values of the J statistic range from 0 to 1. A test that has as zero value gives the same
proportion of positive results for both those with the disease state and those without the disease state.
In other words, a J value of 0 is useless in assessing the status of a patient because it provides a positive
result for the same number of patients that are experiencing the disease state as those that are not.
Conversely, a J value of 1 demonstrates that an assessment modality accurately identifies all subjects
with a disease state and those without. Quantitative comparisons of sensitivity, specificity, and the J
statistic will be used in a subsequent section of this review for comparisons between standard vital
signs and hemodynamic measurements in order to identify those physiological signals required by
wearable sensors to optimize diagnostic accuracy.
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3. New Monitoring Approach: The Compensatory Reserve

3.1. Defining the Compensatory Reserve

The compensatory reserve is a concept that represents the sum total of all physiological mechanisms
that contribute to the maintenance of systemic DO2 to the body’s tissue. Conceptually, a compensatory
reserve can be calculated as the difference between a baseline value at rest (100% reserve) and the
value at the onset of hemodynamic instability (i.e., 0% reserve) [14,22–25,30,34–36]. In this regard,
each individual has a finite ‘reserve’ consisting of physiological feedback mechanisms designed to
compensate for low blood flow states. The complexity of this compensatory reserve is reflected by the
reported observation that the physiology of integrated compensation is unique for each individual [37].
When this capacity to compensate becomes depleted, a state of decompensated shock occurs. Clinically,
a compensatory reserve measurement (CRM) can be obtained from assessment of changing arterial
pressure waveform morphology associated with changes in compensation [14,18,21,23,30,38–54].
Figure 2 illustrates that each arterial waveform consists of two primary waves: (1) an ‘ejected’ wave
with features that are dictated by all compensatory mechanisms that influence myocardial function;
and (2) a ‘reflective’ wave with features that are influenced by all compensatory mechanisms involved
in the control of peripheral blood flow [14,22]. The LBNP model of hemorrhage has been used to
generate a large reference database of more than 650,000 arterial pressure analog waveforms generated
from noninvasive photoplethysmographic techniques and collected from more than 260 healthy men
and women with age range of 18 to 55 years across various stages of reduced central blood volume
to the point of decompensated shock (0% compensatory reserve) [22]. With application of advanced
machine-learning technology to this large physiologically-diverse database, the CRM algorithm
has ‘learned’ to provide rapid and continuous measures of changing arterial pressure waveform
morphology to the clinical caregiver with the ability to gain an early and accurate assessment of the
individual patient’s medical status without the need for demographic data or measures of the patient’s
baseline physiology (as depicted in Figure 3) [21,24].
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Figure 2. Illustration of changes in features of the ejected and reflected arterial waveforms progressing
from a normal blood volume state to a state of reduced central blood volume (i.e., hypovolemia) such as
that experienced during hemorrhage. The red line indicates the integrated waveform that is clinically
observed. Modified from Convertino et al. [14,22,23].
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Figure 3. Diagram illustrating the overall framework envisioned for using the compensatory reserve
measurement (CRM) in pre-hospital care, including the details on the CRM machine learning algorithm
for assessing beat-to-beat analog arterial pressure waveform features in an individual patient unknown
to the algorithm. The unknown arterial waveform is compared to a large waveform “library” collected
from a diversity of human subjects exposed to progressive reductions in central blood volume.
The algorithm identifies the most similar waveform in the waveform library with the unknown sample
to generate a CRM value. Modified from Convertino et al. [14,18,21–23,55].

3.2. Performance Comparisons: Compensatory Reserve versus Vital Signs

Clinical measurements that inform and change the medical management of critically injured and
sick patients should demonstrate high diagnostic accuracy. One approach to assess diagnostic accuracy
includes direct comparisons of sensitivity and specificity across various monitoring capabilities.
Table 2 presents such comparisons for the prediction power of standard vital signs and hemodynamic
measurements for the onset of decompensated shock from data generated from LBNP experiments.
The measurement of compensatory reserve displayed by far the greatest sensitivity, indicating its
superior ability to correctly predict the onset of decompensated shock. Similarly, a greater specificity
generated from the measurement of compensatory reserve indicated its superiority compared to the
other vital signs and hemodynamic measures in the ability to identify patients who will not experience
decompensated shock. The higher specificity of CRM reflects the failure of standard vital signs
and hemodynamic measures alone to recognize the difference between individuals who are ‘good’
compensators from those who are ‘poor’ compensators [18,21–23,31,56–59]. Perhaps most striking
is that standard vital signs and hemodynamic measurements have consistently been shown to lack
sufficient accuracy as diagnostic tools to provide reliable clinical information [18,23,38,39,54,60,61].
In contrast, the ability of CRM to provide early reliable information with acceptable diagnostic accuracy
is reflected by it being the only measurement with a Youden’s J index above the discriminative threshold
value of 0.5 that confirms a useful clinical result [33,62] (Table 2).
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Table 2. Sensitivity, specificity and Youden’s J index of traditional vital signs and hemodynamic
responses for prediction of the onset of decompensated shock secondary to progressive central
hypovolemia. Modified from Convertino et al. [14,22,23,25].

Vital Sign Sensitivity Specificity Youden’s ‘J’ Index

Systolic Blood Pressure 0.80 0.17 0.03

Diastolic Blood Pressure 0.40 0.53 0.07

Mean Blood Pressure 0.60 0.33 0.07

Heart Rate 0.80 0.02 0.18

Stroke Volume 0.60 0.33 0.07

Cardiac Output 0.80 0.02 0.18

Pulse Pressure Variability 0.78 0.69 0.47

Peripheral Capillary Oxygen Saturation (SpO2) 0.60 0.00 0.40

Deep Muscle Oxygen Saturation (SmO2) 0.65 0.63 0.28

Compensatory Reserve 0.84–0.87 0.78–0.86 0.62–0.73

Note: For Youden’s Index, a value of 1 represents a perfect diagnostic test, while a value of 0 represents a test
with poor diagnostic accuracy. Stroke volume (SV), systolic, diastolic and mean blood pressures were measured
by finger photoplethysmograpy; heart rate (HR) was measured by standard electrocardiogram; cardiac output
was calculated as SV times HR; Pulse pressure variability and SpO2 was measured with standard pulse oximetry;
SmO2 was measured with near-infrared spectroscopy; compensatory reserve was measured by pulse oximetry.

The performance of standard vital signs and hemodynamic measurements to provide an early
and accurate prediction for onset of decompensated shock can also be assessed with comparisons
of sensitivity and specificity calculated using the Area Under the Curve (AUC) Receiver Operating
Characteristic (ROC) statistical analysis. Figure 4 provides ROC AUC comparisons of CRM with
various hemodynamic (top panel), metabolic (middle panel), and autonomic cardiac (bottom panel
as represented by metrics of heart rate variability and complexity) responses. The ROC AUC data in
Figure 4 are based on human data generated from experimentally-controlled progressive reductions
in central blood volume using the LBNP hemorrhage model [38,39,54,56,57,63]. Similar results have
been reported from experiments involving controlled hemorrhage in humans [25,61,64]. These latter
data corroborate the results presented in Table 2 that arterial waveform feature analysis provides
a monitoring technology with the greatest ability for early and accurate prediction for the onset of
decompensated shock.

Optimal management of significant traumatic hemorrhage and other compromising clinical
conditions is often delayed by failure to recognize a medical crisis due to the current reliance
on traditional vital signs and/or other standard physiological measures that represent a limited
assessment of a totally integrated compensatory response [22,24–29,54,61,64]. In this regard, the value
of monitoring the arterial waveform morphology for early detection of a clinical crisis using a CRM
algorithm has been well documented during actual controlled human hemorrhage in the laboratory
setting [14,22,25,38–42,44,50,52,53,61,64,65], and translated to early recognition of hypovolemia and
hypotension when used by first responders during simulated emergencies training exercises [66,67],
and in hospital critical care settings [20,21,43,45–47,49,51,60,68–72]. The comparative data regarding
sensitivity, specificity and diagnostic accuracy of various monitoring technologies presented in this
review provide compelling support for the notion that the development of wearable sensors must
include an ability to capture analog signals that allow for continuous real-time analysis of changes
in features of the analog arterial waveform. It should be recognized that a functional FDA-cleared
monitoring system with the CRM algorithm integrated into a standard finger pulse oximeter has
been developed and tested [20,22,30,69]. However, such technology has proven to provide limited
information to the clinical caregiver about patient status because of unstable positioning and movement
artifact. In this regard, we use the following sections of this review to emphasize the need for developing
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new wearable sensor technologies that can be integrated with the established CRM algorithm in order
to advance vital sign monitoring for emergency critical care.
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4. Current Sensor Technology

4.1. Arterial Waveform Measurement Modalities Amenable to Wearable Technology: Obtaining Reliable High
Signal-to-Noise Features

The original studies establishing the basis for CRM [30] used arterial waveforms measured by
volume-clamping based continuous blood pressure measurement technology (i.e., Finapres) [73].
Such arterial waveforms have been demonstrated to accurately represent corresponding peripheral
blood pressure waveforms obtained using arterial lines [74], and are thereby considered to be a reference
standard for non-invasive continuous blood pressure measurement. While the volume-clamping
technique is quite accurate at acquiring analog arterial pressure waveforms, the system required is
expensive, large, and power-hungry, and thus unsuitable for point-of-care settings. Accordingly,
to facilitate translation of CRM outside the lab, investigators have explored other techniques for
obtaining analog arterial waveforms that resemble blood pressure waveforms; namely, the most
commonly employed signal has been the photoplethysmogram (PPG) [39].

Example sensing modalities that provide arterial pressure waveforms (or analogs) that are directly
amenable to CRM are summarized in Figure 5. Figure 5a shows volume-clamping based finger cuff BP
measurement (i.e., Finapres), which uses an LED and photodiode (PD) to capture the blood volume as
a function of time in the finger, and uses a servo controller to modify cuff pressure (Pcuff) dynamically
to set the finger blood volume to a constant level. The output pressure required from the controller is
thus the hemodynamic pressure inside the artery, and a waveform can be outputted representing the
continuous arterial BP signal. The measurement can only be obtained from the finger.Sensors 2020, 20, x FOR PEER REVIEW 9 of 24 
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(i.e., Finapres). (b) Photoplethysmography (PPG) based blood volume pulse measurement. (c) Tonometry
based arterial pulse measurement. Image created based on Lee and Nam [75]. (d) Ultrasound array
based arterial pulse measurement. Image created based on Wang and Xu [76].

Note that the approaches besides volume-clamping based BP measurement would result in
waveform characteristics that would differ from the existing library of LBNP based arterial waveform
measures used for CRM. Thus, a small data collection of approximately ten subjects may be needed
with the new modality such that transfer learning or fine tuning methods for retraining the algorithm
can be implemented. Following such methodology, the existing database can still be leveraged with
the new sensing modality to yield accurate CRM results.
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4.1.1. PPG Signals

Figure 5b shows PPG measurement, which hinges on the acquisition of the BVP waveform,
by illuminating a tissue volume with an LED and measuring the transmitted light through the
tissue with a PD (PDT) or the light reflected back from the tissue volume with a PD (PDR) [53,77].
The measurement is most commonly obtained from the finger in transmissive mode, but in reflective
mode can be measured from other well perfused sites on the body (e.g., forehead, forearm, wrist).
PPG is the basis for pulse oximeters, used ubiquitously for measuring arterial oxygen saturation in
clinical settings. With each heartbeat, the volume of arterial blood in the tissue being illuminated
decreases during diastole and increases during systole, and thus the light passing through the tissue
is brighter (diastole) and dimmer (systole) at the photodiode. Since the volumetric expansion and
contraction of the arteries is dependent on pulse pressure and arterial compliance, the PPG waveform
closely resembles the underlying arterial blood pressure waveform in shape. While PPG waveforms
are captured on commercially available pulse oximeter instrumentation, such waveforms may not be
reliable for CRM since the PPG signals are heavily filtered and processed [77]. PPG can be measured in
both transmissive and reflectance mode: for transmissive mode operation, the LED and photodiode
are on opposite sides of the tissue (typically the earlobe, fingertip, or toe); for reflectance mode
operation, the LED and photodiode are adjacent to one another on the same side of the tissue, and thus
the locations for measurement can theoretically be anywhere on the body with sufficient perfusion
(e.g., forehead, forearm, chest, and wrist). The main disadvantages of reflectance-mode PPG are that the
signal quality is lower [78], the measurement varies with positioning and the distance between the LED
and the photodiode, and the signal is more affected by motion artifacts [79,80]. Recent developments in
device fabrication have allowed PPG sensing systems to be flexible and skin-interfaced for comfortable
use in long-term care scenarios [81,82]. Soft and stretchable optoelectronics sensing for transmissive
PPG measurement was demonstrated by Biswas, et al. [83]. An interesting approach not requiring
an LED but rather using ambient light for PPG sensing was demonstrated by Han, et al.; with this
approach, PPG signals with distinguishable heartbeat peaks were recorded and corresponding pulse
oximetry readings were obtained [84].

4.1.2. Tonometry Signals

Figure 5c shows tonometry measurement, which involves the application of a force to flatten
(or applanate) an artery with a given applanation force (Fappl), and a pressure sensor applied to the
skin above the artery then records the time varying fluctuations in pressure applied by the blood on
the arterial wall [85,86]. With perfect applanation, this pressure waveform (BP(t)) is exactly equal
to arterial pressure; however, in practice, applanation is usually imperfect and thus the waveform
simply resembles BP. The most common measurement site is the radial artery. The advantage in
tonometer measurements as compared to PPG is that substantially lower power consumption is
required [87]—PPG employs active sensing where light is delivered to the tissue and then the resultant
transmitted or reflected light level is detected; tonometry is a passive measurement where a transducer
simply records the distension of the arterial wall. However, the major disadvantage in tonometry as
compared to PPG is that the measurement is highly dependent on the location, and the transducer
must be reliably placed over a superficial artery.

4.1.3. Wearable Ultrasound

Figure 5d shows ultrasound array based measurement, which uses an array of ultrasound
transducers in a flexible form factor placed on the skin to measure arterial diameter changes versus
time for a large artery (e.g., the carotid artery). Changes in arterial diameter correspond to the BVP,
but are measured from a deeper artery as compared to PPG or tonometry, and thus may be less
affected by vasoconstriction. A common measurement site is the carotid artery. Recent work has
demonstrated that a blood pressure waveform can be measured from the surface of the skin based on
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this principle using a nano-engineered flexible ultrasound array [88]. The device acquires time-varying
changes in blood vessel diameter, which are then mapped to an estimate of the underlying blood
pressure waveforms. By employing ultrasound to measure this pulsating blood vessel diameter,
the device can focus on larger arteries, namely the carotid, which are deeper under the skin than PPG-
or tonometer-based approaches can access. Accordingly, reduced sensitivity to sensor positioning has
been demonstrated as compared to tonometry, and accurate extraction of arterial pressure waveforms
has been achieved [88]. Note that this approach requires calibration to acquire the absolute blood
pressure values (i.e., systolic, diastolic, and mean arterial pressure), but the waveforms measured are
likely the closest to the underlying blood pressure waveforms of the three prior modalities discussed
here. An additional concern that should be noted with this approach is that the detection of the
artery may require manual positioning and/or image annotation in broad use; however, the array of
transducers employed on the device may limit such a need for expert annotation.

4.1.4. Cardio-Mechanical Vibrations

While CRM to date has focused on arterial pulse waveforms measured peripherally, there have
also been studies employing cardiogenic vibration signals as an index of hypovolemia based on
machine learning techniques in both human subjects (LBNP) [89] and animal models [90]. Note that
since these measurements to do not directly yield an arterial pulse waveform, they are not depicted
in Figure 5 to avoid confusion. Cardiogenic vibration signals include the seismocardiogram (SCG)
and ballistocardiogram (BCG), both of which originate from the vibrations of the chest (SCG) or
whole body (BCG) in response to the ejection of blood from the heart and movement of blood
through the vasculature [91]. SCG and BCG signals can be measured accurately with inexpensive and
commercially available sensors [92,93], and have been demonstrated to be reliable even in the presence
of movement [94,95]. As with the other sensing modalities described above, soft, conformal patch
based sensing of SCG signals is also possible: Liu, et al. describe an epidermal sensing system for
providing mechano-acoustic measurements of cardiovascular health, including heart sounds and SCG
signals [96]. Machine learning based analyses performed on these waveforms demonstrated that high
quality estimation of blood volume status (analogous to CRM) could be obtained in a pig model of
hemorrhage [90]. Importantly, for persons suffering polytraumatic injuries who may not have an
available digit or ear, and may have extensive vascular damage that could reduce PPG waveform
quality due to increased wave reflections, such cardiogenic vibrations may provide an alternative
waveform for CRM-based volume status assessment.

4.1.5. Other Emerging Wearable Sensing Devices

The field of wearable sensing has seen a myriad of new devices over the past several years, driven by
the use of new materials and fabrication approaches, developments in chemical sensing, and the
advent of soft, flexible, and stretchable electronics. These new devices promise to deliver comfortable
and high-performance sensing of cardiovascular health parameters with thin, flexible, and stretchable
mechanical footprints that resemble the properties of human skin. Emerging technologies of interest
also include biodegradable sensors such as the one described in Boutry, et al., for tonometry-based pulse
signature sensing [97], and combined chemical/electrophysiological hybrid biosensing systems such as
the one presented in Imani, et al. [98]. Additionally, while not discussed in detail here, wearable sensing
systems measuring impedance plethysmogram waveforms [99], or magnetic inductance based cardiac
waveforms [100], may also be employed.

Table 3 provides a comparison of state-of-the-art sensing technologies for arterial pulse waveform
analogs, including summarizing the principle of operation, the typical locations on the body where the
signals are captured, and the advantages and disadvantages of each method for application to CRM.
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Table 3. Comparison of Sensing Technologies for Arterial Pulse Waveform Analogs.

Sensing Modality Principle of Operation Typical
Location(s) Advantages Disadvantages

PPG
Optical sensing of blood

volume changes in a
small volume of tissue

Transmissive:
Finger, Earlobe, Toe

Reflective: Wrist,
Forehead, Forearm

Waveform resembles arterial
pressure curves; signal

quality is typically high;
well-established sensing

modality and already used
in many clinical settings (i.e.,

pulse oximetry)

Signal originates mainly from
the cutaneous vasculature and

thus is affected by
hypoperfusion (peripheral
vasoconstriction); reflective
PPG is more convenient in

terms of placement but suffers
from motion artifacts and

placement-based variability in
signal shape; requires

substantial current
consumption (active sensing)

Tonometry

Force/pressure sensing of
arterial wall

displacement at the
surface of the skin

Wrist (Radial
Artery)

With applanation of the
artery, captures true blood

pressure waveform and does
not require calibration; low

power measurement since it
is a passive sensing

approach

Applanation is challenging in
practice and not reliable;

measurement depends highly
on placement; coupling to a
superficial artery is needed

Ultrasound-Based BP
Ultrasound sensing of

arterial diameter changes
in deeper/larger arteries

Neck (Carotid
Artery)

Measurements can be
obtained from deeper

arteries (e.g., carotid) and
thus are less affected by
hypoperfusion and/or

vasoconstriction; arrayed
sensing approach may

reduce the variability in
signal shape due to sensor

positioning

Active measurement which
requires substantial power

consumption to deliver
ultrasound energy to the body

and process the resultant
signals; may require manual

approaches to annotating
images

Cardiogenic
Vibration

Mechanical vibration
sensing of blood

movement through
vasculature

Chest (Sternum)

Passive measurements that
can be captured

non-intrusively with sensors
on the chest; represent more
central cardiac activity since

the origination is from
cardiac vibrations rather

than peripheral blood
volume pulse; minimal
affects due to peripheral

vasoconstriction

Not a direct arterial pressure
waveform analog; requires

coupling to the chest with an
adhesive; may be sensitive to
positioning of the sensor on

the body

4.2. Mitigating the Effects of External Vibrations and Motion Artifacts

In point-of-care settings, sensing systems for obtaining arterial pulse waveforms often encounter
external vibration or motion related artifacts (e.g., battlefield settings or civilian patient transport).
These artifacts can greatly impact the quality of the waveforms that are measured, and result in errors
in the computation of clinically relevant information (e.g., CRM). External vibrations from transport
vehicles during en route care, for example, can be quite large (e.g., on an ambulance or helicopter).
Motion artifacts will always be present in the measured signals, unless the patient is unconscious,
and may result from either whole-body movements or even more subtle sources such as respiration,
talking, or coughing. There are many approaches for mitigating the effects of vibration and motion
artifacts in arterial waveform measurements, but the most common techniques involve: (1) improving
the signal quality at the source as much as possible, (2) providing auxiliary sensors to detect and cancel
motion artifacts from the measured waveforms, and (3) quantifying signal quality on a beat-by-beat
basis to facilitate rejection of lower quality waveforms from the subsequent data analysis. Figure 6
shows an example of BP and PPG signals (green, red, and infrared wavelength) captured from a
representative subject using a wearable watch technology [101] (a) while at rest (b) and following
vigorous exercise with example motion artifacts (c).
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Figure 6. Example PPG signals taken together with electrocardiogram (ECG) and BP measurements as
a reference for comparison. (a) The signals were obtained by the Georgia Tech SeismoWatch hardware
as described in Ganti, et al. [101]. The BP waveforms shown for comparison were obtained with the
ccNexfin volume-clamping based finger cuff BP system (Edwards Lifesciences). (b) Signals measured
from a subject at rest. Note that the PPG waveforms closely resemble the BP waveforms in shape,
with the red and IR (PPGr and PPGi, respectively) containing many of the same characteristics expected
in an arterial pulse waveform, while green (PPGg) appears to be a smoothed version of the BP waveform.
(c) Signals measured from the same subject following heavy exercise with motion artifacts corrupting
the waveforms. The red and IR signals are corrupted heavily while the green PPG signal quality
remains high.

4.2.1. Improving the Signal Quality at the Source

For reflectance-mode PPG signals, signal quality is optimized at the source against motion artifacts
through the use of green wavelengths rather than red or infrared (IR) [79,102,103]; green penetrates
less deeply into the skin, and thus is less attenuated through the forward and backward path through
the tissue. Providing non-zero contact pressure between the PPG sensor and the skin can also increase
the amplitude of the measured waveforms [53,104]. Specifically, the PPG amplitude is maximized
when the contact pressure is equal to the mean arterial pressure (i.e., the transmural pressure is zero).
Thus, to reduce the impact of motion artifacts, green wavelengths can be employed for PPG detection,
and a non-zero contact pressure can be applied between the sensor and the skin to optimize signal
level. The waveforms shown in Figure 6c visually demonstrate this relationship between wavelength
and resultant PPG signal quality during motion artifacts. While the red and IR PPG signals are quite
heavily affected by the motion artifacts, the green PPG signal quality remains high. Nevertheless,
note that many of the key waveform features captured by the red and IR PPG are missing in the green
PPG signal due to the fact that the green signal captures primarily the superficial cutaneous vasculature
while red and IR penetrate deeper into the skin.

For tonometry-based arterial pulse waveform measurements, optimizing signal quality at
the source fundamentally requires robust coupling between the superficial artery and the sensor.
Tonometry requires a backing force such that the sensor remains consistently in contact with the arterial
wall throughout the measurement duration. Thus, a strap is typically used to provide such backing
force, for example for radial artery tonometry, and the tightness of the strap must be optimized to be
high enough such that the sensor remains in contact with the artery but not high enough to occlude the
artery [105]. To reduce the variability due to sensor placement, arrayed sensors are also often used for
tonometry based recordings [106]. The sensing system can thus be placed over the palmar aspect of
the wrist near the radius bone, and software based approaches can be used to find the waveform with
the highest signal quality from the array of sensors.



Sensors 2020, 20, 6413 14 of 24

Techniques for optimizing wearable ultrasound array based arterial pulse waveforms are not
yet well understood since the measurement modality is relatively new. However, from an intuitive
perspective it is likely that the ability to accurately place the ultrasound array in the proximity of the
artery from which measurements will be taken (e.g., the carotid artery), and the coupling between
the sensor array and the skin (likely requiring acoustic matching such as ultrasound gel), will play
important roles in ensuring high quality waveforms are obtained.

For cardiogenic vibration signals, there are also several aspects that must be considered to optimize
signal quality at the source. First, the sensing system should use a sensor with sufficiently low noise
floor to capture the micro-vibrations. In the case of SCG signals for example, only accelerometers with
input-referred noise of 50 µgrms/

√
Hz or lower should be used. The standard accelerometers deployed

on wearable sensing systems and smartphones for inertial measurement have much higher noise than
this, with values typically in the 150–300 µgrms/

√
Hz range. Second, leveraging the information from

all three axes of the SCG signal, or even including rotational components (i.e., gyrocardiography) as
captured with a gyroscope, has been demonstrated to yield greater information than the dorso-ventral
axis alone [107]. Third, and perhaps most importantly, the sensor should be rigidly adhered to the
body such that movement of the person wearing the sensor does not lead to detachment or other major
mechanical disturbances.

4.2.2. Providing Auxiliary Sensors to Detect and Cancel Motion Artifacts

A commonly-used technique for reducing the impact of motion artifacts on PPG signals is
the inclusion of an auxiliary accelerometer to detect and provide digital subtraction of motion
artifacts [108–110]. The captured acceleration signal provides a noise reference that can be used via
adaptive noise cancellation or other signal processing approaches to remove such artifacts from the PPG
signal. An alternative approach to reducing motion artifact influence on wearable cardio-mechanical
signals leverages auxiliary sensing to capture other signals of cardiovascular origin, namely the
electrocardiogram (ECG) [111,112]. Subsequently, rather than removing motion artifacts, the signal
strength itself can be bolstered. While the authors are not aware of such auxiliary sensor-based methods
for increasing robustness to motion artifacts in tonometry and ultrasound-based arterial waveform
capture modalities, intuitively such methods should be directly applicable to these modalities as well.
The fundamental approach of either providing a noise reference for noise cancellation or a timing
reference for ensemble averaging or otherwise strengthening the signal characteristics are valid for
these modalities similarly as for PPG signals.

For cardiogenic vibration waveforms, several approaches have been demonstrated in the existing
literature for detecting and cancelling artifacts due to motion or external vibration. Auxiliary sensors
for detecting or cancelling motion artifacts from BCG signals include foot electromyogram (EMG)
sensing to determine periods of elevated motion as well as external geophone based recordings
of floor vibrations for subsequent cancellation [113,114]. Furthermore, signal enhancement using
concurrent ECG signals for ensemble averaging, synchronized moving averaging, and otherwise beat
segmentation is standard practice.

4.2.3. Quantifying Signal Quality for Rejecting Lower Quality Waveforms

A third approach that can be leveraged to mitigate the effects of external vibrations and motion
artifacts on arterial pulse waveforms is the automatic quantification of signal quality on a beat-by-beat
basis. Such signal quality assessment is an important tool towards quantifying when the waveforms
should be inputted to subsequent machine learning steps (e.g., CRM computation) or, alternatively,
when waveform segments should be rejected. Signal quality indices have thus been developed
for PPG and cardio-mechanical signals, and have been validated in recent literature [115–117].
The challenge in such algorithms is that both the signal (of cardiac origin) and the noise are
non-stationary, and there is substantial variability in signal shape across subjects and also sensor
locations. Thus, conventional approaches such as matching the morphology of measured PPG
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(or tonometry, ultrasound, cardiogenic vibration signals, etc.) to previous recordings or a database
of recordings is not an appropriate technique. Rather, waveform matching must be accomplished
using techniques such as dynamic time warping (DTW) [118], which allow for stretching of each beat
against the templates with which the beat is compared. DTW-based approaches have demonstrated
promise for arterial pulse signals [116]. The establishment of such automated techniques for signal
quality assessment—as compared to manual annotation which has been employed in many studies
in the existing literature—will represent an important step towards facilitating translation of these
sensing approaches to point-of-care settings. Note that, whenever possible, techniques for improving
signal quality should be employed rather than techniques for only assessing signal quality. However,
in practical settings, many sources of artifacts, noise, and interference corrupting physiological
measurements cannot be completely attenuated by signal capture optimization, nor can they be
completely removed by auxiliary sensors and associated noise reduction algorithms; thus, the ability to
detect and remove low quality events is a key element in delivering robust and reliable CRM outputs
to caregivers for subsequent clinical decision making.

4.3. Eliminating the Need for Baseline Measures/Calibration

The use of wearable sensors for CRM-based hypovolemia assessment in field settings may not
allow for baseline data to be obtained; for example, if one envisions a person injured in a major car
accident, an emergency medical technician (EMT) may simply apply a wearable patch or system to
the person when arriving on the scene after exsanguination has begun. Accordingly, algorithms for
quantifying compensatory reserve based on machine learning should be globalized rather than
designed in a patient-specific manner (see Figure 3). Features leveraged by the algorithm should thus
be based on relative measures (e.g., timing intervals, variability measures, etc.) rather than absolute
measures (e.g., absolute amplitude of the signal). Moreover, machine learning algorithms should be
trained using leave-one-subject-out cross-validation (LOSO-CV) rather than n-fold CV, with at least
one subject deliberately left out of the training set such that the algorithm focuses on global trends in
the sensed waveforms. Finally, since sensor placement can impact the shape of waveforms measured
for many reflective PPG [79], tonometry, ultrasound-based blood pressure, and cardiogenic vibration
signals [117], such placement-dependent changes should be thoroughly quantified, and methods for
harnessing underlying dynamics should be leveraged as compared to features that require manual
annotation [118].

4.4. Real-Time Measurements and Processing for Display

An important consideration is how to display the resultant information derived from the arterial
waveforms to the physician or caregiver. One option is to provide a dashboard type display with
perhaps a single numerical value indicating the compensatory status of the person (i.e., a CRM value).
Another option might be a red, yellow, or green indicator to provide information regarding the clinical
decisions to be made during triage (Figure 3). An exciting opportunity exists in the pairing of the
volume status information delivered through the automatic analysis of the arterial pulse waveforms
with autonomous critical care systems for combat casualty care. Scientists in the academic and
commercial domain are conducting research designed to develop systems and methods for providing
fluids autonomously to combat casualties based on physiological data [119–122]; providing more
in-depth measurements of volume status beyond traditional vital signs to such systems may yield
improved results in managing fluid for hemorrhaging patients or casualties. As different applications
and use cases emerge, it will be important to determine what processing will be applied at what stage
in the system. For example, in one implementation the signals may be wirelessly transmitted from the
wearable sensing system to a local smartphone, tablet, laptop, or other dedicated receiver, at which
point algorithms may be implemented on that receiver device to output a CRM to be displayed to
the caregiver. Another implementation that is possible is to incorporate the CRM machine learning
algorithm into the wearable hardware itself (i.e., computing on the edge), in which case the CRM value
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itself may be transmitted wirelessly or a readout may be provided on the hardware itself. Regardless
of where in the signal chain the processing is implemented, it will be necessary to consider security
and privacy concerns of the patient, as well as power consumption and associated battery life on the
wearable hardware itself.

4.5. Electronic Documentation in the Prehospital Setting

The ability to collect and analyze large quantities of data from trauma patients, particularly in
austere prehospital settings such as the battlefield, hinder the potential for understanding and
improving clinical process and performance [123]. In situations where battery life must be extended for
as long as possible, or when wireless transmission is otherwise not feasible, data storage locally on the
sensing system may be desired and implemented using micro secure digital (microSD) cards or other
non-volatile memory on board the system. The advantage to such local storage of all physiological
waveforms is that a detailed record can be kept of the data for subsequent analysis and/or evaluation
of the treatment approaches employed. Data extracted from all patients could then be used to
retrospectively determine which approaches were most successful, and care can then be optimized
accordingly with this evidence. In some instances, the amount of data being stored may be quite large,
and may necessitate compressed sensing approaches prior to digitization [124,125]. However, in most
cases—since physiological signals such as the PPG are typically of low bandwidth (<100 Hz)—direct
digitization and storage of data are feasible for many weeks of continuous recording.

4.6. Military Perspectives and Implications

In December 2013, the Director of the former Directorate of Combat and Doctrine Development
(currently the Capability Development Integration Directorate) signed a ‘Requirements Adjudication
Team’ memorandum that documented a military medical requirement for the measurement of
compensatory reserve. The Committee on Tactical Combat Casualty Care reaffirmed this requirement
by recommending “continued development and expedited fielding of technologies (such as the
compensatory reserve) that enable prehospital combat medical personnel to better evaluate the need
for and the adequacy of fluid resuscitation” [126]. As military missions of the future will be performed
in complex multi-domain operations (MDO) and/or involve large scale combat operations (LSCO)
with a possibility of limited air superiority, delays in early and rapid medical evacuation in addition
to mass casualty scenarios will require individualized triage decision support that will prove critical
for successful execution of prolonged field care. In the military setting, warfighters could wear a
sensor embedded on a wrist watch (e.g., Figure 6) or as part of their fighting ensemble system so
that the clinical status of injured casualties could support continuous hands-free documentation by
a combat medic using a remote monitoring device (e.g., phone). Since previous research has also
identified the CRM with the capability to track physical and physiological performance [55,70,127],
a military wearable sensor system that integrates the continuous monitoring of CRM could be used by
unit commanders as a real-time metric of performance readiness (e.g., manage impact of heat strain
and/or dehydration) as well as its use for optimizing combat casualty care of warfighters in austere
battlefield settings.

4.7. Future Directions

Future work is required to collectively advance the vision of enabling CRM-based assessment
of hypovolemia in field settings. Wearable sensing systems are needed with minimally obtrusive
form factors facilitating the accurate measurement of arterial pulse or cardio-mechanical waveforms
outside of laboratory settings. Such systems should likely employ multi-modal sensing approaches:
for example, PPG sensing can be combined with tonometry and/or cardiogenic vibration sensing to
ensure that if one modality experiences artifacts from motion or other confounding variables, the other
modality might still accurately capture cardiac signatures. The physiological origins of the signals
being measured, and the manner in which confounding variables such as environmental factors
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(e.g., ambient temperature), arrhythmias, other cardiovascular disease conditions, and high body mass
index of the patient may impact the algorithms and/or sensor design should be investigated further.
The specific features and signal modalities that might offer the most salient information regarding
volume status should continue to be studied through LBNP, heat stress/dehydration, and other
hypovolemia inducing protocols. These wearable sensing systems must be paired with state-of-the-art
machine learning algorithms to reduce noise and interference, automatically assess signal quality,
and output a reliable and robust indication of CRM. Designers of such hardware, firmware, and software
required for this framework should collaborate closely with subject matter experts such as medical
professionals and EMTs such that the user interface and display offered to these professionals provides
the information needed for rapid decision making in the challenging environment of prehospital
trauma care. Finally, extensive validation of these technologies as a whole must be conducted to ensure
that the performance of all components of the overall system are sufficiently robust to obtain regulatory
approval and ultimately improve outcomes.

5. Conclusions

As technology advances to facilitate the emergence of autonomous medical treatment systems as
well as early and accurate diagnosis and triage, the incorporation of sensors capable of supporting
measurements of CRM can ensure that patients who require emergency medical care (e.g., civilian
trauma patients or wounded service members) receive appropriate treatment interventions, even when
medical personnel are not available. As such, the development and availability of a single advanced
monitoring system that includes wearable sensors capable of capturing analog arterial waveforms
and integrating them with application of machine-learning algorithms (i.e., artificial intelligence) can
provide clinical and/or performance decision-support with the goal of optimizing health, safety and
wellbeing in prehospital and emergency room settings. In addition to offering robust performance,
human factors aspects of the sensing system design must be prioritized such that both the hardware
and clinician-facing displays seamlessly integrate into the workflow, making it easier for decisions to
be made in time-critical, challenging situations. Finally, such systems and associated algorithms as
described in this review paper may be applied to the diagnosis or management of other cardiovascular
conditions, such as heart failure management.
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